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The spectrum from Compton-scattered x rays is an inherently broad distribution. This distribu-
tion is the sum of several Gaussian-like distributions, which gives the sum its unique shape. The
Gaussian-like distributions are the result of convoluting the so-called Compton profile, the spread in
the scattered-x-ray energies due to the momentum distributions of the target electrons, with the
detector response and the geometrical effects. The distribution is then further modified by the ab-
sorption within the sample. A formulation for both qualitatively and quantitatively determining the
magnitude of the geometrical contributions is presented. This formulation is based on a recently
devised approach to the scattering geometry [Hanson, Gigante, Meron, Phys. Rev. Lett. 61, 135
(1988)]. A methodology for determining the geometrical spread in the energy of the scattered x rays
is presented. The results can be conveniently used to optimize scattering geometries for the reduc-
tion of the geometry-caused spread.

I. INTRODUCTION

Compton-scattered x-rays have been used as probes for
the measurements of several physical quantities such as
electron density, target mass, and mass density. ' When
used with coherently scattered x-rays it has also been
used for Z-dependent characterization of materials. '

The width of the Compton distribution is inherently
broad which is an obstacle in the analytical measure-
ments that relate the total Compton intensity to the
quantity of interest. In fact, the Compton scattering re-
sults not in a peak, but in a non-Gaussian distribution of
x-ray energies. For many spectrometric techniques, such
as x-ray fluorescence (XRF), the Compton scattering can
be the largest direct or indirect source of background.
Moreover, with the advent of electron synchrotron
storage rings as x-ray sources, the use of tunable, mono-
chromatic radiation for sophisticated physical analyses
leads to more restrictive requirements on the background
evaluation. This is especially true when the incident x-
ray energy is just above the absorption edge of the ele-
ment being probed. In particular, in XRF with mono-
chromated synchrotron radiation the Compton-scattered
x-rays result in a high background in the spectral energy
region just below the primary radiation. Therefore the
incident energy must be set relatively far from the edge of
the element being analyzed. Some authors have regretted
the fact that the level of scattering is higher than origi-
nally anticipated and is the cause for not achieving the
previously predicted ultimate minimum detectable limits
(MDL's), measured with energy-dispersive spectrometers
(EDS's), for the analysis of any particular element. In
light of this, the measurements of chemical speciation,

measurement of shifts in the photoelectric absorption
edge as the incident x-ray energy is scanned, will be harn-
pered by the presence of the Compton-scattered x-rays.
There are numerous other x-ray-based techniques where
the scattered x rays, and other eff'ects such as x-ray reso-
nant Raman scattering, must be accurately removed from
the spectra. Finally, along this line, knowledge of the
shape of the Compton distribution is important for accu-
rate measurements of the Compton cross section.

For some authors the inherent width of the Compton-
scattered x-ray distribution is utilized for determining the
electron-momentum distributions of elements, known as
the Compton profile. ' Unfortunately, the energy distri-
bution of the Compton-scattered photons is due only in
part to the electron-momentum distribution. The width
and shape of the measured distribution also includes
detector-response, geometrical, and absorption contribu-
tions that are not negligible. The only way to avoid
geometrical eff'ects is to use very tight collimation of the
beam and the detector. This limits the counting statistics
of a particular measurement. Therefore any Compton-
scattering measurement requires a tradeoff' between the
need to increase the counting statistics and the spread of
the Compton-scatter distribution. The relative magni-
tude of the geometrical contribution depends on the reso-
lution of the detector. In order to optimize the design of
a Compton spectrometer, many parameters must be ad-
justed, such as the energy of the primary beam and the
scattering angle.

In general, we can stress that the choice of the x-ray
energy is more related to x-ray absorption, whereas that
of the scattering angle is more related to the geometry.
Only a few authors have attempted to include geometri-
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cal spread in the optimization procedures and data
analysis. The evaluation of all of these contributions
is mandatory in Compton-profile measurements and is
important in other spectroscopic techniques in order to
achieve good results.

