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We consider kinetic models for irreversible processes that exhibit nontrivial steady states and

phase transitions between these states. We study the steady states of these nonequilibrium systems
using the methods of equilibrium statistical mechanics. To accomplish this, we use two methods for
associating an effective Hamiltonian H, & with a given steady state. Varying the kinetic rate parame-
ters changes H, z, which can lead to phase transitions. Since H,~ is defined indirectly, the transi-
tions may occur via new mechanisms not possible in equilibrium systems. We apply these methods
to several one-dimensional lattice models relevant to certain aspects of catalysis. Two of these mod-
els exhibit second-order phase transitions, one to a catalytically inactive state, the other to a catalyt-
ically active state. The transitions are in different universality classes. We employ a model used in

polymer unbinding and wetting transitions to investigate these transitions.

I. INTRODUCTION

The dynamical evolution of a system with many de-
grees of freedom can be described by a set of kinetic
rules. For example, a master equation can be used to
study the time evolution of the probability distribution
for possible configurations (states) of the system. The
rate parameters in the master equation specify the rate of
change between configurations connected by a single-step
process. Under quite general conditions, namely as long
as the kinetic rules conserve probability and also allow
the system to go from any given configuration to any oth-
er configuration in a finite number of steps, the
configuration probability distribution will approach a
unique nonzero steady-state value p. One can imagine
more complicated situations arising in the infinite-volume
limit, but we have seen no evidence for this in the models
we investigate below.

A system which is not in thermodynamic equilibrium
may be described by kinetic rules which do not satisfy de-
tailed balance. For example, a transition between two
configurations may be allowed, but not the reverse transi-
tion. Consider, for example, the total absence of back
rates for certain transitions in some of the models defined
below. Such kinetic rules, not satisfying detailed balance,
may seem unphysical and therefore irrelevant. However,
the net rate (state probability times transitions rate) in a
given direction may in fact be very small out of equilibri-
um if the probability is kept low by the steady state, e.g. ,

by appropriate flow conditions or if the transition rate is
small. Then it is a reasonable approximation to neglect
the rate altogether.

When detailed balance is not obeyed, the steady-state
distribution p is not simple to determine. However, un-
der the conditions cited, it will exist, and one can define

the corresponding effective Hamiltonian via
r

H, tt
= —ln(p ),

where we have set k~ T= 1 for convenience. Thus Eq. (1)
assigns an effective energy to each configuration of the
system and, conversely, p is the equilibrium probability
distribution for H, ff. Note that the normalization of p
implies a particular choice of the zero of energy in H, ff.

Now for application to a specific kinetic system, the
above equation will only be of practical value if H, ff can
be calculated. When this is possible, the properties of the
steady state(s) may be described using equilibrium statis-
tical mechanics, since the information in H, ff will be fully
equivalent to that in p. Thus one can study the behavior
of irreversible, kinetically defined systems by mapping
them onto an equivalent effective Hamiltonian for a sys-
tern in thermal equilibrium.

We emphasize that the effective Hamiltonian is merely
a shorthand for describing the steady-state probability
distribution p. Since its definition follows entirely from
nonequilibrium kinetics, it has no particular connection
with the actual physical Hamiltonian of the system under
consideration. It means that the particular "energy" of a
state as defined in Eq. (1) may be quite different from its
real energy. For instance, in a laser in steady state, the
level of highest energy becomes, due to population inver-
sion, the level of lowest effective energy. As we will see,
H, ff is nonetheless useful because it allows one to apply
the concepts and methods of equilibrium statistical
mechanics to kinetically defined steady states.

Since there is no simple general method for determin-
ing p from the master equation when detailed balance is
not satisfied, one must follow a more indirect route. In
this work we employ two methods. In the first, the kinet-
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ic rules are used in a Monte Carlo simulation of a large
system (typically 16348 or 32768 sites). The resulting
configurations are used to compute various correlation
functions. Then the effective Hamiltonian is determined
by using a set of correlation identities' which relate the
correlation functions to the coupling constants in H, ff.
The same technique is employed in the Monte Carlo
renormalization-group method.

The second method is a direct evaluation of p by re-
peated application of the evolution operator to an as-
sumed initial value for p. This method is limited to small
systems (chains of length up to 18 sites are treated below)
but has the advantage of providing a complete characteri-
zation of the steady state and H,~. We find that it gives
more accurate and complete results for the interactions
than the Monte Carlo simulations, even though the sys-
tems are small. In particular, the correlation method
cannot reliably compute long-range interactions from the
Monte Carlo data, although it does reproduce the short-
range interactions reasonably well even in their presence.

The results of such determinations of H,z may be very
interesting in cases where the kinetic rules depend on ad-
justable parameters such as reactant arrival rates and re-
action probabilities. Then the steady-state distribution p
and H, z will also depend on these parameters. Since the
connection between the kinetic rules and H, z is not sirn-

ple, varying the kinetic rate parameters can change H, z
in unusual ways which are not possible for equilibrium
systems. In this way nonequilibrium or kinetic phase
transitions —changes between kinetically defined steady
states p with qualitatively different properties —can occur
by means of mechanisms not found in equilibrium phase
transitions. For example, we will find that some one-
dimensional systems with simple short-range kinetic rules
can exhibit phase transitions. Our analysis of these mod-
els in terms of H,z then allows interpretation of the tran-
sitions in terms of equilibrium statistical mechanics.

