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Equation of state for parallel hard spherocylinders
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A recent model for positional ordering in systems of monodisperse parallel hard spherocylinders
is used to calculate the pressure over the entire range of densities and cylinder axial ratios. Reason-
able quantitative agreement with Monte Carlo data is obtained for the full spectrum of nematic,
smectic, columnar, and crystalline order. Analytical expressions are also given for the characteris-
tic lengths of the ordering in these phases.

In a recent Letter, ' we presented an excluded-volume
theory for positional ordering in systems of monodisperse
hard parallel spherocylinders. The compensation for the
loss of positional entropy in some dimensions by the gain
in positional entropy in the remaining dimensions is de-
scribed via a simple intuitive model. The predicted phase
sequences are remarkably realistic, although the imposi-
tion of stringent positional constraints (see below) forces
all transitions to be discontinuous and increases the tran-
sition densities. The theoretical phase diagram exhibits
the full spectrum of nematic, smectic, columnar, and
crystalline behavior found in a recent Monte Carlo (MC)
study. A comparison of the two phase diagrams shows
good agreement over the full range of densities and
cylinder axial ratios. ' In this report, we extend the above
comparison to the equation of state in the various order-
ing regions. We also discuss possible improvements to
our model.

The theory imposes constraints on the particle posi-
tions in the ordered dimensions just sufficient to allow
maximum positional freedom in the disordered dimen-
sions. Thus particles are not permitted to cross layer
boundaries in the smectic phase, hexagonal cylinder
boundaries in the columnar phase, or cell boundaries in
the crystalline phase. With these constraints, the d disor-
dered dimensions and the 3 —d ordered dimensions can
be modeled separately, and the configurational free ener-
gy per particle can be expressed as f4'" =lnp 1+f4'"'~—

+f/'&, where p is the particle number density, f&~"'~

represents the nonideality contribution from the d fluid-
like dimensions, and fP'4 represents the nonideality con-
tribution from the 3 —d crystal-like dimensions.

f4"' is expressed quite accurately in terms of well-
known scaled particle theory results for a (d =3)-
dimensional fluid of spherocylinders (nematic phase), a
(d =2)-dimensional fluid of disks (smectic phase), and a
(d =1)-dimensional fluid of lines (columnar phase). Thus

fz ' ——ln(1 —v4)+a4v4/(1 —v4)+b4[v4/(1 —v4)]

where v&, the d-dimensional particle volume fraction in
the d fluid dimensions, and the coefficients az and b&, are
given in Table I.

An approximation offP'& is obtained from simple cell
theory results for a line in a (3—d =1)-dimensional box
(smectic phase), a disk in a (3 —d =2)-dimensional
hexagon-shaped box (columnar phase), and a sphero-
cylinder in a (3—d = 3)-dimensional box in the shape of a
hexagonal tube capped by hemidodecahedrons in propor-
tions chosen to minimize f3'"" (crystalline phase).
Thus

f t g (3 d)1 [( 1 Al/(3 4))]

where v 3 4, the reduced ( 3 —d )-dimensional particle
volume fraction in the (3—d) ordered dimensions, is
given in Table I and 5o~ is the Kronecker delta [contrib-

TABLF 1. Theoretical expressions for contributions to the configurational free energy f„"""(seetext) and the reduced pressure Pa .

Here y 3
= v 3 /( 1 —v 3 ), L and D are the cylinder length and diameter of the particles, respectively, and pep =2/

[(&3D')(L/D+V2/3)] is the density at close packing.
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uting only for crystalline ordering (d =0), in which the
particles are distinguishable by virtue of being in separate
cells]. Notice that f3'"" represents a straightforward
generalization of the self-consistent free volume theory
for the freezing of hard spheres.

For d = 1,2, the characteristic lengths of ordering (i.e.,
the smectic layer thickness and the columnar tube diame-
ter) couple fd"' and f3'"'d. As the characteristic lengths
decrease, Ud and fd"' decrease, while U3 d and f3'"'d in-
crease. It is this trade-off that drives positional ordering.
The equilibrium values of the characteristic lengths for
ordering are those which minimize the total fd'". In the
smectic phase, the dependence of the layer spacing h„on
the reduced particle density p* =U3 and the particle di-
mensions L and D is given by

b,, =[9(L +D)/(8h)]

X[1—2sgn(1 —h)sin( —,'sin '~1 —h ~)],

where

h =[(27m)/(32&3)]yu3

and

y =(L /D+ 1)/[L /D+ v (2/3)] .

Similarly, the side-to-side diameter of the tube in the
columnar phase b,, is given by b,, =D(yu3 )

' . Final-
ly, the phase exhibiting the lowest fd " is determined to
be the globally stable state. The characteristic lengths for
ordering, and the predicted phase diagram, are discussed
in relation to the MC results in Ref. 1.

The MC study also provides detailed information
about the equation of state for hard parallel sphero-
cylinders. It is therefore interesting to compare the MC
pressure with the model predictions. Table I compiles
the appropriate theoretical expressions for the reduced
pressure

Pd =p(v/p)Pd =pvpBfd ""/ap,

where Pd is the pressure, P= I/k~T, and U is the particle
volume fraction (U = U3). In Fig. 1 we compare the
theoretical predictions with the MC results for the four
phase sequences exhibited by the system with increasing
cylinder axial ratio, L /D: nematic —+ crystalline (a),
nematic —+smectic ~crystalline (b), nematic ~smec tie
~columnar~crystalline (c), and nematic~smectic
—+ columnar (d).

