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Interfacial wave theory for dendritic structure of a growing needle crystal.
I. Local instability mechanism
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A global interfacial wave theory is developed to demonstrate the essence and origin of the compli-
cated dendritic structure of a growing needle crystal. In this paper, by using the multiple-variable-
expansion method, the local dispersion relation for normal modes is derived in a paraboloidal coor-
dinate system. The local instability mechanism of the interface is explored. Further, in a com-
panion paper [J. J. Xu, following article, Phys. Rev. A 40, 1609 (1989)t, a global instability mecha-
nism is established. The existence and significance of a simple turning point in the solidification sys-
tem is first identified. We obtain uniformly valid solutions in the vicinity of the turning point and
investigate the interaction of the interfacial waves in that region. A remarkable mechanism of wave
emission and reflection at the turning point is discovered.

I. INTRODUCTION

Dendritic crystal growth from an undercooled melt is a
long-standing fundamental subject. This nonequilibrium
dynamic process is characterized by propagation of a
steady tip and persistent emission of sidebranches. Simi-
lar spontaneous pattern-formation phenomena also hap-
pen widely in other kinds of nonequilibrium systems in
nature. Exploring the essence and origin of such phe-
nomena has great theoretical and practical significance.
It is not surprising that many investigators have been at-
tracted to this subject for decades. '

Recently, Barber, Barbieri, and Langer studied the
sidebranching problem of 2D needle crystal growth;
meanwhile Langer studied the sidebranching problem in
the 3D case. ' It is seen that the asymptotic solutions
obtained by the above authors are the local solutions,
which are not uniformly valid in the tip region and in the
vicinity of the turning point. A local, single-branch solu-
tion yields no information about the interaction of waves
at the turning point and the leading edge of the tip.
Hence it cannot be used for the purpose of demonstrating
the formation of dendritic structure of a needle crystal.
For such a purpose, one must find the global solution to
the linear perturbed system and explore the global insta-
bility mechanism.

In the present work, we intend to illustrate the stability
mechanism of dendritic growth. By using the multiple-
variable-expansion method in a paraboloidal coordinate
system, we derive the dispersion relationship of local per-
turbations. These perturbations are all unstable traveling
waves, which we call "interfacial waves" or "sidebranch-
ing waves. " Further, by using asymptotic analysis and
matching technique we explore the global instability
mechanism and obtain the global mode solutions. Our
major results are the following. (I) In the dynamical sys-
tem of dendritic growth, there exists a simple turning
point which plays a crucial role for the formation of the
dendritic structure. This turning point reflects the in-
cident wave from the tip region and emits sidebranching

waves toward the root of the dendrite. The presence of
this wave-emission mechanism is the most important
character of the dendritic growth process. (2) At the
lea'ding edge of the dendrite tip, there is a signal feedback
mechanism. An incident wave from the turning point is
transformed into an outgoing wave back to the turning
point region. Thus the whole dynamical process of den-
dritic growth is considered as the wave emission at the
turning point and the wave reflections between the turn-
ing point and the leading edge of the tip. The global
modes and the quantum conditions of eigenvalues for this
system are obtained, which will be reported in another
paper.

This body of work is divided into two papers. In this
paper (paper I) we shall show the local instability theory;
in the following paper (paper II) we shall demonstrate
the wave-emission mechanism at the turning point.

II. MATHEMATICAL FORMULATION OF UNSTEADY
DENDRITIC GROWTH

We consider that a dendrite is growing into an under-
cooled melt in the negative z-axis direction with a con-
stant average speed U (see Fig. l). As usual, we assume
the mass density p, the thermal diffusivity ~, and the oth-
er thermodynamical constants of the solid state are the

FIG. 1. Cylindrical coordinate system fixed in the needle.
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same as that of the liquid state. The gravity force is omit-
ted. Thus, in a moving paraboloidal coordinate system
with the constant velocity U, the governing equation—
unsteady heat-conduction equation —is written in the
following dimensionless form:

or

Z
—i (g2 2)

7l= z2 + ( 2+ 2) 1 /2

g2 + (
2 + 2)l/2

(2.2)

(2.3)

=(g+g ) +
Bt Bg' 821

(2.1)

where we use the thermal diffusion length lT=~/U as the
length scale, thermal diffusion time tT=1T/U =K/U as
the time scale, and (bH/C ) as the temperature scale
(b,H is the latent heat per unit volume of solid, C is the
specific heat).