The distribution of Compton-scattered x-rays is a sum
of energy distributions resulting from the scattering of
the primary photons by electrons in each orbital. For the
most tightly bound electrons the uncertainty in the elec-
tron momentum, Ap, results in an extremely broad com-
ponent of the scatter distribution. The outer-shell elec-
trons are responsible for the central peak of the distribu-
tion. Ignoring absorption effects, the distribution of scat-
tered energies is always centered about the most probable
energy E, which is related to the incident energy Eo and
to the scattering angle 0 by AE= A0,

d0
(2a)

reduce the effective size of the sample. We will define the
effective sample as being represented by a rectangular
solid with the sides given by b r ( = b r lb ), b z ( =Az lb ),
and, out of this plane, Ah ( =Ah /b ). In this way we for-
malize the problem and in the following wi11 refer to the
effective sample as the sample. The intersection between
the fields of view of the detector and the source, each of
which are conical in shape, is known as the scattering
volume ( V). The fields of view and their intersection can
be visualized with the aid of Fig. 1(b).

The geometrical spread (AE) is due to the spread in
the scattering angle accepted by the sample (2b, O), as
determined by Eq. (2a) for small scattering volumes and
(2b) for large scattering volumes,

E 1+y [ I —cos(8) ]

where y =Eo /rnoc . The energy distribution of the
Compton-scattered x rays about the mean energy E can
be calculated according to methods presented by
Carlsson et al. ' and by Ribberfors and Berggren. "
Equation (1) illustrates that there is an angular depen-
dence on the energy of the scattered x-rays. If the in-
teraction volume is large enough to create a significant
60, then there is a spread in the measured scattered ener-

gy distribution due to the geometrical effects. Each di-
mension of the sample can contribute to this spread in
60. From here on in this paper E/Eo and AE/Eo will
be represented with E and AE.

In this work we have determined independently and
analytically the contributions of the geometrical effects
that result in a spread (hE) of the Compton-scatter dis-
tribution. This geometry-caused spread is due to the
dependence of the scattered energy on the scattering an-
gle. In a previous work we presented a reference system
that simplifies the derivation of the isoscattering con-
tours. In this work we utilize these contours to relate
measuring-system parameters to the geometry-caused en-

ergy spread.

bE= I 10. (2b)

(a) Sampl

p
Y P

A qualitative approach for determining 60 is to overlay
contours of the constant-scattering angle, presented in
Ref. 12, over the defined sample. In this way we can

II. THEORY

A. Basic (two dimensions)

The aim of this work is to find a relation between the
energy spread caused by geometry and the geometrical
parameters of the measuring system. The first step is to
determine the effective dimensions of the sample with
respect to measuring-system parameters, initially neglect-
ing absorption. The basic geometry is shown in Fig. 1(a).
It is implied that the detector- and source-defining aper-
tures or slits are normal to and centered on their respec-
tive axes. The shape of the intersection region is deter-
mined by the scattering angle, the shape of the slits or
collimators, and the distances between the source (S) and
the sample and detector (D) and the sample. The actual
physical dimensions of a nonabsorbing sample is then the
intersection between the scatter volume ( V) and the sam-
ple. Absorption characteristics of the sample will then

FIG. 1. (a) Basic sample geometry. (b) Sample geometry with
field of view of the detector and source included.
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visualize b0 subtended by the sample. Since we are in-
terested in the energy spread AE instead of 50, a more
appropriate approach for determining AE is to perform
this visualization with contours of constant-scattered en-
ergy. From Eq. (1) there is a 1:1 correlation between en-
ergy and 0 which provides us with a starting point for un-
derstanding problem of spread of the scattered energy
distribution resulting from the geometry of the system.

The contours of constant scattered energy that corre-
spond to the contours of the constant scattering angle, as
a function of r ( = r /b ) and z ( =z /b ), are shown in Fig.
2 for incident x-ray (or y-ray) energies of 17.5, 60, 160,
412, and 662 keV, probe energies commonly reported in
the literature. From these plots it can be noted that the
gradients in the scattered energy become steeper as the
incident energy is increased. The contours of the con-
stant scattering angle, as a function of r and z, were deter-
mined with Eq. (3) and the contours of the constant
scattering energy were determined by substituting 0 from
Eq. (3) (Ref. 12) into Eq. (1),

In order to define our derivatives, it is convenient to
make the definitions

s =tan(8),

~ —1 2z

x =(s'+1)' ',
u =y(1 —1/x)+1,
a =z(1 —z),

g+r
y =2rs+1=

a —r

The appropriate differentials are

dE ys y
dr x ru

d F. ys [2ys y —xu(3y —x y —x )]
7

dr x r u

tan(0) =
z(1 —z) r— (3)

dE ys w
)

dz x fu

These contours are toroidal in nature with S-D as the axis
of symmetry. Therefore the approach that we will follow
to discuss the problem in the R-Z plane and later general-
ize the results to include the third dimension. The previ-
ous presentation of isoenergy contours are extremely
effective in the definition of the problem, but does not al-
low for an analytical determination of the energy spread.
Therefore our goal is to determine the gradients in energy
subtended by the sample as a function of the sample's
spatial coordinates for a given Ar and Az, i.e., the sample.