The MC pressure data for the low-density nematic
fiuid branch are in good quantitative agreement with the
scaled particle result (Table I) for the entire range of
L/D. For small L/D, this merely rejects the well-
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FIG. 1. Comparison of the theoretical equation of state (solid line) with the MC data of Ref. 2 for L/D =0.25 (a), 1.0 (b), 5.0 (c),
and ~ (d). I'*(=Pd*) is the reduced pressure and p*=p/pep is the reduced density. Plateaus indicate theoretically predicted phase
coexistence. Dashed lines represent the extensions of the respective theoretical pressure equations. The symbols indicate MC results
for the nematic fluid branch (0 ), smectic ordering (~ ), columnar (+ ), and solid branch (A ). Bars indicate MC phase coexistence,
and arrows show the location of MC continuous transitions.
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known accuracy of the scaled particle equation of state
for hard spheres, which is equivalent to the Percus-
Yevick expression obtained via the compressibility equa-
tion (e.g. , Refs. 4 and 8). Thus, while the second virial
coefficient is exact for all L/D, for L/D =0.25 (a), the
third, fourth, and fifth virial coefficients exceed the nu-
merical results (cf. Table III in Ref. 2) by only (0.01%,
4%, and 12%, respectively. As the particle asymmetry
increases, these deviations gradually become more pro-
nounced, i.e. , 0.6%, 9%, and 30% for L/D =1 (b); 2%,
21%, and 86% for L/D =5 (c); and 3%, 29%, and 136%
for L/D = ~ (d). These increased deviations arise from
the too weak L /D dependence of the scaled particle pres-
sure (e.g. , 1 + b3 + —'). Compared to the generalized
Carnahan-Starling equation, which for parallel particles
lacks L/D dependence in its virial coefficients, scaled
particle theory performs slightly better for large L/D
and is somewhat less accurate for small L /D.

For axial ratios exceeding 0.25 the MC calculation ex-
hibits a continuous nematic-to-smectic transition in the
range 0.6 ~p* ~0.4 with increasing axial ratio. Figures
1(b)—1(d) illustrate the pronounced difference between
the nematic and smectic pressures predicted by the
theory. This lends additional support to our intuitive ap-
proach, since the latter provides a good fit to the smectic
MC results for all L/D and all densities, except in the
immediate vicinity of the transition. At sufficiently high
densities, the spherocylinders freeze into a hexagonally
packed crystalline solid, except at large L/D ( ~ 30),
where the columnar mesophase is stable even at close
packing. ' The theoretical pressure equation for the
solid is again in good overall agreement with the corre-
sponding MC results. It is worth mentioning, that the
asymptotic pressure, i.e., the leading term in the high
density expansion,

Po =3[u3/(1 —u3 )][1—
—,'(1 —u,* )+O((l —u3 ) )],

already represents a reasonable fit to the MC solid branch
(with deviations -10% for all L/D values studied in
Ref. 2). Unfortunately, the scatter in the MC data does
not permit a sufficiently precise determination of expan-
sion coefficients. The expression Po =Du3/(1 —u 3 ),
where D is the space dimension, has previously been
shown to be exact in the high-density limit for finite hard
disk and hard sphere systems (cf. Ref. 10). Finally, for
the columnar case [cf. L/D =5 (c) and L /D = ~ (d)] the
agreement between our theory and the MC results is still

fair, but poorer than in the other comparisons.
Although the theoretical pressure curves for each

phase show good agreement with the MC results, the
transitions occur at somewhat higher densities than in
the MC simulation. Consequently, the theoretically pre-
dicted transition pressures are also exaggerated. As dis-
cussed previously, ' this is not surprising considering the
strict positional constraints imposed by the simple cell
model that was used to separate the degrees of freedom of
the ordered and disordered dimensions. However, the
close correspondence between the theoretical pressure
and the MC results for each phase indicates that the
model provides a reasonable description of the variation
of the free energy with density, and that the excess free
energy due to the strict positional constraints is only
weakly density dependent.

Clearly, it would be desirable to relax the positional
constraints in the model. Although the separation of the
ordered and disordered degrees of freedom would no
longer be rigorous, this separation may still be adopted as
a physically reasonable approximation. We can then con-
sider whether the model can be improved introducing
generalized expressions for fd"' and f3""'d based on other
fluid and cell theories. For instance, slightly more accu-
rate expressions for fd"' can be obtained via suitable ex-
pansions, e.g. , multiterm virial or y expansions and Pade
approximations. However, our preliminary calculations
show that an improved fd"' has little effect on the above
results. It is more important to improve on the expres-
sion for fP'd, i.e., the corresponding free volume. For
simpler systems, i.e., spheres in three dimensions and
disks in two dimensions, it is well known that the
Lennard-Jones-Devonshire theory or the correlated cell
model yield not only a good description of the variation
of the free volume, but also describe the free volume itself
quite well. These theories, therefore, yield better coex-
istence densities and somewhat improved equations of
state for spheres and disks than the simple cell model. '

For our system, the adaptation of the correlated cell
model for fP'd seems most promising, although it re-
quires a rather complicated free volume geometry to ac-
count for local correlations near the melting transi-
tion
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