The relationship between the cylindrical coordinate
system and the paraboloidal coordinate system used in
Eq. (2.1) is (see Fig. 2)

The boundary conditions are

as Yf
—+~, T—+T

as g~O, T, regular .

At the interface 21=2), (g, t),

(2.4)

(2.5)

T = T, (thermodynamical equilibrium), (2.6)

where the mean curvature operator

(2.7)

T, = —I K I 21, ( g, t ) j ( Gibbs- Thomson condition),

{-sin e i + cose
i )

3

q ~ const

TI

e, &=0

FIG. 2. Paraboloidal coordinate system.



INTERFACIAL WAVE THEORY FOR . . ~ . I ~ 1601

1

(g2+ 2)1/2

ns 1

(1+iI'2)3/2 7) (1+i)'2)1/2

+ i),'(i), +2/ ) —gi),

g(g2+ 2)(1+~&2)1/2
(2.8)

of temperature field consist of a family of paraboloids up
to the order of O(5 ln5). Namely, we have the following
steady temperature distribution and form of shape func-
tion:

(i), )21 =i1o+i)1(g)5 '+

(T)& = 3, + A2E1(2) /2)+5 (1 n5) T& 1(g, i)) +

The prime represents the partial derivative with respect
to (T, )~ = A, + A2E1(i)o/2)+5 (ln5)T~, (g, ri)+

(3.3)

BT BT

ail a 71

r}T s

ag ag

where E1(x) is the exponential integral function, the in-
dex a, is a function of the parameters I T„,I I defined as

(heat-balance condition) . (2.9)

4
CX)

=
1 —3/1 —x

—4

T'-
8 ln5

(3.4a)

In the above, the subscript s refers to the solid state,
7), (g, t) is the shape function of the interface. The surface
tension parameter I is defined as

(2.10)

As I ~0, a,~ oo. In the realistic cases, (I /I, „)(0.2,
hence a, ) 36. The coefficients (A „A2,7)o) in (3.3) are

$2 Q2
/I, = T„— S'„(0)ln(5 /2) — [S', (0)+Go],oo 4 4

I, = /CD TMp

(hH)
(2.1 1)

$2
A2= S', (0),2 4

(3.4b)

is the capillary length, y is the surface tension, and TMp is
the melting temperature of a plane interface. Finally,

(T„)D—
TMo

T
AH/C

and

S, (z) =R, (z), S', (0)= dS,
dz z=p

Gp= S", z —S', z e 'ln Zzdz .
(3.4c)

is the dimensionless undercooling, where (T„)D is the
melt temperature at infinity. We use the following tip variables:

III. BASIC STATES AND I.INEARIZED PERTURBED
SYSTEM

n5
t =at,5' 5' ' ' 5

(3.5)

Our approach, in general, can be applied to the den-
drite growth with arbitrary undercooling. In the present
paper, however, we only consider the slender dendrite
growth with a small undercooling, which is the most
practical case. In this case, a slenderness parameter is
defined as

which implies that the length scale is changed to a quan-
tity proportional to the tip radius of the dendrite. The
factor a in (3.5) or the time scale is to be determined.
The general unsteady solutions can be separated into two
parts —the basic states (3.3) and the infinitesimal pertur-
bations I q„T, T, ]. Namely,

6D5= «1.
IT

(3.1)

Hence the interface shape can be expressed in the cylin-
drical coordinate system as

T ( g, i), t ) = T~ + T( g, rt, t ),
T, ((,i), t )

= T,~+ T, (g, i), t ), (3.6)

R(z)=5R„(z) . (3.2) 71, = ( il, )21 + h ( g, t ) .1

$2

Here we suppose the shape function R, (z) is known. In
the tip region (see Fig. 1), this interface shape of the basic
state evidently is approximately a paraboloid di6'erent
from the Ivantsov paraboloid with the same undercool-
ing. However, in previous works' ' we have shown
that when 5 &&1 in the tip region the isothermal surfaces

The linearized perturbed system then is derived by substi-
tuting (3.5) and (3.6) into (2.1) and (2.4) —(2.9). The corre-
sponding boundary conditions at the interface are linear-
ized on the paraboloid n =np, since 5 « 1. The pro-
cedure is standard. The results are listed as follows:
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a T a T 1 aT 1 aT
ap a~' g g ~a&

54(g 2+ —2) +52
ar ag "a~ (3.7)

T, = +
s(g) ag'

(T—T, )+S(g)
an

(3.12')

k.'+2k' ah (3.11')
gs'(g) ag s'(g)

+g +2h =0 .
ar ag

The boundary conditions are

as g~ ~, T~O,
as g~O, T, regular .

