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Brownian dynamics simulations for interacting colloids in the presence of a shear flow
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We have carried out Brownian dynamics simulations to measure the self-diffusion of charged
colloids in the presence of an oscillating shear flow. We observe that in the two directions per-
pendicular to the shear velocity direction, the diffusion constant increases monotonically with the
shear rate y. We also find a slight layering along the shear direction. Our results are compared
to the forced Rayleigh scattering experiments of Qiu et al. [Phys. Rev. Lett. 61, 2554 (1988)].

Recently, there have been a number of interesting ex-
perimental investigations of the properties of colloidal sus-
pensions ' in the presence of an oscillatory or steady shear
flow. Because the particle spacings for these charge-
stablized suspensions are on the scale of 10 to 10 A, the
energy density and elastic constants are 10 to 10' times
smaller than conventional atomic systems. This means
that at shear rates y which are readily achievable in the
laboratory, it is possible to perform experiments where the
applied stresses are comparable to the energy density. As
a result, many new phenomena, including shear-induced
melting, laser-induced freezing, and shear-induced or-
der have been observed. While a number of theoretical
and computational studies of the effect of high shear
rate for atomic fluids have been reported, it is not clear
whether these studies can be applied to suspensions. In
particular, they do not take into account the liquid in

which the particles are suspensed, either in forms of its
contribution to the suspension viscosity or in terms of the
hydrodynamic interaction which may be important at
high shear rates. Furthermore, Evans and Morriss have
recently shown that the shear-induced order of atoms into
"strings" aligned parallel to the flow velocity observed in
several nonequilibrium molecular-dynamics (NEMD)
simulations arises from the use of a thermostat which as-
sumes a stable linear velocity profile. The use of a ther-
mostat which does not bias the streaming velocity profile
causes the string phase to vanish.

In this pa r, we present the first Brownian dynamics
simulations' of charge-stabilized polystyrene sphere (po-
lyballs) suspensions in the presence of an oscillating shear
flow. Because the polyballs are large (& 300 A) com-
pared to the surrounding fluid molecules, we treat the
fluid as a viscous medium in which the motions of the po-
lyballs are overdamped and since the volume fraction is

low, we ignore hydrodynamic interactions. In this paper,
we study the self-diffusion of polyballs in the liquid state
driven far from equilibrium by an oscillating shear flow
and compare our results to recent forced Rayleigh scatter-
ing experiments of Qiu et al. We find, in agreement with
their work, that aside from the usual enhancement of the
diff'usion due to Taylor dispersion'' in the shear velocity
direction, there is an additional contribution to the
diffusion coefficients D, in all three directions which in-
creases as the shear rate y increases. We find that for
small y, the self-diffusion coefficients in the two directions

the flow direction increase monotonically approximately
as y'l and seem to saturate at large y to a value near that
for noninteracting particles Do kgT/6mriR, where T is
the temperature, kq is Boltzmann's constant, R is the ra-
dius of the polyball, and ri is the viscosity of the fluid.

The system we considered consists of N identical
spheres of radius R, dispersed in a fluid of dielectric con-
stant e at temperature T. Alexander etal. ' have shown
that in the dilute limit, the interaction between polyballs
can be treated by a repulsive Yukawa potential in which
the polyballs interact with a renormalized charge Z
which differs from their bare charge Z,

U(r) Z* e e ' (I+xR) 2e rr/«

where e is the background dielectric constant and x is the
inverse screening length. x. can be increased by adding
counterions to the fluid. The simulations are carried out
using the Brownian dynamics method of Ermak' which is
based on the Smoluckowski equation. In the nonshear sit-
uation and the absence of hydrodynamic effects this
method has been well understood and used in many
areas. ' The particle trajectories at time t+ht are deter-
mined by

r; (t +At ) r; (t )+ (Do/k T)F;(t )ht +W;,

where F;(t) is the force on particle i from the remaining
particles and each component of the random force IV;, is
chosen independently from a Gaussian distribution with
zero mean and variance (W;, (t) ) 2Dod, t and Do is the
free diffusion constant. We choose the time step At to be
0.005io, where ro is the time for a noninteracting polyball
to diffuse a distance a (N/V) 'l, the mean interparti-
cle spacing. This time step was sufficiently small to insure
that the system remained stable, even when the shear flow
was added. We also used periodic boundary conditions in
all three directions, and set the interaction to zero for all
particle pairs separated by a distance greater than 3/x.

