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Thermal noise from pure-state quantum correlations
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Given that two initially independent systems 3 and 3 are in a pure state, we study the type of in-

teraction between them that will lead an observer, limited to measuring system 3 only, to conclude
that it is in a thermal bath. We show (under rather mild conditions) that there is always an interac-
tion that does it, and study it for two particularly simple systems.

I. INTRODUCTION

Among the curious implications of quantum mechanics
is the generation of thermal noise from a pure quantum
state. This is realized in diverse disciplines: (i) Paramet-
ric interactions involving the radiation field. There, "if
one has access to only one mode of a two-mode squeezed
vacuum state —the photon statistics of this mode is indis-
tinguishable from that of thermal distribution. "' (ii) De-
cay of black holes. Here "observers whose observation of
particle modes is limited by 'horizon' see a 'hot' thermal
vacuum. " There is a considerable amount of literature
on these two subjects. In addition, as was already noted,
the so-called thermo-field-dynamics (TFD) formulation
of a field theory that includes thermal phenomena is
based on a closely related approach: here physical quanti-
ties are evaluated in pure states. But these states are in
an expanded space that includes additional unobserved
"tilde" fields. A large body of literature is based on this
approach.

II. FORMULATION OF THE PROBLEM
AND A GENERAL SOLUTION

We consider the following problem. Given two sys-
tems 3 and 3, each with its respective Hamiltonian, H
and H [note that both A and/or A could be a many-body
system, one particle or mode(s), etc.], let the combined
system at t =to be with both systems in their respective
ground states, i.e.,

The two systems are coupled at t ~ to; hence at t ) to
the state of the combined system is given by (fi= 1)

~t) =Texp —i f H, dt'~to)
0

Here T is the time ordering operator ( "later" operators
are moved to the left) and

H, =H+H+Ht(t) .

The unknown interaction term HI is, in general, time
dependent. Our problem is: what should be the form of
Ht(t) so that for every operator F that involves only the
coordinates of the first system ( A) we shall have at all

[n &~/n &, (sa)

with

io& iO&, (5b)

i.e., we stipulate correspondence between the respective
ground states. The correspondence between ~n ) and ~n )
for (n, n )W(0, 0) is arbitrary at the moment. We remark
that our results do not require such a severe (i.e., 1:1
correspondence) restriction —we comment on this in Ap-
pendix A —but it is easier to follow our argument with
the 1:1 correspondence. We take the states

~
n ) and

~
n )

to be the eigenfunctions of the respective Hamiltonians,
H and H. We now use a method of TFD (Ref. 4) and
define

z I /2

where

/n, n)=fn)S/n),
H[n, n ) =E„/n, n );Hen, n ) =E [n, n ) .

In Eq. (6) the sum is over the corresponding pairs of
states, Eq. (5); P is an arbitrary real function of its argu-
ment and the normalizer

Z=ge "=Tr(e ~
) .

It is now evident that, for F involving the coordinates
of system A only, we have

(0(P,P) ~F ~0(I3,$) ) = I /Z[Tr(e ~ F )] .

times t ) to (Ref. 5)

F =(t ~F~t) =Tr(e ~ F)/Tr(e ~ ).

Here Tr involves the states pertaining to A only and P is
a c-number parameter. Once we get such Hz we will

show how known cases wherein thermal noise was de-
rived from a pure state fit in as special cases.

We assume that a correspondence is set up (and indeed
that it can be set up) which is one to one between the
eigenstates of system A, I ~n ) J, and those of system A,
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This stems from the orthonormality of the states of the A
system (ln ) ). We will associate below the state lt ), Eq.
(2), with IO(p, p) ), Eq. (6).

An alternative way to write the right-hand side (rhs) of
Eq. (6) is

Ht=ik(t)e '(IJ)&ool —loo&& Jl)e' ', (20)

with k (t) a c-number function whose time integral gives

and regard this as our equation for Hz. An obvious solu-
tion is

with

lo(p, y) &=z-'"(1+AplJ&&ool)loo&, (9)

B ( t) = f k ( t')dt' .
0

)
1 pE„/2+—'$(, H)i )

Ap „~0

Ap=&z —1 .