In this paper the techniques just described are applied
to several kinetic models defined on one-dimensional lat-
tices. These particular models are designed to illustrate
the points made above in a simple context, and were in-
spired by recent work on models ' incorporating effects
of density fluctuations and spatial correlations on hetero-
geneous catalysis. They resemble the two-dimensional
model of Tang and Bak which is also defined via local ki-
netic rules. We use our effective Hamiltonian, as well as
information from the correlations themselves, to probe
the mechanisms underlying the transitions.

The paper is organized as follows. In Sec. II we recall
the correlation identities, ' and the technique of obtain-
ing interactions from them. Then the direct method for
constructing p and thereby H,~ is briefly described. In
Sec. III we define the five different one-dimensional
lattice-gas models to be studied and present the results of
our analysis. These models include two that exhibit
second-order-kinetic phase transitions. We argue that a
good model for these transitions is the "necklace" model,
which describes the helix-coil transition in polymers and
wetting transitions. This model studies the statistics of
strings of "beads" (coiled polymers) separated by vacan-

cies (uncoiled polymers) and we find that certain clusters
in our models obey the same statistics as the beads. Ex-
ponents are given for the second-order transitions. We
also contrast our results for each model with the mean-
field treatment of the reaction process. Section IV con-
tains our conclusions. The Appendix discusses several
new simplifications of the correlation method for calcu-
lating H, z that occur when used with lattice-gas Hamil-
tonians and gives some details of our Monte Carlo simu-
lations.

II. METHODS FOR CALCULATING H, ~

H = g (Kon;+K, n, n, +, ) . (2)

One then finds

(n, P)=(t 2 +8(n, +i+n, +&)+Cn, &n, +&)P), (3)

where P is any function of occupation number variables
except n, , and

Ko1+e
1

K KK +K
l 0

(4)

1

K +2K1+e
So by suitably choosing P one may find two indepen-

dent relations solvable for K, and Ko if the appropriate
correlation functions are known. Equation (3) is easily
generalized to Hamiltonians with terms of arbitrary type,
including longer-range pair interactions and multiparticle

This section outlines the methods employed to calcu-
late H,z. In the correlation method, a set of identities'
that connect correlation functions with the coupling con-
stants of the Hamiltonian for lattice-gas systems are
used ' to extract the latter given the former. We em-
phasize that, for a Hamiltonian with a given set of terms,
these equations are exact. It is also important that, again
if one knows the specific interactions that appear in the
Hamiltonian, all the coupling constants may be recovered
if a sufficient number of correlation functions are avail-
able.

The detailed derivation of these relations has been pub-
lished elsewhere' ' so we will confine ourselves to a re-
capitulation of the underlying idea. Consider a lattice-
gas model in thermal equilibrium. By performing a par-
tial trace over a particular occupation number variable
n, , one may replace it, in any average over the
configuration probability distribution, with a function de-
pending on all. the other occupation number variables and
the coupling constants included in interactions with the
ith site. Using this one may derive an arbitrary number
of equations linear in correlation functions with
coefficients that are functions of the coupling constants.
For example, consider a one-dimensional lattice gas with
the Harniltonian
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terms. In the models analyzed below, the necessary
correlation functions are obtained via Monte Carlo simu-
lation of large systems (chains typically of length 32768
sites), so that the resulting interactions may be compared
with those found for short chains via the direct method.
A more detailed discussion of how we used the correla-
tion function method is relegated to the Appendix.

Now we brieAy consider the second or "direct" method
of evaluating the configuration probability distribution p
and thereby H, z from the kinetic rules. The master equa-
tion is

dp; =g W,;P —g WJP;,
J

where P;(t) is the probability of finding the system in
sta&e i at time t and 8'; is the rate for a transition from
state i to state j. The eigenvalues A. , of the right-hand
side satisfy 0 ~ A, , ( 1. It follows that the operator
8',, + W, , 6... repeatedly applied to an initial state, pro-
jects out the steady state. In the calculations below the
blank lattice is the initial state.

For the models studied, the convergence of this pro-
cedure may be tested by comparing the results with cer-
tain exactly known ratios of p values; in particular, the
chemical potential (on-site energy) is exactly known in
each case. We have been able to treat systems of up to 18
sites. The number of iterations required for good conver-
gence varies with the model and lattice size. Up to
50000 iterations were used for the cluster transition mod-
el (defined below) with 12 sites. p was calculated with
double precision for some models to test for roundoff er-
rors.

Note that in applying Eq. (1) one will obtain the total
effective energy for each state from p. In order to extract
the coupling constants for the various interactions [e.g. ,
Eo and Ki in Eq. (2)] one must subtract the interaction
energy of each possible subcluster of particles from the

total energy of a given state. We report both total ener-
gies and coupling constants below.

III. MQDELS AND RESULTS

In this section we define the kinetic models to be stud-
ied. These are one-dimensional one-component lattice-
gas systems. They are of interest in studying the effects
of density fluctuations and spatial correlations on catalyt-
ic behavior and also as simple irreversible systems exhib-
iting phase transitions. Our models are inspired by the
more complicated two-component two-dimensional sys-
tems introduced by Ziff et al. The restriction to one di-
mension may seem artificial, but we note that CO oxida-
tion on Pd(110) has been reported to proceed one dimen-
sionally in a certain pressure and temperature range. "

Consider a chain of X adsorption sites labeled by the
index i, with periodic boundary conditions. A
configuration of the system is specified by assigning the
value 0 (empty) or 1 (occupied) to the occupation number
variable n; at each site i. Thus n, =1 corresponds to the
presence of an atom of type A at the ith site. In describ-
ing particular configurations we will use a notation like
( Ax A 3 Ax ), where the 2 denotes an occupied site and
the x an empty one.

