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Three-dimensional anisotropic Ising spin model with competing two- plus four-spin interactions
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A three-dimensional anisotropic Ising spin model with nearest-neighbor interactions in all spatial
directions supplemented by a four-spin interaction along one axis only is treated within a general-
ized mean-field approximation including short-range correlations. In obtaining the phase diagram
various ordered structures are discussed. The results suggest that, besides the ferro- or antiferro-
magnetic and the so-called (3, 1) phase, no additional modulated phases appear. The order-
disorder transition temperature is finite everywhere, with both first- and second-order transitions
present.

The concept of universality in the theory of critical
phenomena is very helpful in classifying the possible criti-
cal behavior. ' In considering the features on which the
critical behavior decisively depends, one usually quotes
the dimensionality of both space and order parameter,
the range of interactions, etc. Recently a new class of in-
teracting systems has been introduced that possesses mul-
tibody interactions with multiplicity m ~ 3. Based on ex-
act solutions evidence arises that m may define new
classes of universality. In other words, the critical behav-
ior of such systems may depend explicitly on m. It is evi-
dent that a rich variety of possibilities may arise when
different multiplicities m, m, . . . , coexist.

A second goal of such attempts is the search for simple
models which exhibit —despite short-range couplings
only —commensurate or incommensurate modulated
structures with large periodicities. Such phases are
known to exist in a number of different systems. Well-
known models displaying this kind of ordered structures
are the three-dimensional axial next-nearest-neighbor Is-
ing (ANNNI) model and its relatives or the chiral Potts
model. '

A very simple extension of the conventional Ising mod-
el has been proposed which involves a combination of
competing two- and four-body interactions. In its sim-
plest three-dimensional (3D) version it consists of planes
with familiar nearest-neighbor Ising interactions (J2 ),
whereas different planes are coupled by a combination of
two-body (J2 ) and four-body (J4 ) interactions. This
model is now known as a (2+4) model and has been the
subject of several recent investigations in 1D (quantum
version) ' and 2D. ' In the following we will consider
a 3D classical version only and the Hamiltonian reads
(assuming J2 =J2 )

3

m= —J, y SS,
x,y, z

where S, are Ising variables (S;+1)on a simple-cubic lat-
tice. The ordered structures of this model consist —as
for the 3D ANNNI model —of a series of uniformly or-
dered (ferromagnetic) planes staggered in the z direction.
For T=O an (anti-) ferromagnetic and a so-called (3, 1)
phase [also denoted by ( l' 1 I l, ) or ( 1111) ] are present.
The latter one is a modulated structure with period four
and consists of sequences of three parallel orientated
planes followed by a single plane with opposite orienta-
tion. These two phases are separated by a multiphase
point at —J4/J2=0. 5, where an infinity of modulated
phases have the same energy. Note, such a point is also
found in the ANNNI models. '" There, an infinite num-
ber of distinct modulated phases emanate from that point
which are stable at finite temperatures.

The model of Eq. (1) is not solved exactly until now
and one has to resort to mean-field-type approximations
to obtain an idea of the phase diagram and the orders of
phase transitions. A conventional (Bragg-Williams)
mean-field decoupling is not well suited to four-spin in-
teractions because the strong nearest-neighbor correla-
tions are completely neglected. An ingenious extension
of the mean-field approximation to multispin interactions
has been proposed by Debierre and Turban. ' In the
presence of an m-spin interaction a cluster of (m —1)
spins is solved exactly. In addition to the ordinary order
parameter m, = (S, ) a set of (m —2) near-neighbor
correlation functions is introduced. Thus (m —1) varia-
tional parameters are present and determine the respec-
tive free energy of the system.
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In the case of Eq. (1) it is convenient to perform the
following decouplings

J2S,S, ~m, J2(S, —
—,'m, ),

J4S,S;S,S„~8,J~(S, —
—,'m, ),

(2)J4S,S~S,S ~4, J4(S,S2 —
—,
' 4, ),

J,S,S,S,S, m, J,(S,S,S,—,'8, ),

where 4&;=(S;S;+,) and 8, =(S;S;+,S;+z) are two-
and three-body local correlation functions which have to
be determined self-consistently. If we are looking for
(commensurate) structures with periodicity n in the z
direction the free energy of the three-spin cluster in this
approximation is equal to

F= —g J2(m; +m;+t+m;+2)+ —,'J2(m; tm;+ttt;+2mi+3)
o

n

+ —,
' J~[8, 3m, +8,. 3m, 2+8, (m, , +m, 3)+4, z4;++, , tIi; &]

—kit T lnZ (3)

zo being the number of nearest neighbors in a plane
(zo=4), Z,' ' the exact three-spin cluster partition func-
tion, and kz the Boltzmann constant.

