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A method for finding the state distribution in a physical system is presented, on the basis of a de-
tailed analysis of the experimental response of the system to an external probe. As the study of the
signals with which the experimenter probes the system of interest necessarily consists of a finite
number of measurements, the maximum entropy principle is employed in order to reconstruct the
state distribution on the basis of partial information. The formalism is illustrated by recourse to an
elementary problem. A rather complicated x-ray diffraction problem is also discussed as it neatly

depicts the power of this new approach.

I. INTRODUCTION

The word “‘signal’ applies to any preconcerted or intel-
ligible sign conveying information. Here we will deal
with signals that convey information with reference to
the states of physical systems, and in regard to the possi-
bility of observing them. Indeed, we wish to discuss sig-
nals containing information about the state distribution
of a given system and will call these type of signals “sta-
tistical” ones. The basic idea is that a well-known probe
(i.e., electromagnetic radiation) impinges upon the sys-
tem, interacts with it, and is afterwards analyzed via a
convenient detection procedure. As a consequence of
this interaction, the signals acquire information about the
state distribution of our system.

In order to make our considerations independent of
any specific detection procedure we shall adopt the vec-
torial representation of signals of Shannon,! and establish
a unique correspondence between ‘“‘observed” quantities
and measurements performed upon the corresponding
signal. This is achieved by representing a signal f as a
vector ket |f) and a measurement as a mapping that as-
signs to it a real number. We shall restrict our considera-
tions to measurements that can be represented by linear
functionals.

The question that we wish to address is that of deter-
mining, for a given system, its state distribution on the
basis of a finite number of measurements. To this end we
adopt the maximum-entropy postulate (MEP) that
characterizes Shannon’s information theory?™* (IT) and
introduce a general procedure that enables one to find an
adequate basis for the representation of the kets |f).
Both a simple example and a rather sophisticated techni-
cal application will illustrate the ideas to be expounded in
this work, which is organized as follows: Section II
defines the concept of a statistical signal and develops a
formalism (based upon the MEP) in order to deal with
them. In Sec. III this formalism is applied to a problem
involving paramagnetism and, in Sec. IV, to a crystallo-
graphic problem by proposing a suitable model that ad-
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dresses it. Section V deals with a realistic situation that
poses a severe test to our approach and some conclusions
are drawn in Sec. V1.

II. FORMALISM

A. Statistical signals

We take the view that in order to study a given physi-
cal system &, one interacts with it by means of an input
signal (probe) |I), whose properties are assumed to be
well known (i.e., a radio-frequency signal). The signal-
|T ) -system-& interaction results in a response signal | f)
which, after analysis, should provide information con-
cerning the system. The corresponding process is
represented according to

winy=\r), (2.1

where the linear operator W (which is here associated to
the system under study) portrays the effect that & pro-
duces upon the input signal |I), so as to originate the
response | f ).

If one were to know the properties of the system & in
all possible detail, [f) could be predicted and no experi-
ment would be needed. Of course, this is almost never
the case and we must study |f) in order to learn some-
thing about & (at the risk of being redundant we must in-
sist that we study here not the system itself (that is
represented by W), but its action upon |I) as represented
by [f)).

Our goal is that of finding the state distribution of § by
recourse to a finite number of measurements performed
upon |f). We may wish to investigate systems that can
be found in a number of possible states (governed by a
probability distribution) or systems that consist of a num-
ber of identical subsystems, each of them being in a
different state. No distinction will be made between these
two instances, as they are characterized by a common
factor: our ignorance concerning the relevant state dis-
tribution.
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We then start our considerations by assuming that we
know not only the set of all possible state in which & may
be found (we shall label them «), but also the response
|a) evoked by a when inpinged upon by the input signal
|I). We shall denote by Wa the operator representing &§
in the state “a,” so that one describes its action upon |I)
as

W) =la) . 2.2)

Let p, stand for the probability of finding the system in
the particular state a. We can write then W, the operator
representing the action of & upon |I) as

W=Sp,Woe Sp.=1. (2.3)
a a
The response |f ) originated by a system whose action
upon |I) is represented by an operator W of the form
(2.3) will be referred to as a statistical signal

W)= p WlI)=Sp.la)=If) . (2.4)

It is clear from (2.4) that the signal |f) carries infor-
mation about the state distribution in &. Underlying this
description is the assumption that |a) belongs to an or-
thogonal basis. It is precisely by representing the statisti-
cal signal in this basis that we hope to determine the state
distribution. In order to accomplish such a goal one
needs to perform observations upon |f). The corre-
sponding measurement procedures provide numbers out
of |f) and can consequently be thought of as mappings
of a vector space upon the real line, i.e., as functionals.