We now describe five sets of kinetic rules, defining five
different models. According to these rules A atoms may
adsorb and A2 molecules desorb from the chain, thus,
the overall reaction is A + A ~ A z and our systems mod-
el heterogeneous catalysis under irreversible steady-state
fIow conditions. Table I tabulates the models. We first
specify the rules common to all of them. A atoms im-
pinge on the chain at random at some rate y per site.
The value of y serves only to define the unit of time and
has no effect on the steady-state distribution p. If a given
site i is empty (n; =0), and is surrounded by empty sites
on either side, adsorption occurs. If the site is already oc-
cupied (n; =1), the atom is reflected from the chain and

TABLE I. Kinetic rules defining the one-dimensional models. The initial states are listed in the left-
most column with the 3 atom impinging on the middle site. The final states for the various models are
listed in the other columns. If there is more than one possible final state the rate is given in

parentheses. Model IV (alternating-chain transition) interpolates between model II (short range) at
p=O and model III (alternating chain) at p=1. Model V (cluster transition) also coincides with mode1
II at p=O.

Initial state Model I Model II Model III Model IV Model V

XXX

XXX

xxA

XXX

XXX

Wxx ( —,')

xxA ( —')

xAx
xxx

XXX

xdx

xxx

Axx
1 —p

2

AxA (p)
P

xAx
xaW (p)

xxx (1—p)
AAx (p)

xxx (1—p)
AHA (p)

2

1 —p
2

1 p
2
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no change in the configuration occurs. If n, =0 and one
or both of the neighboring sites is occupied, then depend-
ing on the model, (1) an A2 molecule may be formed and
immediately desorb, (2) adsorption may occur, or (3) the
configuration is unchanged. There is no diffusion of ad-
sorbed species along the chain, and no desorption in the
absence of A2 formation. Thus the models describe cata-
lytic processes for which the rate-limiting step is the ad-
sorption of an atom at an active site on the chain and in-
clude the effects of density fluctuations and spatial corre-
lations in one dimension.

A. Model I (hard cores)

0.03

0.02

0.01

0.00

-0.01

-0.02

In model I, desorption of an Az molecule from site i
occurs if the site to the left of i is occupied, regardless of
the occupancy of the site to the right of i. If only the site
to the right is occupied, the impinging atom is reflected,
and there is no change of configuration. (One can ex-
change "right" and "left" in these rules without altering
the results). Standard methods' show that this set of ki-
netic rules satisfies detailed balance, and indeed describes
a one-dimensional lattice gas with nearest-neighbor ex-
clusion, and no further interactions. Thus the steady
state has no nearest-neighbor pairs of A atoms.

The direct method, for a chain of 12 sites, gives
(n, ) =—0.27639. . . and all interactions zero to double
precision after 2000 iterations. For the correlation
method we used Monte Carlo simulation on a lattice of
32768 sites, and a total of 60000 Monte Carlo steps
(MCS). This gave ( n ) =0.2765+0.0016. Using the
correlation method we calculated all interactions of a
given site with clusters of up to m adjacent sites, increas-
ing m from 1 to 7. For m ~ 4 all coupling constants were
no larger than 0.005 in magnitude. For larger m values
the largest coupling increased; e.g. , for m =7 the interac-
tion energy of ( Axx Ax Ax A ) (the worst case) is equal to
—0.039, although the four other symmetry equivalent
states have been much smaller coupling constants (the
average of the four values is —0.0101). This increasing
lack of precision with m is apparently due to the increas-
ing number of terms that must be subtracted to calculate
the couplings as m grows, and is also observed in the oth-
er models investigated. For a model with unknown in-
teractions this poses the problem of determining whether
the effect is due to numerical problems, as here, or the
presence of long-range interactions. One way to test for
long-range interactions under these conditions is by ex-
amining the pair-correlation function. For the hard-core
model it decays very quickly with distance to its asyrnp-
totic value, as shown in Fig. 1.

Solving the rate equations in mean-field approxima-
tion for the concentration of adsorbed A atoms gave
( n ) =0.382 and 0.2764 in single-site and pair approxima-
tion, respectively. Since the longest-range interaction is
nearest neighbor in this case, retaining nearest-neighbor
correlation effects via the pair approximation gives quite
accurate results.

The reversibility of this model might seem to contra-
dict the overall reaction A + A ~ A2. However, the true
reversibility (or irreversibility of the other models con-

FIG. 1. Pair correlation function g (r) = ( n;n, + „)—( n ) ' for
model I (hard core), open circles; and model II (short range), di-
amonds. Errors are shown for model I, those for model II are
similar.

sidered) in fact arises by consideration of the states of the
chain only; one could regard the removal of two A atoms
as part of an A ~ A reaction which is reversible when
the chain kinetics are reversible.