Since the R and Z axes are Cartesian, we can easily de-
scribe two of the three dimensions of the sample in r and
z. With this approach we can describe 0 in terms of r and
z and the dimensions of the sample and scattering volume
in terms of Ar and Az instead of 50. AE can then be cal-
culated with

bE=C hr+ br +C36z+ bz +C5br bz, (4)

where

dE
dr

d E —3ys xum +2y s w —2ys'x ru

dz x~r u'6—2 3

d E
dr Qz

ys w[xu(3y —x )
—2ys y]

x r u

dE 2y
dr (y+1)
d E 2y(4yr+y+1)
dr (y+1) r

dE yw

dz (y+1) r

d E 2y(yw —yr r)—
dz (y+1) r

d F. y(4yr+y+1)w
dr dz (y+1) r'

As will be shown later, the higher-order derivatives are
needed since dE/dz is zero at z=0.5. The coefFicients
use absolute values since the derivatives change sign. It
is interesting to note that there is a singularity at
r =z(l —z), or 0=90'. Therefore at 90' we need to take
the limit as s ~ ~,

dE
dz

d E
d

dr dz

Equation (5) gives b.F- as a function of spatial coordi-
nates for a small sample. If the dimensions of the sample
become too large, then Eq. (5) must be integrated with
respect to r and z. If the sample has been placed so that
the coefficients, i.e., the derivatives, are slowing varying
functions of r and z, then the coefficients can be con-
sidered constant over the integration. In this way a non-
rectangular shaped sample can be described and the in-
tegration over the sample can be simplified. This concept
is important in that the sample can be divided into seg-
ments, later to be reconstructed, and the attenuation can
be included.
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FICi. 2. (a) Contours of constant scattering energy for an incident energy of 17.5 keV. The labels on the contours are the ratios of
scattered-to-incident x-ray energy. (b) Contours of constant-scattering energy for an incident energy of 60 keV. The labels on the
contours are the ratios of scattered-to-incident x-ray energy. (c}Contours of constant-scattering energy for an incident energy of 160
keV. The labels on the contours are the ratios of scattered-to-incident x-ray energy. (d) Contours of constant scattering energy for an
incident energy of 412 keV. The labels on the contours are the ratios of scattered-to-incident x-ray energy. (e) Contours of constant
scattering energy for an incident energy 662 keV. The labels on the contours are the ratios of scattered-to-incident x-ray energy.
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Figure 3 shows a contour plot of isoefficiency as a func-
tion of r and z for source and detector areas, normalized
to b, of 0.01. The equation for the efficiency is for a
point of scatter and neglects the lateral response function
for points oA'the detector and source axes. This approxi-
mation is reasonable for assessing the magnitude of
changes in efficiency as the sample position is moved, but
a more sophisticated version of efficiency is needed for
quantitative analyses.

0.0
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C. The third dimension

z/b

FIG 3. Contours of isoefficiency assuming a point-scattering
volume. the labels are for values of e as calculated by Eq. (5).

B. Contours of constant ef5ciency

In order to determine the most appropriate geometry
for a given measurement, we must balance the geometri-
cal spread that we are willing to accept with the efficiency
of detection that we are willing to lose. For an isotropic
source, if A, and A& are the areas of the source and
detector apertures, respectively, we can write a relation
for the efficiency of the system as

