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Interfacial wave theory for dendritic structure of a growing needle crystal.
II. Wave-emission mechanism at the turning point
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In this paper, we investigate the global instability of a needle crysta1 growth. It is shown that in
the solidification system there exists a simple turning point, which plays a central role for the forma-
tion of self-sustaining dendritic structure of a growing needle crystal. A most remarkable signal
refiection and wave-emission mechanism at the turning point is explored.

I. INTRODUCTION

In the preceding paper' (paper I), we have demonstrat-
ed the defects of the local normal-mode solutions and
pointed out that these local normal modes cannot provide
a coherent structure of global solution in the whole re-
gion (0 ~ g & ~ ), due to the absence of uniform validity
near the tip (=0 and near the critical point g, . This
work is concerned with the global solutions of the prob-
lem. It will be seen that the dendritic growth problem
can be formulated as a linear eigenvalue problem. The
perturbed states of dendrite can be described by a series
of uniform valid global modes and corresponding eigen-
values [o„I. In order to establish such a global-mode
theory, we impose the following boundary conditions: (i)
the smooth tip condition,

we shall derive the general governing equation for the in-
terface perturbation. In Sec. III we shall show the uni-
formly valid solution in the vicinity of the turning point;
the wave-emission mechanism will be described. Finally,
in Secs. IV and V we shall give the outer solution and the
matching condition.

II. GOVERNING EQUATION OF INTERFACE
PERTURBATION

In order to derive the governing equation of the inter-
face perturbation in the vicinity of the critical point g„
we start with the system equations (4.2) —(4.7) of paper I.
[Hereafter equations from paper I will be labeled with I,
e.g. , Eq. (1-4.2).] From Eq. (I-4.2), in general, it is derived

as (~0, h(0) & ~, h'(0)=0,

(ii) the Orr-Sommerfeld radiation condition at far field, a@, a&', ag, a~,
a

l

ag

h (g) is an outgoing wave . (1.2) =eP[ T I, (2.1)

Those two boundary conditions are easily justified from
the observations. The form of the outgoing wave in (1.2)
is to be specified. In this paper, we shall show that the
critical point g, is actually a turning point of the system.
In order to obtain the global solution uniformly valid in
the neighborhood of the critical point g„ the following
procedure is adopted. In the "outer region" far away
from the critical point g„ the multiple-variable-expansion
method is applicable. One can use the previous results
derived in paper (I) as an "outer solution" whereas in the
vicinity of the critical point g„one must employ a
different length scale to simplify the system and then ob-
tain an "inner solution. " Finally, one must match the
outer solution and inner solution in the intermediate re-
gion to construct a composite solution. The whole pro-
cedure is very complicated. We shall restrict ourselves in
the lowest approximation. The most important result we
obtain here is that, the critical point g, is a simple turn-
ing point; this turning point generates a signal reAection
and wave-emission process which plays a central role for
the formation of the dendritic structure in a needle crys-
tal growth. This paper is arranged as follows. In Sec. II

where the operator P [ TI represents all of the terms in-
side the brackets on the RHS of (I-4.2). Therefore we get

r

~ a
l

ag,

I

ag, a~,

a aT=E 1 +
ay+ a&+

a
Ts =E

ag,
P[T, I

(2.2)

or

(T T, )=i (T+T, )—
a~, '

ag,
a a

l +
ag a~

P[TI

a
E I

ag
P[T, I (2.3)

By making use of the formulas (2.2) and (2.3) from the
boundary conditions (1-4.5)—(I-4.7) it is derived that at
g+ =0 and g=qo
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(T+T, )=rioh+ — +2 Bh ~1o ckh

aP gs' ag
(2.4)

S
k, = —(no —i()

1/2

[Re( k, ) )0],
1/2

(2.13a)

and cr(k„g) =o, (g) = 2

27 , q~ (r)o —ig) . (2.13b)
g 1/2

i (T+T, )+Serb+( +e(2+5 rio)h
ag, ag,

(ii) The eigenvalue o satisfies the pattern-formation con-
dition, and

a a=@i +
ag a~,

a+E
ag,

P[TI . (2.5)

cr =o(k, (g, ),g, )=o,(g, ) . (2. 14)