B. Model II ("short range")

Here, A 2 formation and subsequent desorption occurs
whenever either neighboring site is occupied. If both are
occupied, one of' the neighboring A atoms is chosen at
random and the other remains adsorbed. These are natu-
ral physical assumptions for a model of catalysis of this
type. Since, in any allowed configuration under these
rules, nearest-neighbor A A pairs are still not permitted,
H, ir again has a nearest-neighbor exclusion (hard core).
However, the change of rules from model I induces addi-
tional interactions. Table II presents results of the corre-
lation and direct methods. One sees again that the corre-
lation method is most accurate for clusters that are not
too large; this is not surprising since the kinetics do not
differ greatly from model I. Table II includes the largest
terms, which are all of short range, hence the model's ap-
pellation. It should be realized, however, that the energy
of a given state (in this or any other model) may also in-
clude contributions from a large number of small interac-
tions. For instance, if one keeps only the four largest
coupling constants for this model, the energy of the state
with six particles (for a chain of length N=12) is 2.2285
above the ground state, compared to 2.2098 for the exact
value. This occurs even though all of the interactions not
included have magnitudes less than 0.0057, and most are
at least an order of magnitude smaller than this. The pair
correlation is again of short range, as shown in Fig. 1 ~

The mean-field treatment gives (n ) =0.29 and 0.2265 in
site and pair approximation, respectively. Since the large
interactions are not of long range these values are accu-
rate, though less so that for the hard-core model. The
( n ) values obtained from the short-chain (0.232 756 for
N= 12) and Monte Carlo methods (0.232 8+0.002 0)
agree, as shown in Fig. 4 (discussed later).



EQUILIBRIUM STATISTICAL MECHANICS FOR KINETIC. . . 1619

TABLE II. Coupling constants for the short-range model (II). The correlation method results, from
left to right, refer to clusters with m =4,5,6,7 (see Appendix).

Cluster Direct m=4 m=5 m=6 m=7

AxA
Axx A

Axxx A

Ax Ax A

ln2
—0.300

0.001
0.014

—0.036

0.687
—0.295

0.011
0.016

—0.039

0.687
—0.291

0.013
0.015

—0.042

0.684
—0.292

0.015
0.017

—0.038

0.672+0.02
—0.231+0.05

0.021+0.002
0.025+0.02

——0.046+0.02

Note that the short-range model contains some transi-
tion pathways that do not satisfy detailed balance. Con-
sider a system of six sites and the configurations
(AxAxAx) and (xxxxxx). There are two ways to get
from one to the other, depending on the order in which
.4 atoms are removed, and the products of reaction rates
around the resulting loop of configurations differ accord-
ing to the direction taken. '

C. Model III (alternating-chain model)

TABLE III. Coupling constants for the alternating-chain
model (III). The direct method results are for chain length
N=15; the correlation method is, from the left for m=6 and 7.
All direct terms with coupling larger than 0.1 in magnitude, and
for no more than 8 sites, are included; however, the correlation
method shows some additional terms with couplings & 0.1. The
difference between the two methods is greater than for the
short-range model shown in Table II and is probably due to the
longer range of the interactions.

Cluster Direct (N= 15j m=6 m=7

Ax A

Axxx A

Axx Ax A

Axx Ax A

AxAxAxA

ln2
—0.906

0.256
—0.523

0.103
—0.312

0.708
—0.861+0.02

0.200+0.03
—0.458+0.04

0.131+0.08
—0.388+0.22

0.768
—0.829+0.03

0.090+0.03
—0.488+0 02

0.071+0.10
—0.352+.0.24

This is the same as the short-range model, except that
when both sites adjacent to site i are occupied, the imp-
inging 3 atom is reAected. This kind of effect might
occur on a real catalyst if second-neighbor 3 3 forces are
sufticiently attractive to prevent association of 3 atoms.
It results in configurations favoring long alternating
chains of ( Ax Ax Ax. . . ). There are many configurations
leading to a given one with such chains, via adsorption of
an 3 atom, but the chain can only be removed by desorp-
tion from the ends, so in this sense detailed balance is
more strongly violated than in the short-range model.
The absence of 3 3 pairs again implies a hard core, but
the additional interactions required to sustain the alter-
nating chains are considerably stronger and more long
ranged than for the short-range model, as may be seen on
comparing Tables II and III. For this reason the mean-
field treatment is considerably less accurate, giving
(n ) =0.33 and 0.25 in site and pair approximation, re-
spectively, as opposed to 0.43 from the Monte Carlo cal-
culation (see below).

g (r) =( —1)"[0.0907 exp( —r/12. 09)

+0. 1129exp( —r /68. 44) ], (6a)

If the total number of sites X is even, this model (recall
the periodic boundary conditions) has a catalytically
inactive (or poisoned) state in which every other site is
occupied. There is no way to leave this configuration,
and therefore the conditions for the existence of a unique
steady state are, strictly speaking, not satisfied. As a re-
sult the direct method of calculating p does not converge;
the catalytically inactive state becomes more probable
with the number of iterations and the concentration ( n )
approaches 0.5. On the other hand, when N is odd this
configuration is not possible, and p gives rise to an H, z
with a few short-range interactions and some longer-
range ones involving alternating chains (see Table III).

The states with single alternating chains have the
lowest total energy, and the variation of their energy with
chain length is shown in Fig. 2(a). We suspect that these
states (or similar ones) are important for the phase transi-
tions discussed below; similar behavior will be seen in
other models as well. It is perhaps significant that their
total energy is in general not given by the sum of the larg-
est interaction terms, but rather involves important con-
tributions from many small couplings.

The Monte Carlo simulations, performed with
N =32768, indicate that the steady state is not trivial in
the large 1V limit. They give (n ) =0.4302+0.0036. The
presence of long alternating chains in this model tends to
slow the convergence of the Monte Carlo simulations,
since all the changes occur in the relatively rare regions
between chains. However, we believe our result for (n )
to be accurate. Indeed, simulations starting from an ini-
tially blank state, discarding the first 20000 MCS/site,
and sampling every 500 MCS/site for the next 60000
MCS/site gave (n ) =0.430+0.007. Starting from the
final configuration of this first run and making a second
run for 50000 MCS and sampling every 100 MCS/site
gave ( n ) =0.4302+0.0036.