We need to include a method to determine the spread
resulting from the third dimension, Ah, of any real sam-
ple. As was shown in Refs. 12 and 13, we have azimuthal
symmetry about the source-detector axis. Hence the
three-dimensional surfaces of constant scattering angle
and contours of constant scattering energy are toroidal in
shape. By invoking this symmetry, the third dimension
of the sample can be dealt with by projecting points oA
the R-Z plane along the toroidal surface to the R-Z
plane. This is illustrated in Fig. 4. For most cases 5h, is
approximately equal to 5h2, so we can define r'=r+6h.
We can now use the same equations for calculating AE in
two dimensions by including a set of terms that have r re-
placed with r'. This method approximates a sample that
is a rectangle in height with one that is a section of two
concentric toroids. Unless h/2 is large, this will be a
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FIG. 4. Projection of sample onto the R-Z plane along the toroidal contour surfaces.
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second-order correction to r.
As a brief aside, it is interesting at this point to consid-

er a sample that is thread or a thin rod with only a
significant h component. If the rod is placed at 0 in the
R-Z plane, then this rod is tangential to the 0 (toroidal)
surface. As the length of the rod is increased, 50 in-
creases as we cross more surfaces of constant scattering
angle. The effective scattering angle of the sample will
likewise increase with the length of the rod. The angle 0
is now the minimum angle in the distribution of subtend-
ed scattering angles and not the mean scattering angle of
the rod.

III. RESULTS

The general approach of optimizing the design of a
Compton spectrometer requires several tradeoffs. For ex-
ample, the primary energy is chosen after compromising

between the attenuation of the photons by the sample and
the detector parameters of efficiency and energy resolu-
tion. The scattering angle, r, and z are selected according
to the type of information needed and the physical con-
straints of the measurement system. The angle, energy,
and efficiency contours, already presented, are useful in
optimizing and understanding the design of a scattering
spectrometer when all other experimental constraints
that restrict the field of options are taken into account.

From the energy-contour plots we can estimate the en-
ergy spread of Compton scattered x-rays by determining
the number of contour lines, weighted with the relative
length of the segments, that are subtended by the sample.
By determining the number of contour lines subtended by
the sample, we are actually measuring the gradient of the
energy distribution within the sample. In a rapid assess-
ment of the situation, it is then convenient to study the
contour plots of the energy spread as a function of r and
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FIC. 5. (a) Contours of constant ~E for 60-kev incident x rays with ~r=0.002 and ~z ——0.01. The labels are actual values of ~E
(b) Contours of constant AE for 60-keV incident x rays with Dr=0.01 and hz=0.01. The labels are actual values of QE. (c) Contours
of constant AE for 60-keV incident x-rays with Dr=0.02 and hz=0.01. The labels are actual values of AE. (d) Contours of constant
AE for 60-keV incident x-rays with Dr=0. 1 and hz=0.01. The labels are actual values of AE.
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from the (dE/dr )AT' and (dE/dz)Az terms along with
the sum of the higher-order terms. Plots generated for
60-keV photons with Ar =0.01 and Az =0.01 are
presented in Fig. 6 for the scattering into 90 and 165'.
At 165', for all values of z, the higher-order terms con-
tribute less than l%%uo even though the dE/dz is zero at
z =0.5 ~ At 90', the higher-order terms contribute about
12%. The relative magnitude of each contribution does
not change significantly with energy. However, as Ar and
Az are increased the higher-order terms become
significant. When Ar =hz=0. 1 the higher-order terms
contribute 2 —8% at 165 and contribute 20—30% at 90'.
The magnitude of the contributions is symmetrical about
90'.

One aspect of the suggested optimization procedure
that has not been addressed until now is the effect that hr
and Az have on AE. As the sample thickness and interac-
tion volume is increased, we will have a more severe
broadening of the energy distribution. Therefore it is in-
teresting to plot AE as a function of Az or Ar. In all
cases the (dE/dr )Ar terms dominate the —,'(d E/dr )Ar
terms. Therefore holding Az constant, hE will be almost
a linear function of Ar. This is not the case with the Az
terms since dE /dz and d E /dr dz are both zero at
z=0.5. Figure 7 shows AE versus Az for 60-keV x-rays
scattered into 90 with r=0.5, z=0.5, and for five values
of Ar. Since dE/dz and d E/dr dz are both zero at
z=0. 5 regardless of scattering angle, the AE-versus-Az
curve will be similar in shape for any scattering angle, but
the magnitude of the effect will be less pronounced as we
move away from 90 . This is because the Ar terms have
larger contributions as was shown in Fig. 6.

