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Expressions for differential and total cross sections for atom-diatom scattering are derived using

the impulse formalism without any approximations. Results for the rotational-vibrational scatter-
ing are obtained without using the peaking approximation (PA). For the specific case of a hard-

core potential, it is shown that, except for elastic scattering, PA results are substantially diA'erent

from the true impulse results.

The basic idea of impulse approach (IA) to collisions
was proposed by Chew. ' The total scattering amplitude
for a projectile incident upon a complex system is taken in
IA to be the sum of the various two-body amplitudes (the
projectile plus each of the constituent particles of the com-
plex system); the constituents not involved in the two-
body scattering remain unaff'ected during the impact and
are termed spectators. The role of the binding potential of
the complex system is to generate a momentum distribu-
tion of the constituent particles. IA has been applied to
atom-diatom collisions by Bogan, Eckelt, Korsch, and
Philipp, and by Beard and Micha.

In all of these papers an additional simplification, the
peaking approximation (PA), is invoked to evaluate the
integral over the spectator momentum. In this approxi-
mation, the t matrix representing the two-body scattering
process is evaluated for a particular value of the spectator
momentum. This value of the spectator momentum is
taken to be one for which the product of the initial- and
final-state molecular wave functions is maximum. Since
the two-body t matrix varies much more slowly with inter-
nal molecular momentum than does the product of the
molecular wave functions, the integral over the spectator

momentum factors into two parts: (i) the two-body t ina-
trix evaluated for a specific value of the spectator momen-
tum, and (ii) the molecular form-factor integral which
can be evaluated easily for a given value of the momentum
transferred. PA not only simplifies the computations but
it also gives a very simple physical picture of the impulse
formulation. However, its validity and accuracy have not
been quantitatively assessed.

We have recently developed a formalism which per-
mits computation of IA cross sections without resorting to
PA. This allows us to investigate the validity and assess
the accuracy of PA. The purpose of this Rapid Communi-
cation is to point out that PA is valid only in the limited
range of vibrationally and rotationally elastic scattering.
It gives grossly erroneous overestimates for vibrationally
inelastic forward scattering. It also does not converge to
the true IA results even for high relative translational en-
ergies.

The state-to-state differential scattering cross section
for a molecule consisting of atoms I and 2 to undergo a
transition from the initial vibration-rotation state Uj upon
collision with atom 3 to final state v'j' is given by"'

where
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and I&3)= Iv, j,m, p3) is the initial state, the final state
being denoted by primes. p3 and p3 are the momenta of
the incident particle before and after the collision in the
center-of-mass (c.m. ) frame of the atom-molecule system.
p3 is also the momentum of the incident particle 3 with
respect to the c.m. of the molecule consisting of atoms 1

and 2. p, denotes the momentum of particie a with
respect to the c.m. of bc and q, is the relative momentum
of b and c. This set of momenta are called Jacobi inomen-
ta. ' p, denotes the reduced mass of the system (a,bc).
0 is the scattering angle, i.e., the angle between p3 and p3.
Summation over m and m' has removed the dependence of
the differential cross section on the azimuthal angle. T '
and t ' are, respectively, the three-body and two-body
transition matrix elements, s being the spectator atom.

I
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with «'M given by
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Substituting Eq. (3) in Eq. (2), after some algebra, we

get

Ip ('q3 ) and p'(q3) are the initial- and final-state molecular
wave functions in the momentum representation.

We have shown how the integral in Eq. (2) can be
evaluated without any approximations. We start by ex-
panding the two-body t-matrix element in a spherical har-
monics expansion in the unit vector q3,

1/2
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p, k, y, p, L, Af j
where ~ means a plus sign for s i and a minus sign for s =2, q is the momentum transferred during the collision,
j—:(2j+ I ), etc. , C's are the Clebsch-Gordan coefficients, and

NL4'~p(q) -„d«'jp( I as I rq) Ki~~ (r)z, , (r ),
with a, =(—1)'[m, /(ml+m2)], and
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g, (r) being the radial part of the vibration-rotation wave function and j~ is the spherical Bessel function of order j.
To simplify the remaining algebra it is convenient to choose the z axis of the coordinate system along q, the direction of

momentum transfer. Then

Yg„(q) = (j/4~) '"S~.
Using the properties of Clebsch-Gordan coefficients C's, and Racah coefficients W's, Eq. (5) can be rewritten as
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The C and 8'coefficients express the relation between the total angular momentum change J during the collision, and the
initial and final rotational quantum numbers, j and j'. We also note the total angular momentum change J is composed
of two parts, L coming from the two-body t matrix and P, the usual component, derived from the momentum transferred
during the collision.