It might be thought that a typical configuration for this
model consists mainly of long alternating chains separat-
ed by short regions of simple "defects, " or domain walls.
However, examination of the Monte Carlo results shows
that there is a wide variety of chain lengths and defect
types and lengths present. Thus the dynamics does not
appear to be simple. The behavior of the pair correlation
function (Fig. 3) is one indication of this. It is very long
ranged apd reproduced well within the error by the form
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over the range 10(r(100. However, at larger r values

g (r) appears to obey a power-law form,

%3

(r)= const( —1)"
—i+~r

(6b)

p=Ap, +(1—
A, )po, (7)

where p, and po are two distinct distributions, and
0(A, (1. We first assume that p, and po are the limiting

with the rather large exponent —1+g =2.2 as shown in
Fig. 3. This suggests that the alternating-chain model is
at critcality, consistent with our results for the chain
transition model discussed below.

However, since the kinetic rules strong1y favor the pas-
sivated state, the presence of two well-separated length
scales in the correlation function could indicate that the
alternating-chain model steady state is a coexisting phase
in the thermodynamic limit. We now examine this possi-
bility, and show that the available evidence rules it out.
For a coexisting phase one has

-6
4. 2

I

4 ' 4
I

4. 6
I

4.8 5.0

In(r)

I

5. 2
l

5.4 5.6

FIG. 3. Magnitude of the pair-correlation function ~g {r)
~

for
the alternating-chain model. Note that g(r) is negative at all
odd values of r.

0

-2-

-3
0

10

C 0-
UJ

-10
0

n/2

I

10

10

12

distributions for even and odd chains as N ~~, respec-
tively. Then &n & will be an average of even and odd
values, & n &

=A & n &, +(1—
A ) & n &, . Since & n &, =0.5,

and assuming A, =0.5, the Monte Carlo result implies
&n &, =0.3604+0.0072 for the limit of odd N values.
This is not inconsistent with our short-chain results,
which give & n & =0.326, 0.336, and 0.344 for N=13, 15,
and 17, respectively. Larger k values reduce the size of
& n &, . However, since the correlation function & n, n, + „&
for N even is 0.25+0.25( —1)", such a phase would also
show a term with long-range order, 0.25K( —1)"as r ~ oo.
This we definitely do not observe. Within the error we
see a small oscillation in the correlation function at large
r; if this is attributed to coexistence, it would indicate
that A, is 0.002 at most. (For this A, value & n &, =0.4301.)
We have also checked for long range order by computing
the ferromagnetic susceptibility per site

yolN=( (1/N)gn; —(n)~
I

via Monte Carlo. This is a useful quantity since go will
be constant for large N unless there is long-range order,
in which case it becomes proportional to N. We find

po/N =0.0+ 10 . The staggered susceptibility is also
much less than N, as we discuss below.

A second possibility is coexistence between two phases
without long-range order. To test for this, first consider
the large r limit of & n; n;+„&. In a distribution described
by Eq. (7), it is given by

&n, n, „&=A(&n &, ) +(1—A)(&n &, )

FIG. 2. (a) Total energies E„ofstates with a single cluster of
n contiguous empty sites as a function of n for the chain transi-
tion model. In order from above, the curves show
p=0.5,0.6,0.7,0.8,0.9 for N=18, then p=0.99 for N=16, and
finally the alternating-chain model for N= 17. (b) Total energies
E„ofstates with single clusters of n contiguous vacant sites vs n

for the cluster-transition model, from chains of length N=12.
Successive curves show p =0.1,0.2,0.25,0.28,0.3,0.4 in order
from above.

The Monte Carlo results show that this result is different
from & n & by at most 0.005. Assuming that & n & for one
of the coexisting phases is close to 0.5 then implies that A,

may be as large as 0.5 so this kind of coexistence is so far
not ruled out. However, there is another more stringent
test involving the quantity g/N mentioned above. For
this kind of coexistence it satisfies g/N =k/
(1 —A. )(& n &

—&n &, ) . Now recall ylN is zero to within
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10 for the alternating chain model.
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single alternating ( AxAxAx. . . ) chain of n/2 pairs of
occupied-unoccupied sites are important in the transi-
tion. For short chains the total energy (with respect to
the empty state energy) of these clusters is given approxi-
mately by the form [see Figs. 4(a)]

F.„=3 +Bn +b (n),

1.0

0.8-

A O6

V

where b (n), with b (1)=0 and b/n ~0 as n ~ oo,
represents a correction to linearity which is small for
large clusters but essential to the phase-transition behav-
ior, as we will see. Note that if we were to write H,z in
terms of the interactions between the occupied sites, as in
Eq. (2), E„will involve contributions from many kinds of
terms, since it is the total energy of this configuration.
Equation (8) does not hold for the states of largest n when
N is even, since they are influenced by the poisoned state
of the alternating-chain model with even N, as discussed
below. Also, E& =ln2, independent ofp and X. More im-
portantly, at a given p value, there seem to be at most
only very small finite-size effects, so that B is independent
of X. For small p, B is positive, but it decreases (ap-
parently smoothly) with p, going through zero at p =0.6,
so that it is defintely negative at the phase transition.
Note that this negative value implies the presence of
many long alternating chains with a concentration ( n )
close to 0.5. These states may then be responsible for the
long correlation length in the alternating-chain model.
Some interesting further implications of Eq. (8) are con-
sidered later.