For de6niteness, we choose parameters to be compara-
ble with the experiments by Dozier and co-workers, ' who
measured the diffusion coefficient D/Do at room tempera-
ture of a colloidal suspension without shear. In his study,
R -0.038 pm and volume fraction p -5 vol%. By varying
the amount of HC1, k xa was varied from 2 to 12. We
made a number of runs for different values of x and Z*,
and found that Z 200 gave good agreement between
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our results for the long-time diffusion constant
N

D = lim g ([r;(t ) —r; (0)] )/6tN

and that of Dozier and co-workers. Here the average is
taken over at least 20 starting configurations 1000 steps
apart. We then subjected a system of N=500 particles
with k 3 to a shear flow by shearing the box while keep-
ing the volume constant. Similar to the experiments, we

applied an oscillating shear to the system with frequency
ru and amplitude A. This was done by adding an addition-
al shear contribution' to the right-hand side of Eq. (2),
r„-e„Az;htsin(2trrut). Here A is the maximum dis-
placement along the shear velocity direction (x) by which
two particles can be separated due to shear flow if the dis-
tance between them is one unit along the z direction, as
shown in the inset to Fig. 1. Since we kept the bottom of
the box fixed, AL, is the maximum displacement of the
top of the box. As before, we used periodic boundary con-
ditions in all three directions except now if a particle exit-
ed from the top, it was introduced at the bottom with
a shift AL, sin(2 cotrt), where L, is the box size. The
displacement of a particle due to the shear flow is
(Az sin(2trcot), 0,0) at time t. The average shear rate can
then be defined as
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FIG. 1. Diffusion coefficient as a function of time at different
[hear amplitude for fixed frequency co=2/ro Dr(t) is calculat-.
:d from the results for long time (& 500006,t) and averaged
)ver many initial configurations. The inset shows the coordinate
ystem in which the shear flow velocity is along the x axis and
he shear direction is along z. The shear rate is linear along z
lirection and does not change in y direction.

j=(dx/dt)/z 2trAro(cos(2trrut )) =4Aco,

where the average is over 4 of a cycle. In our simulation,
the amplitude A ranged from 1 to 8 and the largest ro was
2/ro. In contrast to the earlier MD simulations, no
thermostat was needed in our Brownian simulations, be-
cause of the strong damping of the particles.

The relevant dimensionless number which characterizes
the importance of convection and diffusion is the Peclet
nuinber P, a y/D. In most of our runs, we are in the

limit where the motion of the particles is largely convec-
tive rather than diffusive and P, & 16. For our largest y,
in the time it takes a polyball to diA'use a distance a above
or below the constant velocity plane, it has been convected
a distance of 16a. In most cases near-neighbor particles
transverse many times the near-neighbor separation a in a
cycle.

In our shear simulations, we first tested that the mean-
squared displacement is linear in time and that a well-
defined diffusion coefficient D exists. Because of the
shear, D is anisotropic and we measured three diffusion
coefficients, D, DJ, and D„which are the long-time limit
of D;(t), where for example, D,, (t) =g;-I ([y;(t)—y;(0)] )/2Nt, and similarly for D, (t). For D„(t), we
have to subtract out the contribution due to the convection
term. A simple way this can be done is to calculate

where the prime means that only times t such that
sin(2trcut) =0 are included. To obtain accurate results for
these diAusion coefficients, we made very long runs of or-
der (5-10)X 10 d, t and averaged over many initial con-
figurations after discarding the first (2-4)x 10 dt for
equilibration. Sample results for the time-dependent
diA'usion coefficient are shown in Fig. 1. From plots of
this type, we determined that the long-time diA'usion con-
stants D;—:lim, D;(t) presented in Fig. 2 are accurate
to within 10%.

As the amplitude A increases, we find that the diffusion
constants increase monotonically. For the nonsheared
case, the diffusion constant is isotropic and equal to about

of the noninteracting value. In a shear flow, the
diffusion along the shear velocity direction (x axis) is
difficult to determine accurately, but from the data we
have, we can say that there is a well-defined diffusion con-
stant (D, ) under shear flow, and that it increases mono-
tonically with the shear rate. Here we concentrate only on
the diffusion coefficients in the two perpendicular direc-
tions, y and z. We can see from Fig. 2, that both DJ and
D, increase monotonically, and D~ is always larger than
D, . At small shear rates, both D's increase faster than
linearly, approximately as y' . The solid lines in Fig. 2
are best fits to a y' dependence, which describe the data
fairly well for D~, . We have calculated the diA'usion con-
stants for the same shear rate at several combinations of A
and co and find that as long as A & 1, D~ and D, depend
only on y, not on ro and A separately. One possible ex-
planation of the difference between D~ and D, is that as y
increases, there is a slight layering of the structure and the
particles find it is easier to diA'use within the layer than
across the layers. The diA'usion in the z direction would
then be suppressed because openings in a layer move fas-
ter than particles can get into them.