(10)

We now return to the time evolution, Eq. (2) (we
choose to =0 for simplicity)

T

I
t &

= T exp i f (H—+H+Ht)dt' I to),
0

which can be written as

Equation (20) is an answer to the posed question, i.e.,
given H and H, and given that at some initial time t0 sys-
tem A and A were in their ground state —HI, as deduced
from Eq. (20), will result in system A being in, apparent-
ly, a thermal bath at the time t. This is so, provided the
observation is limited to system A only.

III. REALIZATIONS OF THERMAL NOISE
FROM PURE QUANTUM CORRELATIONS

lt&=e

with

' T exp —i f Ht(t')dt' lto),
0

(13) A particularly convenient example is the free radiation
field. We consider the simple case of a two-mode radia-
tion field, i.e.,

Ht(t) =e ' Ht(t)e (14)

Furthermore, the temperature (i.e., p) is independent of
the phases P(n, n ) of the state ln, n ). Hence, the state

e ' Z ' [1+Api J(P)) &Ooi]ioo)

=Z '/&[1+ A p I J(p ) ) & 001]I
oo &

=
I 0(p, p' ) ), (15)

with P'(n, n )=P(n, n )+(E„+E„)t is equivalent to
IO(p, p)) as far as thermal properties of system A are
concerned. Our task, is, then, to find HI, such that

H =Acoa~a,

H =AQa ,
[a,a ]=[a,it ]=1,

(21a)

(21b)

(22)

and all other commutators vanish. The natural 1:1
correspondence in this case is between the number eigen-
states of H and H, i.e., n =n.

We thus return to Eqs. (9) and (10) and obtain for this
case [choosing for simplicity P(n, n) = n P and A'= 1]

e ' lt) =T exp i f Kt(—t')dt' lto)
0 Z =(1—e -P")-', (23)

Io(P, P) ) =Z ' exp( Apl J ) &ool )loo) . (16)

We show in Appendix B that another equivalent form is

Io(p, y)) =exp[B(J &&oI —lo&& Jl)]lop&,

with

could be written as IO(p, p') ), Eq. (15). In some cases this
can be done directly (by reading off the solution), and we
illustrate this in Sec. III.

For general systems A and A, finding such an HI is
more involved. Thus we look for an HI ensuring, for ar-
bitrary H and H, that an observer limited to measuring
system A only will be led to conclude that this system is
in a thermal bath. To this end we return to Eq. (9) [or
(6)]; it can be written in another, equivalent form

and thus

f-t n

y e pneum/2+in/ —(a a )
lpp )

Z 1 n!

1
[exp(e '~a a ) —1]loo),&Z —1

(24)

Io(P, P)) =Z ' exp(e P" +'grata )loo) . (25)

It is convenient for the evaluation of HI to bring the ex-
ponent on the rhs of Eq. (25) to an anti-Hermitian form.
Because the operators'

E+=a a

K =aa,
Ko =

—,'(a a +aa )

Z '"=cosa .

We now equate (choosing I to ) = lop) )

(18)
close the su (1,1) algebra, we have'

exp fB[IJ(P)&&pl —Io&& J(P)l]) Ioo&

= T exp —i f Ht(t')dt' IOO), (19)
0

sech ly I exp
ly I

tanhlyl a a Ioo)

=exp[(ya V —y'aa)]lop) .
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Taking y=IyIe'~with

tanhIy I
=e

hI I
=(1—e-')'"=Z-'"

Ht(t) =ik(t)Ht (27)

(where Ht has no explicit time dependence), we have then
[rhs of (19)]

e ' It ) =exp[ iB(t—)Ht']IOO), (28)

we get

IO(P, ()) )) =exp[(ya a —y*aa)]IOO) .

Using Eqs. (13)—(15) and recalling that Ht(t) has only
trivial time dependence,

T= fico/2ktiln cot I
v I,

with v given by

v= k t dt'
0

A particular interaction leading to time-independent
temperature is (t ~ to)

Ht =i 5(t —to)vo(aa —a a ) .

This represents an instantaneous interaction at the initial
time and leads to

i {~+au)(t —tO)It) =exp vo aae

—i(m+ 6)( t —to )—aa e ' Ito).

with

B(t)=I k(t')dt'.
0

Comparing with (26) leads to

Ht=ik(t)(a a e ' + "—H. c. ),

(29)

Thus, in this case of an instantaneous interaction the
resultant temperature is time independent.