B. Measurements as observables

We assume that measurements performed over |f ) can
be represented by linear functionals .£. Then

LIfY=3Sp.Lla). 2.5
We define a “‘statistical operator” p by

=3 la)p,(al (2.6)
which allows one to write

LIfY=Tr(pL)=(L) 2.7
with

L= l|a)l {al (2.8)
and

l,=Lla) . 2.9

The eigenkets |a) are eigenvectors of L. If the situation
is such that {|a)} is a complete set, we can, by means of
a quantum-mechanical analogy, call an observable.’
Measurements upon L can only yield one of its eigenval-
ues and vice versa (an eigenvalue of L is the result of a
measurement performed upon a signal). As in quantum
mechanics, only (L ) is generally available.
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If the input signal is kept fixed, a set {.£;} of M-
independent measurements performed upon |f) will
yield the expectation values of M mutually commuting
observables. In practical situations, such measurements
will, in general, be proportional to these expectation
values

fi=L\fY=4a(L), i=1,...,M (2.10)

where A is a proportionality constant.

On the other hand, if the input signal changes, the cor-
responding measurements will be compatible only when
the response signals associated with them belong to a
common basis set.

C. An inversion method

Our objective should be clear by now: We wish to find
the statistical operator on the basis of a finite number, M,
of (linear) measurements performed upon a given signal.
We face then the set of equations,

fi=ATpL), i=1,...,.M .11

where
fi=Lf) .

As A is an (in general) unknown constant, we need one of
the Equations (2.11) so we can fix it. If we choose the
first of these for this task,

(2.12)

A=f,/TrpL)), (2.13)
we can recast (2.11) as

Tr(p0,)=(0,)=0, i=2,...,.M (2.14)
with

O0,=f,L,—f\L,, i=2,...,M. (2.15)

Now, an infinite set of statistical operators is compatible,
in general, with a finite set of equations of the type (2.14).
In order to determine p in an unique fashion, we resort
here to the MEP, by defining first the entropy S as

S =—Tr(p1np) (2.16)

and employing afterwards the IT method. This allows
one to write*®

M P
A~ X A0,

=2

p=exp , (2.17)

where the A; are Lagrange multipliers that are connected
with the set (2.14). On the other hand, the multiplier A,
is associated to the normalization condition

Trp=1, (2.18)
which yields
M P
Ao=—In |Trexp |[— I A,;0; (2.19)
i=2

Once we have p (built upon the basis of a set of M mea-
surements) we can predict the result of additional mea-
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surements (not already employed to construct p)
fM+1=f1Tr(ﬁ£M+1)/Tr(ﬁf1 )

~ ~ (2.20)
S+ =HTH(PLy ) /Te(PL )

If the predictions turns out to be right, that is, if they
are experimentally verified, then we may conclude that
we have been able to obtain, by recourse to this statistical
inference approach, a good representation of p. On the
other hand, the same measurement that proves our pre-
dictions (2.20) wrong also supplies new useful informa-
tion, and with this information we may try again (for a
better 5 and so on). If for a given selection of the initial
input data we finally achieve a good representation of the
statistical operator, we will be in a position to determine
expectation values corresponding to any additional
operator R,

(R)=Tr(pR) . 2.21)

D. Convergence questions

Assume we have at our disposal an ordered set { f;} of,
say, K experimental measurements. With just two of
these we can build up, as explained above, a MEP statisti-
cal operator p'. If we add a third piece of data to the
original two we are in a position to construct still another
MEP statistical operator 5%, etc. A whole series 5"
can be manufactured in this fashion. We wish to estab-
lish a convergence test for this process. Let ff stand for
the prediction for f; made with the statistical operator
p'?. We will assert that {p"} converges to a “true” p
(for the available experimental information) if, given