At q=go,

T= T, +gob,

(3.8)

(3.9)

(3.10)

The above system (3.7)—(3.12) now only involves one
dynamical parameter, e. In the realistic solidification sys-
tem, the parameter e is actually a very small number.
This allows us to seek for the asymptotic expansion solu-
tions for the above system in the limit e~O. In the rest
of the present paper, we are going to derive this type of
asymptotic solution.

no+2k' ah

s(g) ag' gs'(g) g s'(g)

(T T, )+(—a5)s(g) +g +(2+5 i)o)h =0,
a~

'
ar ag

(3.12)

where

IV. MULTIPLE-VARIABLE-EXPANSION SOLUTIONS

In the system (3.7)—(3.12), the presence of the small pa-
rameter e in front of the derivatives in the boundary con-
dition (3.11) suggests the application of the multiple-
variable-expansion method for finding asymptotic solu-
tions (refer to Ref. 25). In doing so, we first of all intro-
duce a set of fast variables

s(g) =(P+&,')'", .=&ri5'. (3.13)
g Yj0

1+ (4.1)

and transform the system (3.7)—(3.12) in these fast vari-
ables as follows:

a' a' '-'
1 aT 1 aT

ap a~',
'

g ag, ~a~,
(4.2)a

(T)s . = —5 i)o+O(5 ln5),
a 77 gp

(3.14) The boundary conditions are

The stability parameter e is similar to the parameter o.

that Langer used. In the derivation of the above system,
the following formulas are used:

a2
(T)~ . =5 (1+5 i)0)+O(5 ln5),

t tp

(T, )~; (T)~ .=O(5 ln5),
a&

' '
ag

(3.15)

q+~oo, T—+0,

g+~ —oo, T, —+0 .

At g+ =0 or F]=go,

(4.3)

(4.4)

and the higher-order terms in 6 are omitted without
changing the final form of the system described below.
From the boundary condition (3.12), it is seen that one
must set

(3.16)

T= T, +gob,
a~h e(il +2( ) ah

s(g) ag', gs'(g) ag

2

h
s (g)

(4.5)

(4.6)

Two independent parameters [5, I I emerge in the per-
turbed system (3.7) —(3.12). We set 5~0 and I ~0, but
fix e= r'i /5 =0 (1). Thus the system (3.7)—(3.12) is re-
duced to the following:

a7f +
(T T) +(Sg) —+2eh =0 .

at+
(4.7)

It should be noted that (1) in the above, we set E~O for
a fixed g )0; hence we have

a T aT 1 aT 1 aT
ag'' a~' g ag ~ a~

The boundary conditions are

as g~ ~, T~O,
aT

as i)~0, T, =O(1), =0 .
a'g

(3.7')

(3.8')

(3.9')

aT 1 aT
Yaq

'

so that

a T 1 aT 1 a T e aT
ae' Y ae ' ar', Y a

(4.8)

At i) = go', 0 ( g ( oo,

T= T, +gob, (3.10')

Obviously, this treatment is invalid in the tip region
where g= 0(e). As a consequence, it will be seen that the
asymptotic solution of the above system will lose the uni-
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form validity at (=0.
(2) As g~O, generally, T=O(1); r)T/Bri=O. Hence,

in the vicinity of n=O, the following two terms:

a~T 1 aT
an'n an

have the same order. However, we are only interested in
the solutions in a region g, g ( ~, where q, C(O, r)o) is
a fixed constant. In this region, we have the inequality

T=(To(k n k++, n++)

+eT, (g, g, g++, g++)+ . ]e

T, =lT,o(0 n 0++ n++)

+eT i(4 '9 k++ T)++ )+ ' ' ' je

h =who(A++)+&hi(A++)+ 1e

k =ko(()+ek, (g)+

(4.12)

aT 1aT (ase 0).
an n an

Hence, in the derivation of (4.2), we also set

a'T 1 aT 1 'a'T ~ aT
an' n an ~' an' n an,

(4.9)

++ =k(g),
d4+

Later we shall see that by making use of (4.9), the form of
solutions is simplified but the asymptotic expansions will
lose uniform validity at n=0.