In scattering techniques such as Compton-profile mea-
surements, we usually define the geometry with the
scattering angle 0. In XRF, where we usually work with
thin samples of finite dimensions, it is common to define
the angles %' and 4 as illustrated in Fig. 8. The relation
between them and 0 is 4++=20. It can be easily
demonstrated that if we want to place the sample along a

z. As an example, we present contour plots of constant
hE as a function of r and z in Fig. 5. The curves were
generated for a photon energy of 60 keV and Ar values of
0.002, 0.01, and 0.02 holding hz at 0.01. The value of
0.002 for Ar is equivalent to using a 1-mm-thick sample
in the spectrometer of Pattison and Schneider. The
value of Az =0.01 is on the order of the normalized aper-
ture sizes used by Pattison and Schneider. From these
plots the gradients are, of course, steepest as r approaches
zero and less steep as r becomes large (implying large 8).
The gradient is minimized when z=0.5, which corre-
sponds to the distance S-V being equal to S-D. As the
sample becomes thicker (larger b, r) the gradients within
the sample become steeper as the sample subtends more
constant energy-contour lines. The gradient minima at
z=0.5 become less pronounced.

When determining AE, it is important to consider if
and when higher-order contributions can be neglected.
We therefore present plots of the percentage contribution
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all of the higher-order terms. hr and Az fixed at 0.01. (b) Per-
cent contribution to hE, for 60-keV x rays scattered into 90',
from the two first-order terms and the sum of all of the higher-
order terms. Ar and Az were fixed at 0.01.
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FIG. 7. AE vs Az for 60-keV x-rays scattered into 90', for
values of Ar of 0.002, 0.01, 0.02, O.OS, and 0.1. These calcula-
tions were for r =z =0.S.
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SV of curves illustrating this is presented in Fig. 9. These
curves were generated keeping b constant, which means
R, and R z must be adjusted to maintain the same
scattering angle. If only R, or Rz are changed even
though 0 is constant, b will change along with Ar and Az.
The curves of Fig. 9 are symmetric about 90'. From
these curves it is apparent that in order to minimize AE
we want z=0.5 regardless of the scattering angle, even
though the fluctuations are minimized in the forward or
backward directions. The reason for the changes in AE is
due to the fluctuations in the relative contributions of the
Az components illustrated in Fig. 7. The discontinuity at
z =0.5 is from the fact that the derivatives change sign
there.

FIG. 8. Correlation between commonly defined XRF
geometry and our geometry.

specific contour, we should satisfy the following relation:
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FIG. 9. AF. as a function of z fixing several angles and main-

taining a constant b as R l and R 2 are changed.

sin%'

sin+ R2
It is worth noting that this simple criterion can be easily
implemented in an experimental setup just looking at the
distances of the source to detector relative to the target.
In addition, we can consider a sample moving along a
contour simply when R, and/or R2 are changed. This
can be achieved by changing the position of the source
and/or the detector along their respective axes. This, in
turn, changes r and z, but not necessarily r, z, and b.
Therefore by fixing 0 we only have one independent vari-
able, either r or z, so a plot of AE versus r or z illustrates
the effect of moving the sample along the contour. A set

IV. DISCUSSION

The spectrum from Compton-scattered x rays shows an
inherently broad and asymmetric distribution. The
unique shape of the distribution results from several con-
tributions, such as (a) geometrical, (b) absorption, (c) mul-

tiple events, and, last but not least, (d) the natural asym-
metry of the Compton profile. The evaluation of each in-
dividual contribution has generally been thought to be
somewhat difficuIt, resulting in the large use of Monte
Carlo methods for the prediction of Compton spectra. '

These methods are now quite simple, but they are more
helpful in the final evaluation of a measuring system than
in the optimization of the system.

The idea to evaluate individually the contributions of
the enlargement of the Compton spectra is not new.
However, a more specific and analytical approach was
needed, espec&ally when the 60 subtended by the sample
becomes large. The problem posed here assumed that we
started with a "good" geometry, a rectangular sample to-
tally subtended by interaction volume. It is also assumed
that the collimation of the source and detector was rec-
tangular, so no curvature from the aperture are observed
out of the R-Z plane. As samples more realistic in shape
are assessed, we need to make sure that we take into ac-
count the fact that sample dimensions may no be parallel
to the R, Z, and H axes. Likewise, when assessing the
effects from using a circular aperture we cannot neces-
sarily use the radius of the aperture as Az without overes-
timating AE. Also, for circular apertures the cone-
shaped detector and/or source field of view will be ellip-
soidal instead of circular. If the surface of the sample is
not parallel to the source-detector axis, then Ar is not ac-
tually the thickness of the sample, but the thickness di-
vided by cos(6), referring back to Fig. 1(a). A similar
correction to Az will be needed.