€; > 0, there exists an integer M, such that

lfi—fM <e foral M=M,, i=2,...,K. (2.22)

This kind of convergence can always be achieved if we
deal with a set {f;] of linearly independent measure-
ments, as in such a situation IT asserts that the input in-
formation is not self-contradictory, which guarantees
both the existence and the unicity of the statistical opera-
tor.® This entails that (2.22) must be fulfilled, at least for
M =M =K. However, we will show in Secs. III Band V
that M, << KX in practice.

III. A WEIGHTING METHOD
FOR RARE-EARTH MIXTURES

Ions of rare-earth elements possess similar chemical
properties, which entails that isolating one of them from
a mixture does not constitute an easy task. As a simple
illustration of the foregoing formalism, we propose here a
weighting method for rare-earth mixtures, based on the
quantum theory of paramagnetism.”

A. Brief review of elementary concepts

The total angular momentum hJ of an atom or ion is
conventionally written in the form

u=—gugl, (3.1
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where pp is a standard unit of magnetic moment (here
the Bohr magneton). The spectral factor g is given by
Lande’s equation

JU+D+SS+1)-L(L +1)
2J(J+1)

g=1+ (3.2)
for atoms or ions of orbital angular momentum L and
spin S. (2J +1) is the degeneration of the ground state.
If we have N noninteracting atoms placed in an external
magnetic field H pointing along the z direction, the mean
magnetic moment per unit volume, or magnetization /I,
is conveniently expressed in terms of the Brillouin func-
tion

B;(x)= 2J2jlcoth (2'];_]1)]6 —ﬁcoth Exj ,
(3.3)

with
x =gJugH /kyT , (3.4)

where kp stands for Boltzmann’s constant and T is the
temperature. We have

M=NgJugB,;(x) . (3.5)

The magnetic properties of rare-earth ions are quite in-
teresting. In particular, triply ionized elements possess
almost identical chemical properties as their external
shells become identical: a 5s2,5p° configuration (that of
neutral X,). In La, just before the lanthanide series be-
gin, the 4f shell is empty. It acquires one electron in Ce
and the number of 4f electrons steadily augments as we
run along the series. We attain 13 electrons for Yb and
completely fill the shell for the last rare-earth element
(Lu). The corresponding radii decrease in regular
fashion, starting at a value of 1.11 A (Ce) up to 0.94 A
(YD), the celebrated ““lanthanide contraction”. The mag-
netic behavior of these ions is governed by the filling up
of the 4f shell. No other group of the Periodic Table ex-
hibits such a peculiar magnetic behavior. 3

B. Application

We apply here the formalism previously introduced in
order to propose a method for rare-earth weighting,
based upon the idea of measuring the magnetization M as
a function of the external magnetic field H. To this end,
we shall run a simple numerical experiment.

Consider that we have a mixture of 11 different rare-
earth elements, their respective proportions in the mix-
ture being denoted by p, (a=1,...,11). For each a we
list the corresponding quantum numbers S, L,, and J,
in Table I. Our goal is to show that the ideas introduced
in Sec. II can be employed to experimentally determine
the figures p,, starting from appropriate measurements of
the magnetization /M (at the temperature T') for a series
of values H;.

We deal thus with two relevant subindexes, namely a,
which runs along the actinides and i, which indicate a
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TABLE 1. For each rare-earth ion the pertinent quantum numbers are given. The relative properties
in the rare-earth mixture are denoted by p, (system &) and p_, (system §"). The diagonal elements of
the statistical operator constitute the theoretical predictions for these weights.

a Ion S, L, o Pa (a|p3la) P (al(p’V|a)