The overall increase of the diffusion coefficients seems
to be partially due to a reduction of the eAective interac-
tion under shear. That is, as the neighbors of a particle
are moving rapidly by it, the eAective interaction is re-
duced. We measured the isotropic pair correlation func-
tion g(r) and found an overall reduction in the height of
the first peak as y increased, though the position of the
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FIG. 3. The anisotropic structure factor in the y direction
S(k~) vs k~a for various shear rates for pI 0.5/rp. Here a is

average near-neighbor distance. We can see the difference be-
tween the five curves is within the noise indicating that S(k~) is

unchanged under shear flow.
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FIG. 2. Diffusion coefficients as a function of the shear rate.
The shear rate is composed of the amplitude A and frequency co,

y 4Aco. At each shear rate, we have used several different
combinations of the amplitude and frequency. Upper figure is
the diffusion coefficient Dy and the lower one is D, . Dy saturate
at yap —24, and D, saturates at higher rate ytp 40. Dy is al-
ways larger than D, . The solid lines are a best fit to a y'
dependence.

We determined the structure factor along the z direc-
tion S(k, ), and found that, consistent with our results for
D~ and D„ there is some layering under shear flow. The
first peak of S(k, ) increases with the shear rate monotoni-
cally, as seen in Fig. 4. For zero shear, our uncorrelated
liquid phase has a peak height of about 1.5. We find that
the peak height increases with the shear rate (inset in Fig.
4) and the width of the peak also increases. This result in-
dicates that while there is some layering along the shear
gradient direction (z), the distance between the layers is
quite broadly distributed. By examining the trajectories
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peak remained unchanged. The results of our simulations
are very similar to the experimental results of Qiu et al. s

except that they found that D~ increases linearly with the
shear rate even for small values of y. The difference in the
shear rate dependence of D~ between our results and Qiu's
is probably due to the difl'erence of the wave-front profile
in the two cases. In the forced Rayleigh scattering experi-
ments the wave front is nonuniform and the effective shear
rate is an average of many shear rates, while in our case
the profile is uniform.

We also calculated the structure factor S(k). Since the
system is anisotropic under shear flow, we calculated the
anisotropic structure factors S(k). S(k~) is calculated by
choosing the k vector to be parallel to the y direction.
From Fig. 3, we can see that S(k~) is practically un-
changed under shear flow and shows no evidence of string
ordering. We also checked this directly by examining the
trajectories of many of the particles in the system as well
as examining projections of the particle positions on the
y-z plane, and did not observe any evidence for string or-
dering under shear flow. This should probably not be
surprising because our systems are rather dilute and far
from the melting temperature.
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FIG. 4. Structure factor S(k, ) vs k, a for various shear am-
plitudes with pI 0.5/rp. The inset shows the height of the first
peak as a function of shear rate, which increases monotonically
and then saturates for large y. The width of the peak also in-
creases as the shear rate increases. Note that while the peak po-
sition is unchanged, the peaks become more unsymmetric as the
shear flow increases.
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of the particle motion, we have some evidence that the
particles move more easily in the x-y plane than along z
direction across the plane. This phenomena is consistent
with the diffusion-coefficient calculations.

From our Brownian dynamics simulation of the charged
colloidal suspensions under the shear flow, we can con-
clude that the anisotropic diffusion coefficients Dy and D,
increase monotonically as y increases with the rate of in-
crease decreasing for large shear y. For yap&24, we
found that Ds/Dp may actually become greater than I,
while D, /Dp only reaches I for ) rp=40. The fact that
D~/Dp exceed I may be possible since the rapid motion of
particles past one another could lead to an eff'ective in-
crease in the "random" noise they experience such that
the diffusion increases to values even greater than the
noninteracting diffusion value. The largest shear rate we
can achieve at the present time is yro —40. For larger
amplitude and high frequencies, we have difficulty keep-
ing the simulation stable. Experimentally, it appears

that D~ may be saturating near its noninteracting value
Dp, though D~/Dp exceeding I is not ruled out. Further
experiments and simulations in this high shear rate regime
are needed to clarify whether the diffusion constant can
actually become larger than its noninteracting value.
While the parameters (particle size, charge, concentra-
tion, etc) in the experiments and in our simulations were
in fact quite different, the range of shear rate (in dimen-
sionless units) and the behavior of D~ in this range are
quite similar. It is interesting to speculate that when ex-
pressed in dimensionless units, D~/Dp vs y may be univer-
sal, independent of the detailed parameters. This observa-
tion is presently under further investigation. Finally, by
calculating the anisotropic structure factor S(k), we find
that we do not observe any string ordering under the
shear, but only a slight layering along z direction.
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