For a given periodicity n there are 3n coupled equa-
tions to be solved, and the equilibrium structure n is as-
sumed to be given by

n =min~ „~F( n, T, J2,J4 ), (4)

similar as in other problems with competing interac-
tions. " In two important cases the equations greatly sim-
plify: (a) uniformly ordered [ferromagnetic (FM)] phase:
m;=m, 4;=&0, and 8, =8 for all i =1. . . n, and (b)
disordered [paramagnetic (PM)] phase: m, =8;=0; here
the free energy depends on + only.

In order to explore the presence of di6'erent periodici-
ties we have investigated various structures with particu-
lar emphasis on the FM phase and the (3, 1 ) phase pro-
duced by the J4 term. ' Bcsldcs thcsc two phases wc
have looked for structures' of types (n t, n

&
) and (n t, h )

(or (n, n ) and (n, 1 ) ), n ~ 3. The former are known to
appear in the phase diagram of the 3D ANNNI model.
To test our procedure we have calculated also the phase
diagram of this model. We found almost identical results
compared to those yielded with other methods.

In the following we shall present the results of compu-
tations of the phase diagram for the case Jz & 0, J4 &0.
(For Jz &0 the FM phase transforms into an antiferro-
magnetic phase without change of any transition line. ) In
Fig. 1 we present the phase diagram in the (T, tr) plane,
~= —J4/J2. For ~=0 the critical temperature for the
PM~FM transition satisfies T, (ted =0)/J2 & 6, signaling a
small improvement compared with the conventional
mean-field approximation. For finite ~ the PM~FM
transition line is convex downwards. One can show that
T, (~) T, (0)= —av, a)—0 for small tc, as it should be,
because a J4 (0 weakens the FM phase. For larger ~ the
transition line exhibits a shallow minimum at x= 1 and
raises again with increasing ~. A Bragg-Williams approx-
imation would yield a constant transition temperature.
Unlike the 2D (Ref. 9) and the 1D quantum version of
the (2+4) model, but in accordance with the 3D
ANNNI model, the disordered (PM) phase does not ex-

tend down to T =0.
The FM phase passes over into the ( 3, 1 ) phase along

a transition line starting vertically from the multiphase
point at ~=0.5. In accordance with the results for the
2D version ' ' no other phases are found to be stable.
The FM phase penetrates between the PM and the ( 3, 1 )
phases, demonstrating the possibility of a transition from
a high-temperature uniformly ordered to a low-
temperature modulated phase. Such a feature is similar
to one observed in an S =1 generalized ANNNI model. "
Since this propery does not appear in 2D, it may well be
characteristic for the 3D (2+4) model. In addition, the
FM phase persists for large ~ but is metastable, whereas
for the ANNNI model it disappears completely above a
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FIG. 1. Phase diagram of the 3D (2+4) model. PM denotes
the disordered (paramagnetic) and FM the ferromagnetic phase.
The (3, 1) or (1111)phase is a periodic structure consisting of
three parallel orientated planes followed by a single one with
opposite orientation. The solid line refers to a second-order
transition, the dashed line to a first-order transition.
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FIG. 2. Specific heat c/k& as a function of temperature for
three distinct values of x'= —J4/J2. Note the diA'erent orders of
transition.

certain value of a..
The transition line between the disordered and the FM

phase is second order, whereas the transitions from PM
and FM phases to the (3, 1) phase are always first order.
This is clearly seen in Fig. 2 where the specific heat
is plotted as a function of temperature and diA'erent ~.
For instance, for ~=0.8 we see both transitions: the
first-order one with a 5-function-like singularity
( ( 3, 1 ) ~FM), the second-order one shows a discontinui-
ty (FM~PM). In Fig. 3 we present the behavior of the
three correlation functions m ( T), 4( T), and e( T) for
v=0. 8. All of them exhibit strong discontinuities at the
first-order transition temperature. (It is worth noting
that 4 and 8 cannot be obtained within the conventional
mean-field approximation. ) The point where all three
phases merge looks like some sort of bicritical point
~here first- and second-order transition lines meet with a
discontinuous slope of the transition line at that point. '

In summary we have shown that the 3D (2+1) model

-05
0.0

1

2.0 4.0 6.0

exhibits only two ordered phases. The order-disorder
transition temperature is always finite, but the order of
transition changes from first to second order. We expect
the generalized mean-field approximation to yield a quali-
tatively correct phase diagram. However, application to
2D would yield a similar diagram, which is obviously not
correct.
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FIG. 3. Order parameters m;=(S;) and local correlation
functions 4; = (S;S;+,) and e; = (S;S;+,S;+z) as a function of
temperature for ~= —J4/J&=0. 8. In the case of modulated
phases the average over a period is given.
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