Finally, we should note that the mean-field treatment
of this model, in site or pair approximation, does not
show a phase transition. The concentration simply
changes smoothly from the short-range to alternating-
chain model value as p goes from 0 to 1.
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FIG. 6. (a) Concentration (n ) vs p for the cluster-transition
model. Squares are Monte Carlo data. Diamonds are %=12
short-chain results. (b) (n ) vs p near the transition.

E. Model V (cluster transition)

Our final model differs from all the previous cases in
that an A atom impinging next to an adsorbed A atom
will either adsorb, with probability p, or associate and
thereby remove the previously adsorbed atom, with prob-
ability 1 —p. If both neighboring sites are occupied, asso-
ciation occurs randomly to either side with probability
(1 —p)/2, as illustrated in Table I. Thus this model has
no hard-core repulsion between nearest neighbors for
nonzero p.

The parameter p plays a central role in determining the
nature of the steady state, and in fact this model exhibits
a phase transition as it is varied. For long chains with
p &p =0.2776+0.0002 the enhanced possibility of ad-
sorption is sufhcient to drive the system to a poisoned
state where all sites are occupied and the catalytic activi-
ty ceases. As p is reduced below p„ the concentration of
adsorbed A atoms gradually decreases, as shown in Fig.
6(a). Within the accuracy of our data the slope is infinite
at p, , indicating that the phase transition is second order.

Analysis of the ( n ) versus p and pair-correlation func-
tion gives critical exponent values. Using the relations
(n ) ~(p,. —p)~ and g(r) ~exp( —r/j)/r ' ' with

&~ ~ (p, —p) ' for p near p„we find P=O 70+0.05,

g=1.30+0.03, and v=1.3+0.2, so this model is in a
different universality class from the alternating-chain
transition.

Since there is no hard core, the number of states in-
creases more rapidly with chain length N than in the pre-
vious cases. As a result we were only able to use the
direct method for X ~ 12. The (n ) versus p values ob-
tained this way therefore show significant finite-size
efFects [see Fig. 6(a)]. Deviations from the long-chain
Monte Carlo results set in at p —p, =0.2. For p=0.0625
the correlation length, determined from the long chain, is
/=8=-%, consistent with the theory of finite-size fFeects
at second-order transitions. With the kinetic rules
defined in Table I short chains evolve to the poisoned
(completely filled) state for any p) 0. To avoid this, we
supplemented the rates given by a small desorption prob-
ability e for A A A ~ Ax A and 1 —e for A A A ~ A A A
with e taken proportional to p [e/p=0. 001 for the results
shown in Fig. 6(a)]. Making this ratio fives times larger
changed the coverage at p=0.28 from 0.923 to 0.776; all
the interaction energies remained the same to two figures
except for the entirely filled state (for which the coupling
changed from —1.83 to —0.482) and the state with one
empty site (from —0.14 to —0.12). A ratio e of 0.01 led
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to larger changes. Results for p&0.28 were much less
sensitive to the magnitude of e. Note that the value of
this ratio fixes the energy difference between the filled
state and the state with one empty site so we have not
considered them in the analysis below.

Insight into the mechanism of the phase transition can
be gained by examining the short-chain interaction ener-

gy results. Note that this model coincides with the
"short-range" model at p=0. The on-site energy (chemi-
cal potential) is in[2(1 —p)], and thus changes smoothly
with p in the region of the transition. The second-
neighbor-pair term, equal to —0.260 at p=0 becomes less
attractive as p increases, passing through zero above
p=0.4. For a given number of atoms, all terms are small
except for the multiparticle interactions of a single clus-
ter of contiguous A atoms. For example, at p=0.28 the
terms involving four noncontiguous particles are all a fac-
tor of 5 or more smaller than the cluster term. Since, un-
less there are infinite interactions, a phase transition in
one dimension necessarily involves long-range forces, '

these terms are the prime candidates. This, as for the
chain-transition model, implies that the corresponding
states are of interest. Figure 2(b) shows their energy
versus cluster size for various p values near the transition.
The behavior of Eq. (8) is found again, suggesting a con-
nection between the two models.

In mean field theory, this model shows a second order
phase transition to the (n ) =1 state. This occurs at
p, =0.5(0.410) in site (pair) approximation. The large er-
ror in p, is another indication that long range forces are
important in the transition. The exponent p=0.5 in site
approximation and 1.0 in pair approximation.

F. Necklace mechanism for models IV and V

Next we probe the nature of the phase transition in the
cluster transition and chain transition models. We as-
sume that Eq. (8) is the correct form for the energy of the
cluster states for large n and that interactions between
clusters are unimportant (or included in an e(fective
value of the correction term b (n ) ). Then the model is de-
scribed by the necklace or bead statistics useful in the
theory of the helix-coil transition in polymers and wet-
ting in two dimensions. The interpretation is a bit
different here —in particular we have a true one-
dimensional model —but the mathematical mechanism is
the same. Let Q(N) denote the partition function for a
chain of length N including all possible numbers and
lengths of clusters, or beads. Then the generating func-
tion (isobaric partition function) defined by

The precise form of 6 depends on the boundary condi-
tions, but this is unimportant for our purposes. Applying
Cauchy's theorem to Eq. (9) and letting X~ ~ shows
that the singularity zo of 0 closest to the origin deter-
mines the free energy per site via f=lnzo. Now suppose
the last term in Eq. (8) has the simple form b (n) =b inn.
Then for b ) 1, a phase transition occurs when the singu-
larity zo closest to the origin changes its nature, from the
solution of UV=1, arising from the denominator of Eq.
(10), to zo =e, the singularity of V(z). This occurs when
B becomes sufficiently negative. For 1 &b&2 the transi-
tion is second order. The transition occurs when

P=(2 —b)/(b —1),
%= 1/(b —1) .