1 Ce*t 1 3 3 0.003 0.007 0.549 0.549

2 Prit 1 5 4 0.004 0.004 0.329 0.330

3 Nd** 3 6 ) 0.005 0.003 0.076 0.076

4 Pm3* 2 6 4 0.006 0.005 0.042 0.043

5 Gd** 1 0 1 0.055 0.057 0.000 0.000

6 Tb3* 3 3 6 0.156 0.157 0.000 0.000

7 Dy** % 5 % 0.338 0.339 0.000 0.000

8 Ho’* 2 6 8 0.301 0.299 0.000 0.000

9 Er’* 3 6 L 0.101 0.104 0.000 0.000

10 Tm?* 1 5 6 0.019 0.018 0.000 0.000

11 Yo't 1 3 1 0.005 0.004 0.000 0.000
given measurement of /M (that for which the external field ~ Qu
is H;). I= 3 |la)(eal. (3.8)

In order to apply the techniques of Sec. II we first of all
need an expression for the operator £ of Eq. (2.8). We set
for each i (|a)=|S,L,J,))

11

Li=3 la)lal, (3.6)
a=1

lia=“3ga"aBia ’ (37)

where g, is the spectral factor for the ion a, J, is the cor-
responding angular momentum, and B, is the appropri-
ate Brillouin function. Notice that here the identity
operator (that we need in order to evaluate traces) reads

9.30 |

6.98 A

1
C
@

Magnetization(Bohr magnetons)
A
(-}
(<3
————

0.00 !}

0.00 10.00 20.00 80.00
H/T (kG/K)

40.00

FIG. 1. Magnetization vs external applied field at the tem-
perature T. The dots denote numerically simulated values and
the squares indicate the figures actually employed in building up
p™M~'. Theoretical values evaluated with the statistical opera-
tor are given by the solid line. Curve (a) correspond to system §

and curve (b) to system §”.

a
Assume i runs from 1 up to M (M different measure-
ments, i.e., M different values of M). Our inversion
method (Sec. II) entails dealing with the set of equations
[cf. Eq. (2.10)]

fi=ATrpL), i=1,...,M . (3.9)

Two sets of “weights” {p,} and {p,} are listed in

" Table I which correspond to two hypothetical mixtures §

and §”. By recourse to these sets we have numerically
simulated a series of measurements of the magnetization
[dots in Fig. 1, where.(a) corresponds to & and (b) to §'].
These series, in turn, constitute the input information in
order to build up, via the MEP, our (approximate) statist-
ical operator fJ‘M ~1 (on the basis of a finite number, M, of
measurements). As discussed in Sec. II C, we can check
the accuracy of the predictions arising from g™ ~! by
comparing magnetization values not employed in con-
structing ™ ~! within the appropriate theoretical figures
that can be calculated via 5™ ~! [solid line in Figs. 1(a)
and 1(b)].

A glance at the pertinent drawings allows one to con-
clude that the quantity of these predictions is indeed ex-
cellent if we take M =4 for & and M =6 for §” [the small
squares in Figs. 1(a) and 1(b) indicate the magnetization
values employed as input in our calculations]. Finally,
the diagonal elements {a|p™ ~!la) yield the desired
values of the relative weight of each ion in our hypotheti-
cal mixture. Table I shows that these diagonal elements
provide one with a good approximation to {p,} (or
{p.}). Obviously, the quality of our figures can be im-
proved by appropriately increasing M.

We conclude, by recourse to this simple situation, that
our formalism does indeed provide one with reliable re-
sults in connection with this particular weighting prob-
lem.

IV. A FANCIER APPLICATION

In order to provide the reader with a more realistic il-
lustration of our formalism, we have chosen a rather in-
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volved crystallographic problem, that of the description
of mixed layering. We introduce the problem in Sec.
IV A and propose a model for addressing it in Secs. IV B
and IV C. A specific situation is discussed in Sec. V.

A. Mixed layering

The terms interlayering, mixed layering, and
interstratification describe phyllosilicate structures in
which two or more types of layer occur in a vertical
stacking sequence, that is a line normal to the (001) plane.
Phyllosilicate layers are strongly bonded internally, but
rather weakly to each other. Thus, each layer approxi-
mates a one-dimensional molecule in the stacking direc-
tion, and a two-dimensional one in the @ and b directions.
The basal surfaces of different kinds of layers are geome-
trically very similar, consisting of sheets of oxygen or hy-
droxyl ions disposed in a quasihexagonal array.’