(2.15)

With the formulas (2.12)—(2.14), Eq. (2.10) is reduced to

E Q3(j) +i@ A~(g) +iso(()W=O,
dPi dPi

Let e~O from (2.4) and (2.5) as a leading approximation;
we obtain the governing equation for general interface
perturbations:

where

Qo(g) =o (k, (g, ),g, )
—o (k, (g), g)

or

2 d'h0 dh0
i —+()+i rio) —iSo ho =0
S dP~ dg

~ 2q d h0 dh0
i +E((+i re) —iSoho =0,.S dP dg,

(2.6)

(2.7)

=o —cr(k, (g), g),
a2

Q~(g) =—
0

a'~
Q~(()=-

ko

(2.16)

where

We introduce a variable transformation

ho=exp —J k, (g)dg W(g&),
e

(2.8)

Here notes should be made that (1) since Qo(g, )=0,
the critical point g, is actually a simple turning point of
Eq. (2.15); (2) the perturbation equation (2.15) or (2.7) is a
leading-order approximate equation valid over the whole
region (0 (g ( ~ ). In the region far away from the turn-
ing point g„one can consider the normal-mode solutions

then the following identities hold: h0-exp — k0 1
d (2.17)

d

d gll

(n =1,2, . . . , ) . (2.9)

By substituting the solutions (2.17) into (2.7), one can re-
gain the dispersion relation formula (4.22) in paper I.

In terms of (2.8) and (2.9), Eq. (2.7) is transformed to

(f30 d 3 ~ g2 $20+i-
c)k' k dp, 2' c)k' I, dp~

+i [o —cr(k„g)]W=0, (2.10)
Bo. d 8'

c)k o

III. INNER EXPANSION OF SOLUTION IN
THE VICINITY OF TURNING POINT g,

In the vicinity of the turning point („Eq. (2.15) can be
simplified further. We make the Taylor expansions in the
neighborhood of g, :

k0
~(ko 4) =

S no
2k0

kig
0

where the dispersion function o (ko, g) is defined as

(2. 1 1)

&o(k) = &o(k, )ki+

A~(g) =A, (g, )+ O(g, ),
II3(g )

=A, ($, )+ O(g, ) .

By introducing an inner variable

(3.1)

So far we have made no restriction on the reference
wave-number function k, (g) yet Now, w. e suppose (i)
k, (g) is determined by the equality

(3.2a)

BD'

ak,

so that

(2.12)

where

f3(e)~0 as e~O, .

Eq. (2.15) is transformed to

(3.2b)
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Q3(g, ) +i Qz(g, ) +iso(g, )II(, W

+ e ~ o 0 (3.3)

It is evident that one must set

p(~) =~'/3

We make the following inner expansion:

(3.4)

W(g„, e) =qo(e) Wo(g„)+q, (e) W, (g, )+ . (3.5)

As a leading-order approximation from (3.3) we derive

d 8'0
+A (,WO=0,

d g2

where

(3.6)

no(g, )

Q2(g, )

—2a~, /ag

8 o. /Bk,

g(g —iq, )

6 3g2

1/2

——& arg( A) &0 .
2

(3.7)

We are only interested in the global-mode solutions
that satisfy the radiation condition at the far field (1.2).
Thus the following boundary condition for Wo(g, ) is

posed:

FIG. 1. Branch cut line used in formula (3.13).

inside the domain (X&) on the complex cr plane and the
corresponding critical point g, is below the real axis of g.
Thus the branch cut line chosen above will not cross the
real axis of g; that is necessary to ensure the continuity of
the solution for all real variable g'. In doing so,

A g,'/ [as Re(g, ) )0]
k (3.13)+iA ~g„~' [as Re(g„) &0]

'iT
and since ——& arg( A ) & 0, we have

2

1
Re(g, )~ oo, Wo(g, ) — exp i k, dg Re(k„))0 [as Re(g, ))0],

(3.14)

Re(k „)) 0 . (3.8)

The general solutions of the Airy equation (3.6) are

Re(k„) &0 [as Re(g, ) &0] .