We end this section with the remark that the interac-
tions Ht deduced in this section [Eqs. (30) and (31)] are
much simpler than implied by Eq. (20). Nonetheless,
they are equivalent to the Ht of Eq. (20) as far as the time
evolution of IOO) is concerned.

where kz is Boltzmann's constant. Note that in this case
the temperature T is time dependent in general.

Another example that we wish to consider is a two-
mode fermion system (fi= 1)

H=coC C,
H=coC C,

with

[C,C ]+=[C,C ]+=1,
where all other anticommutators vanish. In this case it is
also advantageous to go back to Eq. (9), and hence we get
directly

IO(P)) =1/Z' exp(e ~ ~ C C )IOO), Z =1+e
Here, too, in order to solve for H~ it is useful to write the
exponent in an antihermitian form. We show in Appen-
dix B that the result is

I0(f3)) =exp[v(C C —CC)]IOO),

with

sinv=e ~" /(1+e ~ )'~

Comparing this is to our previous study we see that HI in
this case is of the same form as Eq. (30):

k(t)( CtCt —i (M+c3)t CC i(co+co)l) (31)

The formula for the temperature is, however,

i.e., we recovered the parametric interaction that was
used by Yurke and Potasek as the interaction that brings
about an effective temperature for the mode A. The
effective temperature of the mode is

T= fico/[2k') ln(cothIB
I )],

IV. CONCLUDING REMARKS

A procedure for constructing interaction between two
general systems A and A was outlined, an interaction
such that if only A is accessible to our measurements
then it will be in an apparent temperature bath. This
holds even though the combined system of A and A is in
a pure quantum state, i.e., HI induces the exact correla-
tions between A and A to have A in what appears to be a
thermal bath. Two well-known generic examples for the
realization of such a situation were mentioned: paramet-
ric interactions between two radiation modes' and the
effect of states beyond the relativistic horizon on local
measurements. The formalism used was the one devised
in thermo field dynamics. It would be of interest to
show explicitly that the Hawking radiation emerges
from an interaction of the type considered here.

APPENDIX A

In the text, Eq. (5), we considered the case where there
is 1:1 correspondence between the eigenstates of systems
A and A. In this case, whenever Ht (the interaction term
between these systems) is such as to lead to a thermal
bath for system A, then the converse is also true, i.e., in
this case we may consider system A to be in an apparent
thermal bath due to its interaction with A. (This requires
a trivial change in the definition of IJ ); their respective
temperatures need not be equal. ) However, if we study
the case of A only, then the number of eigenstates of A
may be different ("larger" ) than that of A. The argument
given in the text still holds, provided we associate the two
ground states IO)~IO) and we associate a distinct state
In ) to each state In ). All other states of A are then tak-
en to be uncoupled to system A. With this provision all
our results remain intact.
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Consider the equality of the normalized states

1&Z "[exp(&plJ &&Ol)]IO&

=exp[B(IJ&&OI —10&&Jl)]IO& . (32)

APPENDIX 8: FACTORIZATION OF EXPONENTIAL The above is now illustrated for the case of free fer-
mions. Thus consider the exponential operator

exp[v(C C —CC)] . (34)

Here v is a real number and C, C, C, and C obey the
fermionic anticommutation rules. Defining

Here

&J~O&=0, &0~0&=&J~J&=1,

and we define E =
~
J & & J~+ ~0 & & 0~.

This is an equation for B in terms of A&[=(Z —1)' ]
and Z' . Define

R = fJ &&Oi
—io&& Ji,

R = —(/J&&J/+/0&&0[)= E. —

Expand both sides of Eq. (32) to get

1ZZ'"(lo&+
& pl J & ) =cosB 10&+»nB

I
J & .

P=C C —CC,
we have

P = —(C C CC+CCC C )
'

it then follows that

P2n+i
( 1)nP n (j

P "=(—1)"( P)—n =1 2 3

Hence

exp( vP) = 1+P +sinvP+ cosv( P), —

(35)

(36)

The orthogonality relation, (33), implies

1/Z ' =cosB,
3&/Z' =sinB .

and hence, with C~OO&=C~OO& =0, we have

exp[y(C C —CC)]~00& =(siny)CtC ~00&+cosy~00&

= (cosy )exp[( tany )C C ]~00 & .
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