Although interstratificates of more than two com-
ponents have been reported, 10-12 we will deal here with
just two-component systems (layer 1 and layer 2). Layer
1 is characterized by an interplanar spacing d,, while d,
does this for layer 2.

X-ray diffraction patterns are quite sensitive to the way
these sequences of layers are arranged. Thus, these pat-
terns provide detailed experimental information concern-
ing the internal structure of the interstratificate. Input x
radiation of wavelength A of the order of d, (d,) induces
a response signal from the sample that fits nicely into the
considerations expounded above and pose a severe experi-
mental test that they must pass.

B. Response signals from interstratificates
in second quantization language

Given N layers, 2V different sequences exist. However,
N need not be the same for all plaques in the sample. For
this reason we shall resort now to a Fock-Hilbert space,
for example,

i) 4.1)

FRT DY YR P8
where the subindex j along the row indicates the layer
one is concerned with and i; indicates whether its type is
1 (i;=1) or 2 (i;=2). However, and in keeping with the
philosophy of the present work, we shall think of (4.1) as
the response signal arising from such a configuration.

Number operators appear in a natural fashion!® as

Alivin, o osipy e ) =Q2=ii iy, i)
4.2)

Aliyig, e siyy e == Di, i, )
4.3)

Out of these we construct the number-of-layers operators,

N

N=3nal, 4.4)
i=1

~ N

N2: zﬁlz' (4.5)

i=1
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C. Diffraction intensity

The available experimental information consists of an
intensity sample given as a function of the diffraction an-
gle 8. Thus, (2.10) adopts the appearance

Fi=X6,\fY=4a(L), k=1,...,.M 4.6)

where the observables fk represent diffraction intensities
for the angle 8;. These can be defined by recourse to ele-
mentary semiclassical considerations, '*

N N .
Li,=3 Fii+23 F(DE())
i=1 ij
i<j

Xcos |¢,(j, i)+ 3 d(s+1,s) |,

s =i

4.7)
with
F()=F A !+F, 7, (4.8)
B =y A 4+, A2—(d A1+, A D), (4.9)
Sk(s +1,5)= 511,kﬁ§+1ﬁ}+822,kﬁ§+1ﬁ3
+521,kﬁ§+1ﬁs1+512,kﬁs1+1ﬁ§ : (4.10)

F,, and F, , are the (absolute value) structure factors at
the angle 6, for the 1 and 2 components, respectively,
while ¢, , and ¢,, are the corresponding associated
phases. Additionally,

811 x =4md sinb,; /A , 4.11)
622',( =47szsin9k /}\. y (412)
812k =8y, =2m(d, +d,)sinb, /A . (4.13)

As the operators fk are given by (4.7), the eigenstates
of the 72! and # ? operators are also eigenstates of L, .
For the Fock-Hilbert space we are dealing with the iden-
tity operator which is

© b2
I=3 3 Iv){vl, (4.14)
N=1v=1

where v stands for the set of indices needed in order to
satisfactorily label an N-layer configuration. Traces are
thus evaluated according to [cf. Eq. (4.6)]

o 2N
fi=A4 S S vph, vy, k=1,...,M . (.15
N=1v=1

V. A REALISTIC SITUATION:
ILLITE-MONTMORILLONITE SAMPLES

Montmorillonite is a smectite clay that easily inter-
changes cations with other substances.”!> We shall ana-
lyze here results concerning sodic montmorillonite sam-
ples in which Na cations compensate for lattice (charge)
defects.
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Illite clays originate from montmorillonite clays and
are not able to interchange cations. They do not appear
in pure states. Some degree of interestratification is al-
ways present and there exists great interest, both in geol-
ogy and in industry, to learn details about this
interestratification. We shall apply the preceding con-
siderations to this situation and assign label 1 to
montmorillonite and label 2 to illite (d, =15.4 A, d,=10
A). We take the montmorillonite structure factors from
Cole and Lancucki,'® and those of the illite have been
computed from the structure reported by Wever and Pol-
lard. !’