The expression for the diA'erential cross section is now obtained by summing the absolute square of the collision ampli-
tude over m and M =m' —m leading to
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In contrast, the diN'erential cross section in the peaking approximation is given by
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where
0 —v', )') E„I= 1 eV

wit
Equation 11 is our result for an impulse calculatio

ithout further approximations, whereas Eq. (13) is the
ion

standard PA result. To compare the two sets of calcula-
tions we pick a hard-core potential to represent the two-

o y interaction. The two-body t matrix for this potential
is available in a closed form' and is, in fact, the only po-
tential used in the previous atom-diatom studies. We
compare the results for a system that was extensively
studied previously,

Li++Np(v, j) Li++Np(v', j') .
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FIG. 1 ~ Pllot of diAerential cross section of the Li +
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Our Eq. (11) can be shown to reduce to the PA 1

q. as follows: In PA the two-body t-matrix ele-
c resu t

ment, on the right-hand side of Eq. (2), is evaluated at a
fixed value of the internal momentum q3, where the prod-
uct of the initial- and final-state wave functions is at its
maximum. The resulting matrix element, denoted by r p'A,

is pulled out of the integral which now becomes the famil-
iar form-factor integral. Mathematically, this amounts to
retaining only the isotropic component (L =0 and M =0)
in the expansion of the two-body t matrix of E . (3) d
assisigning it the value t p'A. Substituting L =0 in Eq. (12)

q. an

gives ) =j and p= J, and when t(Io (q3):44xr p'A —is
taken outside the integral in Eq. (7)q. , we get

4 jrt p'A, ,j (r ). Equation (6) now bw ecomes

(ii
oojj 4x p J I j'jr pA, which upon substitutio t E

gives Eq. (13). This reduction makes 't 1i cear t at
is o tained by (i) assuming that t matrix varies slowl

over the range of q3 over which the product of the
'

1

an na states is significant and (ii) by ignoring the an-
gular structure of the t matrix and the rotational transi-
tions it may cause.

The total cross section is obtained from the diA'erential
cross section by the relation

i
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o e . . In PA, for homonuclear diatomic mole-

cules, the product of the initial and final wave functions is
assumed to peak at the midpoint of their two centers,

an q3 0, and the two-body t matrix is evaluated
at fixed internal momentum q3

—', where q
'

3

the momentum transferred during the collision.
Molecular wave functions used in this cal 1 t'

obtained by numerical integration of the radial Schro-
inger equation ' ' using the Rydberg-Klein-Rees theory of

constructin the dia
'

g
'

tom potential from spectroscopic con-
stants. " &Previous work used the harmonic-oscillator po-
tential to obtain the diatom wave functions. We find that
t ere are substantial diA'erences between peakin calcula-
tions using the harmonic oscillator, and the more accurate
wave functions for situations involving large vibrational-
rotational inelasticity. To highlight the diff'erences be-
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tween the peaking and exact IA calculations we used the
more accurate wave functions throughout this work.

Figure 1 gives a plot of the differential cross section for
the process (0, 0~ I, 6) as a function of scattering angle
O. For forward scattering the exact IA result is about t~o
orders of magnitude smaller than the PA result. Even
though the peaks and valleys for the two calculations
track each other closely, the discrepancy between the two
sets of calculations is visible even on the log scale. The
quantitative difference between the two calculations is
best described by the ratio p of the exact and the PA re-
sults, displayed in Fig. 2. It is clear from Fig. 2, which
also displays this ratio for (00 Oj'), j'=0, 10, and 20,
that, except for elastic (00 00) scattering, there are no-
ticeable differences between the two calculations. These
differences appear to increase with energy loss, indepen-
dent of whether the energy ends up in vibration or rota-
tion. Further, even for large angles PA continues to
overestimate the exact results.

It was pointed out earlier that PA is obtained by keep-
ing only the L 0 and M=0 term in the expansion of the
t matrix [Eq. (3)] and assigning it the value tp'A. The ex-
act calculation outlined here permits interference between
terms with different L but with the same M. This in-

terference is responsible for the drastic change of the
differential cross section, especially in the forward direc-
tion, for the vibrationally inelastic processes.

Figure 3 displays the total cross section aT(00 n'j')
for n' =0, 1, and 2 as a function of energy loss. PA grossly
overestimates the true result for small j' for n'=1 and 2.
This is because small hj scattering is essentially forward
scattering for which the two calculations give very
different results. The total cross section mirrors this
disparity, weight factor sinO notwithstanding. For large
j', when almost all the energy loss goes into molecular ro-
tation and the energy loss is almost independent of n', the
three curves approach the same asymptote —showing that
in this range the ratio of the total cross sections is a func-
tion of energy loss alone.

In summary, we have developed IA formalism without
PA. It is shown that for most situations of interest PA
overestimates the true IA results. All of these features
continue to persist for higher relative translational kinetic
energies. Further details and an extension of this work
are to be given elsewhere.

This investigation was, in part, funded by the U.S. Air
Force Office of Scientific Research.

'G. F. Chew, Phys. Rev. 80, 196 (1950).
2A. Bogan, Jr. , Phys. Rev. A 9, 1230 (1974).
3P. Eckelt, H. J. Korsch, and V. Philipp, J. Phys. B 7, 1649

(1974).
4H. J. Korsch and V. Philipp, Phys. Rev. A 13, 497 (1976).
~V. Philipp, H. J. Korsch, and P. Eckelt, J. Phys. B 9, 345

(1976).
V. Philipp, H. J. Korsch, and P. Eckelt, J. Phys. B 10, 117

(1977).
7L. H. Beard and D. A. Micha, J. Chem. Phys. 74, 6700 (1981).

"R. D. Sharma, P. M. Bakshi, and J. M. Sindoni (unpublished).
9M. E. Rose, Elementary Theory of Angular Momentum (Wi-

ley, New York, 1957).
' J. M. J. Van Leeuwen and A. S. Reiner, Physica 27, 99

(1961).
''R. Tipping (private communication); the authors are grateful

to Dr. Tipping for a computer code which generates the wave

functions.
K. P. Huber and G. Hertzberg, Constants of Diatomic Mole
cules (Van Nostrand Reinhold, New York, 1979).