In terms of (3.12) and (3.13) the variable g is expressed

W (P ) = g
& /3 [CH ~ ~ ~

(
2 A g3/2 }

+DH(2) (
& A g3/2)] (3.9)

k, d Re, )0
g
—2 A~g ~

/2—
i j k,—d g [Re(g„)& 0] .

0

(3.15)

W (g )
—Cg&/&H(1)

(
2 A g3/2) (3.10)

We denote

where C;D are the arbitrary constants, 0 I')3 (Z),
H f/3 (Z) are the Hankel functions (see Ref. 3).
boundary condition (3.8) determines D =0. So that we
have the solution

Hence, as Re(g„)~ ~, the asymptotic form of the solu-
tion (3.10) can be written as

W„((„)- W' '(g„)

C3
exp +i k„dg [Re(g„)~+oo ],Qk„

i

3/2 (3.1 1) (3.16)

k, = Ag'/ (3.12}

and define a wave-number function k„on the complex g,
plane as

where

C./3 / ( 57) /12)i
3 (3.17)

The branch cut line is chosen on the lower half g„
plane (see Fig. 1). We suppose that the pattern-formation
condition (6.7) in paper I is satisfied; the eigenvalue cr is

WT '(g„) represents an outgoing short sidebranching
wave with an increasing amplitude. On the other hand,
as Re(g„) & 0, the solution (3.10) can be written as
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W (g ) 2( (m. /3)i
g ~

1/2

X[I,/, (g)+(e ' '/7r)K, /, (g)] . (3.1g)
h0=exP — k d

s,,

A.s Re(j, ) ~ —~, it has the following asymptotic expan-
sion form:

Wo(g„) —C, WI1+ (g„)+C2Wo (g, )

[as Re(g, )~ —~], (3.19)

where [Re(g„)& 0]

=C, e —f k, dg

and
[Re(g„)&0], (3.24)

exp +i A:, d
0

(outgoing wave ) (3.20)

1(g, )= exp —i f k„dg„
Qk„

(incoming wave)

and

( vi /12

C, = —3/3/rrCe '

(3.21)

—
vari /6C2

C
1

(3.22)

The results (3.16) and (3.19) show that in the vicinity of
the turning point g„ there exists the interaction of the
three waves (see Fig. 2). The incident outgoing wave
8'0+' is reflected from the turning point and becomes an
incoming wave 8'0 ', the transmitted outgoing wave
WT+' has an increasing amplitude, which generates the
sidebranching structure on the interface of the needle
crystal. The reAection ratio of wave is

C

(3.25)

The formulas (3.22) and (3.23) also exhibit an important
wave-emission mechanism at the turning point g, . By
stimulation of incident wave 8'0+' from the tip, the turn-
ing point emits a sidebranching wave towards the back-
side of the dendrite.

It is seen that if the signal 8 0
' is continuously sup-

plied, the sidebranching wave WT(+ ) will be continuous-
ly emitted from the turning point. The dendrite structure
then will be maintained. Thus, significant questions are
naturally raised: Is it possible to obtain a continuous
supply of the signal W0+? How will this supply be main-
tained? These questions will be answered elsewhere.

Here, we only want to point out the solidification sys-
tem is an inconceivable dynamical system; this system
not only possesses a wave emitter at the turning point but
also possesses a signal reflector at the tip. The leading
edge of the dendrite tip produces a signal feedback pro-
cess. Thus the head of the dendrite is like a well-
constructed sidebranching wave-emission device. It is
certainly possible for this system to possess self-
sustaining modes.

IV. OUTER EXPANSION OF SOLUTION

The transmission ratio of wave is

ni /3C3
C

1

Return back to the variable h0; we obtain

(3.23)

Now we consider the outer solution in the region
0 & g & g, and far away from g, . In this region the
multiple-variable expansions are applicable. Thus the
previous results in paper I Sec. IV can be used as the
outer solution. We list these results as follows:

(at /e)

+ (0&/&(, ), (4.1)

where the wave-number functions ko''(g) and koi '(g) are
determined by the formula (6.3) in paper I, while the
coefficients D0,D0, are constants to be determined by
the matching condition with the inner solution.