Figure 2 displays (punctual) x-ray diffraction measure-
ments {6,|f) obtained from an illite-montmorillonite
polycrystalline sample. These data are already corrected
for the Lorentz polarization factor L,(6)=(1
+cos?26) /sin26. In all we deal with 63 pieces of data.

The statistical operator associated to these punctual
measurements of the diffraction intensity is

/T

M P
.0, , 5.

- 31,0

i=3

M A
- 2 A‘ioi

i=3

p=exp exp

with
0.,= ({6,1f)—(O,lf NE,— (8,1 Y— (6, fNE,
e SCATAXCATAY (5.2)

a peculiar form that is the consequence of having utilized
one of the pieces of data in order to adjust the back-
ground constant B. The proportionality constant A of

558.13 -

418.60 1

279.06 1

139.53

0.00
1.66

L

T T
3.20 3.97 4.74

8 (deg)

T
2.48

FIG. 2. X-ray diffraction intensities vs diffraction angle 6.
The error bars amount to a 3% uncertainty. The solid curve
corresponds to the p°® theoretical prediction. An illite-
montmorillonite polycrystalline sample has been employed and
the data are corrected for the Lorentz-polarization factor.
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the previous Sec. IV C has to be calculated, accordingly,
as

A=(0,/f Y =0 N/CE) =L )) s
(5.3)
which in turn yields B,

B=(6,lf)—A(L,) . (5.4)

Due to the properties of the montmorillonite clay, '*!°

it is permissible to truncate our Fock-Hilbert space at
N =10, which entails dealing with 2046 configurations.
In order to attain convergence (within the framework of
our 63 pieces of data) with an € [cf. Eq. (2.22)] deter-
mined by the error bars, it was found to be necessary to
construct g out of 10 data points (8 associated Lagrange
multipliers). This suffices for an excellent prediction of
the remaining 53 data, according to the relations

[B=Aa(L;))+B . (5.5)

As illustrated by the solid curve in Fig. 2, these predic-
tions converge to the data within the experimental error
(~3%). Thus, p® can be confidently employed so as to
determine the relative quantities of illite and montmoril-
lonite in the sample

(N))=Tr(p'®N,),
(N, =Tr(p®N,),

and one finds 30% for montmorillonite and 70% for il-
lite. Of this percentage, a 22% that exists in a pure state
is responsible for the small peak that appears at 4.4° (Fig.
2). The percentage of montmorillonite in a pure state is
negligible, even if the main maximum in Fig. 2 appears at
3.5°% in the vicinity of that place at which pure-state
montmorillonite exhibits a diffraction maximum
(~2.85°%). This is due to the fact that the montmorillon-
ite structure factor at this last angle is larger (by a factor
of 4) than the corresponding illite structure factor at its
characteristic angle of ~4.4°.

Finally, we point out that calculations performed with
a maximum N =12 (~8000 configurations) differ from
the ones reported above by less than 1%.

(5.6)
(5.7

VI. CONCLUSIONS

A very general method for investigating the state dis-
tribution in a physical system, on the basis of a detailed
analysis of its experimental response to an external probe,
has been presented.

The main idea is that of extracting the statistical infor-
mation carried by the response signal by representing the
latter in an appropriate, orthogonal basis. Out of this
representation, and by recourse to a finite number of
measurements, the state distribution is obtained.

That a finite number of measurements suffices for ac-
complishing our goal is due to the maximum-entropy
principle (MEP). Indeed, we are facing here, from a
mathematical standpoint, an inversion problem whose
solution is not, in general, unique. The (MEP) provides
the crucial criterium that allows one to select just one out
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of the multiple solutions the inversion problem may pos-
sess.

The quite simple weighting method proposed in Sec.
III provides the reader with a rather neat illustration of
the ideas introduced in Sec. II.

The example discussed in Secs. IV and V as an applica-
tion of our formalism provides a rather striking illustra-
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tion of how powerful the MEP really is. The dimension
of the concomitant vector space is quite large indeed, al-
though just a few measurements permit us to construct a
rather good solution. A mere 16% of the available data
sample is needed in this respect. The remaining 84% has
served here just to exhibit the predictive power of the
present method.
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