In the determination of Compton profiles, if the sam-
ples are compared to experimentally determined refer-
ence profiles, then as long as the absorption and sample
thickness are the same, the geometrical effects and the
effects of detector resolution will be a constant contribu-
tion of each spectra (i.e., everything washes out). There-
fore the work presented here will not be as interesting for
the analysis of the spectra as it will be for determining
the optimum experimental geometry. However, if the
measured spectra are compared to theoretically deter-
mined spectra, the geometrical effects and contributions
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must be understood. As detector resolution improves,
e.g., measuring Compton profiles measured with crystal
spectrometers, ' the requirements for the geometrical
effects will become more stringent. As an example, if we
imagine a detector resolution of about 200 eV for 60-keV
x rays, and we decide to accept 1% or less contribution
from the geometrical spread, then this contribution
should be less than 28 eV. If we now measure the x rays
with a 4-eV detector' the maximum acceptable geome-
trica spread is 1.1 eV, a factor-of-25 reduction in the re-
quirements. In the case of analytical work, especially in
medical physics, large samples may be the rule instead of
the exception.

In trying to understand the Compton-scatter distribu-
tion, we need to realize that the distribution is not a con-
volution of contributions from each orbital but is a sum
of contributions from all orbitals. As such, the effects of
detector resolution and geometrical spreading will be
convoluted with the contributions from each orbital.
That is why even with a relatively poor-energy-resolution
detector the entire Compton distribution never tends to-
wards a Gaussian distribution. Since the contribution
from each orbital is the convolution of the momentum
distribution, the detector resolution, and the geometrical
spread, we know from the central-limit theorem that the
result wi11 be nearly a Gaussian. If the response function
inside the scattering volume is uniform, i.e., each point
has equal weight apart from the geometrical spread, the
energy distribution from geometrical effects would not be
Gaussian in shape. However, there will be an "effective
Gaussian" whose sigma is related to oor calculated hE,
which when convoluted with our detector response and
the Compton profile, will result in an equivalent distribu-
tion as before. Therefore, when using the results from
this work we must be careful not to use hE as the sigma
of a Gaussian distribution.

When the subtended 60 becomes large we may need to
integrate Eq. (4) with respect to r and z. In doing this the
integration is greatly simplified if the sample has been po-
sitioned so that the derivatives of the energy are slowly
varying functions of r and z. If that is the case, then the
coefficients C, are constants with respect to the integra-
tions. Hence the scattering from samples with complicat-
ed geometries may be determined.

When the sample is highly absorbing, in the aspects of
geometrical spread, the analysis of the situation is some-
what simplified in that the beam of x-rays does penetrate
the sample, and the sample does not subtend many con-
tour lines. When the sample is optically thin, we do not
have to consider beam-attenuation effects. However,

when we are in the intermediate region, attenuation
effects must not be taken lightly since the effects of at-
tenuation include not only loss of intensity but also a
change in the shape of the distribution. One suggestion is
to divide the sample into the segments that follow the
contours of constant scattering energy followed by in-
tegration along each contour, which involves an integra-
tion only along either r or z. Again, if the sample has
been positioned properly, the coefficients C, are constant
with respect to the integration, so the integration is the
length of the subtended arc of the contour weighted by
the attenuation.

Regardless of the position of our effective sample (rec-
tangular in shape) along a contour, there is a preferred
orientation of the sample. The surface (longest dimen-
sion) of the sample should be placed tangent to the con-
tour. This means (l) when z=0.5 the sample surface
should be placed parallel to the source-detector axis, (2)
when z &0.5 the surface should be "tilted" towards the
detector, and (3) when z )0. 5 the sample should be tilted
towards the source.

V. CONCLUSIONS

We have developed a mathematical method for deter-
mining the geometrical spread in the Compton-scattered
x-ray energy distribution. The method presented is based
on the realization that in a scattering geometry we have
surfaces of constant scattering angle and hence surfaces
of constant scattering energy that are toroidal in shape.
With this realization, it is relatively easy to establish
equations for determining the spread in energy caused by
the geometry of a measuring system. In assessing a sys-
tem, or when trying to optimize a system, it is important
for the experimenter to realize that it is the gradients in
the energy contours that exist within the scattering
volume that actually determines the magnitude of the
geometrical effects. This is important in cases, not un-
common in medical physics, where the sample itself is
large and optically thin.
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