(12)

We first consider this mechanism for the cluster-
transition model. The values for p and v for this model
reported above imply b =1.59+0.02 and b =1.79+0.12
respectively. On the other hand, Eq. (11) gives
6 = 1.71+0.01 if we substitute values for 3 +B and
B +b inn from values for E~ and E„+, E„[see Fig. —
2(b)] and determine b self-consistently from Eq. (8). The
exponent y for the susceptibility yo satisfies p+y= 1 in
this model. Our data for yo is rather noisy (Fig. 7) but it
indicates a divergence as p ~ 1 with an exponent
y=0. 6+0.15 which is consistent with this relation. Note
that again the relation y=v(2 —g) does not hold. Our
analysis assumes that A and B in Eq. (8) are smooth func-
tions of p near the transition. The good agreement with
the predictions of the necklace model is very surprising
and strongly suggests that is the operative mechanism
here. A derivation directly from the kinetic rules for the
cluster-transition model would be very interesting.

2-

g(b) =e "(e —1),
where g(x) is the Riemann j function. Note that a tran-
sition at B(0 is exactly what we observe for these mod-
els. As it is approached, the average number of sites in
clusters goes continuously to its saturated value with crit-
ical exponents

(9)

is given by

U(z) V(z)
z

1 —U(z) V(z)

where U(z) =z/(1 —z) and

(10) I

—8

V(z) = g zjexp( E, ) . —
j=1

FIG. 7. Ferromagnetic susceptibility per site go/N vs p for
the cluster-transition model near the transition.
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The chain-transition model also has cluster energies
that appear to satisfy Eq. (8). However, to describe this
transition with necklace statistics requires a more compli-
cated model. First, a necklace transition of the type dis-
cussed above is to a catalytically inactive state, whereas
the chain transition is to the alternating-chain model
which is definitely not poisoned. This could be a result of
interactions between the beads. Indeed, the Monte Carlo
configurations exhibit a different probability for even-
and odd-length interbead chain segments, which is not in-
cluded in the simple necklace model. A fit to Eq. (11)
with b (n) =b ln(n) gives b=1.33, which results in ex-
ponents that are very far from the observed values given
above; for example, f3=2.03. Of course, this might be
due to the form of b (n) being different at small n from its
asymptotic form, which would affect Eq. (11) but not the
exponents. However, the exponents for this model do not
satisfy the necklace model relation P+y= 1. This may
also be due to interactions.

IV. CONCLUSIONS AND FUTURE WORK

We have examined a series of one-dimensional lattice-
gas models relevant to heterogeneous catalysis. They are
defined by a set of kinetic rules which do not obey de-
tailed balance. Phase transitions between the various
steady states are seen as the kinetic parameters are
varied. We have connected these features to equilibrium
statistical mechanics via effective Hamiltonians. We have
used two different methods here to calculate the effective
Hamiltonians and found substantial agreement. The two
models exhibiting second-order phase transitions can be
described via the necklace mechanism originally intro-
duced to discuss polymer unbinding and wetting transi-
tions. In the chain-transition model it appears that the
necklace model needs to include interbead interactions in
order to correctly describe the transition.

In future work we plan to use the correlation function
method to analyze the interesting but more involved
models of Ref. 6 similarly. The required extension of our
method is completely straightforward, the only complica-
tion being that for a given range of interaction more
terms may appear in FI,~ and correspondingly more
correlation functions are required to solve for them. It is
worth noting, in this context, that the good agreement
obtained from the mean-field treatment of Ref. 9 for the
CO oxidation model of Ref. 6 indicates the absence of
long-range forces in FX„z, at least in the vicinity of the
first-order transition; hence the correlation method is ex-
pected to give accurate results. In a preliminary study,
we have performed Monte Carlo simulations of this rnod-
el in one dimension and find that the region of nonvanish-
ing CO2 formation is very small at best, consistent with
the results of Ref. 5.
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APPENDIX

In this appendix we will discuss at some length the de-
tails of the Monte Carlo simulations and their analysis
via the correlation-function method. ' The reason for
this detail is that this method is usually applied to spin
systems, not lattice-gas models, and we want to point out
that a considerable amount of simplification, and some
numerical stability, appears when using the lattice-gas
versions of the equations.

The Monte Carlo simulations were quite straightfor-
ward. For the "hard-core, " "short-range" and
"alternating-chain" models, the simulations were per-
formed on a chain of length 32768 while the "chain-
transition" and "cluster-transition" models, the chains
were of length 16384. In each case periodic boundary
conditions were employed. The latter models were also
studied for chains of length 128, 1024, and 4096 to exam-
ine finite-size effects near the transition. For most of the
work we started with an initially blank chain. We also
examined the effect of using a state from one model as the
initial state for another of the models, but the rate of re-
laxation and the final steady state reached were not no-
ticeably different. It appears that the rapid filling in of
the blank lattice over the first 30 MCS/site gives a good
starting point. However, we erred on the side of conser-
vatism and thermalized each model for 20000 MCS/site.
This was more than sufhcient for the hard-core, short-
range, and cluster-transition models, which have no obvi-
ous slow relaxation modes, while the alterating-chain
model relaxed more slowly due to the long strings of
( Ax Ax Ax. . . ) that occur. After thermalizing, the data
were typically sampled every 500 MCS/site over an addi-
tional 60000 MCS. Then a second run of 60000 MCS
starting from the final configuration of the first run was
made and sampled more frequently (100 MCS/site). By
comparing the second run with the first, we could look
for longer-term drifts in the coverage and the pair corre-
lations; only the alternating-chain and chain-transition
model near p=1 showed any evidence of drift, and it was
small. One reason for all this work was that the net pro-
duction rate of A2 was essentially constant (to at least
four significant digits) over the entire run, and so it pro-
vided a poor measure of when the system had reached the
steady state, contrary to our initial expectations. It ap-
pears that there are large-scale rearrangements in the
particle distribution that occur en route to be the steady
state that do not significantly affect the production rate of