Similarly, as g)) g, we have

FIG. 2. Scheme of the interaction of waves near the turning
point g= g, .

h =IJi''ei '/'iexp —f ki''dg +. . .

where the amplitude Dz-0 is also a constant.(1)

(4.2}
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V. MATCHING

In the intermediate regions, the solution (4. 1) should
match with the solution (3.24) and the solution (4.2)
should match with the solution (3.25). To study the
matching condition, let us introduce an intermediate
variable

Hence

ki=k —4, =p(~4

For any fixed gl =0 (1), we have

(5.3)

p(e)
where p(e) satisfies the conditions:

limp(e) =0, lim
p(e)

a~0 e~O g

(5.1)

(5.2)

limp& =0, lim(„= —&n .
a~0 e —~0

(5.4)

In terms of the intermediate variable g~, the matching
condition of the outer solution (4. 1) and inner solution
(3.24) yields

=q, (~)
1

+DO 'exp — k0" —k, d, + +

C, exp i k„dg, +C2exp t f k„dg, + (g. &0;g&g, ), (5 5a)

where

y, = f 'k,"'dg, y, = f 'k,"'dg.

Notice that we have

k =A(' =A
1/2(

)

(5.5b)

+exp k( )

E 0

+e'~exp —f ko '(g)dg +
E 0

L

(5.12)

as

ko =k„(=g„cr=o (k, g, ) . (5.&)
or

y=(2~ —')sr+ — (n =0, +1,+2, . . . , ) (5.13)
E

Thus, as g~g, it follows that

0= (ko —k, )

0 k g

+— (ko —k, )
a'~
Bk,'

h =C&exp + —f k, (g)dg

X e'~exp —f b, ko 'dg t—
6 0

BcT+ — (k —4 )+ (5.8)
+exp —f b, ko"d g

— t +
E 0

(5.14)

(I I'-" —k, ) =+A/" + (5.9)
where the reference wave-number function k, (g) is deter-
mined by the condition (2.12) or the formula (2.13a),
while

q, (e)=e (5.10)

In terms of the formulas (5.6) —(5.9), from the matching
condition (5.5) one can derive hk'" =k'" —k0 0 c

0 c

(5.15)

and

~ (3) (i/3/e)
DO e
~

( ) ) (i gl le)
DO e

C2

Ci
(5.11)

Finally, we obtain the outer solutions in the region
(O, g, ):

The solution (5.14) has a very interesting physical im-
plication. First of all, we notice that for the planar inter-
face case, the condition (2.12) yields the most dangerous
constant wave number k, as shown in Fig. 3. In the den-
drite growth case, the reference wave number k, (g) plays
a similar role as k, in the 2D case. The solution (5.14)
shows that a global solution of interface perturbation
consists of two factors: (i) the morphological instability
factor
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0 4 The outer solution in the region (g, , co ) can also be writ-
ten in the form

0.2-

0.0

h =C/e ' exp + — k, d h'+

(5.19)

-0.2-
VI. SUMMARY

-0.4-

-0.6
0.0 0.2

I

0.6

FIG. 3. Dispersion relation curve for the planar interface
case.

+ —I k, (g)dg (5.16)

[h' +e'~h ], (5.17)

which implies that the interface of a dendrite grows (or
decays) like a "planar" interface with the "preferred"
reference wave number k, (g) at every local position g;
and (ii) the traveling wave factor

We have considered the global solution of the interface
perturbations. It is identified that the global solution in a
dendrite growth process contains two factors: the rnor-
phological instability factor and the traveling wave fac-
tor. The following conclusions are drawn.

(1) The existence of morphological instability and the
interacting sidebranching waves are the cause of the
coherent sidebranching structure of a growing dendrite.

(2) The presence of a simple turning point g, plays a
crucial role to the global instability mechanism. It is
discovered that in the turning-point region, there exists a
remarkable signal reAection and wave-emission mecha-
nism. By means of this mechanism at the turning point
and a signal feedback at the leading point of the tip, a set
of self-sustaining global modes will be possible in the den-
dritic growth system. Such a global-mode theory is
planned to be presented in another paper.

where

h '+'=exp — Ako' d —cot
0

h =exp — Ako 'd —cot
0

(5. 18)
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