In the correlation-function method analysis, ' it is
necessary to devise a method that produced reasonably
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good values for the cluster energies despite the rather
small number of configurations ((600) used in comput-
ing the correlation functions. The method we arrived at
is particularly simple in the lattice-gas language as op-
posed to the more common spin description.

We will demonstrate the method with the simple model
mentioned in Sec. II, namely the nearest-neighbor
lattice-gas model, since the extension to longer-ranged
and cluster interactions is just a matter of detail. The
terms in the Hamiltonian that depend on the state of the
ith site are given by

statistical uncertainties in the various correlation func-
tions combined with the large number of subtractions of
terms with comparable magnitude in Eq. (A2) cause both
the total energy of a cluster and the individual coupling
constants to have large errors associated with them. It
turns out that a smaller error in the cluster energy arises
if Eq. (A2) is rewritten as

(n;P) =f (Kp)((1 n—;,)(1 n;+—, )P )

+f (K, )( [n;+,(1 n;, )—+n;, (1 n;+—, )]P )

H, =[Kp+K, (n, , +n;+, )]n; .

+f (2K, +Kp)(n;, n, +,P),
(Al) which immediately suggests the set

(A3)

Defining f (x)=1/[I+exp(x)], we have

(n, P) =f(Kp)(P)+[f(K, ) f (K —)]((n;,+n; )P)

P =(1 n;, )—(1—n;+, ),
P =(n, +,(1 n, —

, )+n;, (1 n, +—, )],
+[f(2Ki+Kp) —2f (K, +Kp)

+f (Kp)]( n ill +iP ) (A2)

and

P =n; In;+I

To get a closed set of equation for K, and Ko, three ob-
vious choices for P are P= I, P =n, +I+n, &, and
P =n, +,n, The resulting equations can then be solved
for the combinations of differences of f's. However, the

These three choices are very useful since they are "or-
thogonal" in the sense that only one of them can occur in
a given configuration at a time. As a result, Eq. (A3) can
be trivially solved to yield

(n, [(1 n;, )(1 —n, +,)])—
([1 n, ][(—1 —n;, )(1 n;+, )])—

(n, [n, +,(1 n;, )—+n; i(1 n;+, )—])
exp[ —(Kp+K, )]= ((1 n;)[n;+, (1—n; i—)+n;, (1 n;+, )])—

(n, (n, +,n, , ))
exp[ —(Kp+2K, )]=

(1 —n;)(n;+, n;, )

(A4)

We wish to stress that these relations are exact for the
given model and will change if the couplings are of longer
range or include larger clusters of sites. These relations
show simply that the free energy of a given cluster
(xAx), (AAx), (xAA), or (AAA), which is the argu-
ment of the exponent in each of the above equations (A4),
is simply related to the ratio of the probability of finding
such a cluster to the probability of finding a cluster which
differs only in having the site i empty. That is, it is the
free-energy gain in completing the cluster. Since larger
clusters have many choices for the final site that com-
pletes it, one gets severa1 estimates for the cluster energy
and hence can reduce the statistical error.

In applying this method to our Monte Carlo data, we
started by assuming the model of (Al) which includes all
interactions with neighbors up to one lattice site away
and then found the couplings. We would repeat this pro-
cess, increasing the maximum range of the couplings by
one each time. For example, the first iteration of this
process would add to H; the coupling terms

K2n,-(n;+2+ n, 2)

+K3n'(ll'+in' 1+11'+in'+1+n in'+i

This process was stopped when the new couplings that
appeared at each step were small and the short-ranged
couplings settled down to well-defined values, or the
number of terms became so large that the noise in each
term started to exceed the size of the long-range cou-
plings. For the Monte Carlo data, this typically occurred
by the 7th iteration, i.e., when all couplings up to seven
sites away were included. Of course, for the exact solu-
tion of the short chains this process was only limited by
the size of the chain.

The principal disadvantage of the correlation-function
method when applied to the Monte Carlo simulations
that we encountered was in the evaluation of the short-
range interactions, say the chemical potential or nearest-
neighbor coupling, in a system with long-range interac-
tions that is nearly poisoned. In that case it is difticult to
get enough configurations to give reliable estimates for
the two probabilities in Eq. (A4). For example, in a sys-
tem with a large attractive interaction for 5 adjacent
atoms as we11 as some shorter-ranged couplings, evalua-
tion of the chemical potentia1 requires us to determine
the ratio of the probability of observing a configuration
(xxxxx Axxxxx) —a single atom in the center of a region
with 5 blank sites on either side —to the probability of ob-
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serving a strip of 11 blank sites (xxxxxxxxxxx). If the

system is nearly poisoned, such configurations are so rare
that the statistical errors are large, although the formula
(A4) permits the errors to be easily quantified. For-
tunately, the behavior in the critical region near the

phase transition is dominated by long-range interactions,
and we can appeal to conventional equilibrium phase
transitions to argue that errors in the values of the short-
range couplings will not change the critical behavior near
a second-order phase transition.
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