The system (4.2) —(4.7) contains the fast variables
((+,rl+, t+ ) and the slow variables (g, g) corresponding to
different length scales. All coefficients in this system are
the functions of slow variables; whereas all derivatives
are with respect to the fast variables. Now, we can make
use of the multiple-variable-expansion method for finding
the solutions. To proceed so, however, in this problem
we need to utilize the new fast variables (g++, g++)
defined by

+2T
a2 a2

ak++ ay++
To =0,

+2Tso
a2 a2+ To=0 .

ag' a~',
(4.13)

The boundary conditions are

as n++ —+ ~, To ~0,
as n++~ —~, T, ~O .

At n++ =0 or n=no,

(4.14)

(4.15)

where the eigenvalue o. is a complex number. By substi-
tuting (4.11) and (4.12) into the system (4.2) —(4.7), the
successive order approximate solutions can be derived.
In the zeroth-order approximation, one can obtain the
dispersion relationship formula; whereas in the first-order
approximation, one can obtain the amplitude functions of
perturbations. The results are shown as follows.

(1) 0 (e ). For the zeroth-order approximation, the fol-
lowing system is obtained:

dn++ =k(g),
dn+

t++ =~+

(4.10)
To = T o+ noh o

ko a ho
so S 2ag,

(4.16)

(4.17)

where the slowly varying function k(g) of g is to be
determined. Assuming [ g, g, g++, Fi++, t++ ) are in-

dependent variables, we must substitute

ko ( To —T,o)+ crSho+ kog =0 . (4.18)'a~, ' " ' ' ag„
We consider the following mode solutions of (4.13):

=k +ea = a a

ag, ag, ag
'

a a a+E
an+ an+ +

a2 a2 a2
2 +2

ag ag,
'

agog„

To= Ao(g, g)e

(g ~)e ++ ~++

ho =Do(g)e
(4.11)

Denoting

~o(k '9o)= ~o(k) +o(k 't)o)=&o(g)

(4.19)

(4.20)

ak a

ag ag
'

ag

+2 k
+ an++

'
anan++

a+e
an' '

ko

S

2ko
Do, Bo = — Do (4.21)

and the dispersion relationship formula

from the boundary conditions (4.15)—(4.17), we obtain

in the system (4.2) —(4.7). The resulting system is given in
the Appendix. Now, we let @~0and make the following
multiple-variable expansions:

ko
o =o(k )= s

2ko —&k .s ' (4.22)
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(2) 0 (e'). For the first-order approximation, the
governing equation is

h, =D, (g)e ++, (4.31)

V' T, =aoe
(4.23)

from the boundary conditions on the interface, we derive
that at g=qo,

V T =b.""""
sl 0

where

A i =Bi+npD (4.32)

BAO
ao= —2ko i

ag an

dko . ko
i +i ko

(4.24a)

B, = ——kpD, —2kpk, Dp+2kp i
a

ako
Do+i =+

2 koDO
ag g s (4.33)

fjB BB
ho= —2kp i +

ag

ko . 0 0—Bo i +i +

(4.24b)

—kp(A, +B, )+(rrS+igkp)D,

=k, ( 3 p+Bp) —
( Ap Bp)—

an

ao=b0=0 . (4.25)

To assure the uniform validity of the expansions as

g+ ~ ~, we must eliminate the secular term in the right-
hand side of Eqs. (4.23), or say, set

BDO—(ik, (+2)Dp —( . (4.34)
a

By using the formula (4.26) and (4.22), one can derive
that

From (4.24a) and (4.24b), we derive

a . a+i 1n(Apk' (' g' )=0
ag a~

a a
ln(B„,k„'/2g '/2q '")=0

ag a~

(4.26)
B1=—

where

2ko
qo

— Di+Ii(g)S

ko

S D, +I, (g),
(4.35)

At g=go, we have

Ao= Ao(g), Bo=Bo(j) . (4.27)

We extend the functions I Ao(g), Bp(g), ko(&&) I analyti-
cally to the whole complex g plane. Then, the following
solutions of (4.26) are obtained:

and

1)(g)=
2k 0 ()DO

S
i —k, Do

lkpDp d lnkp+ + —+
d( g S

(4.36)

Ap(g, g)=

Bp(j,g) =-

where

91 j 90

10
1/2 /+i ri,

1!2
kp ((+ig, )

k 1/2(g)

X A p((+i 2), ),
i ri, k p

(—g i T),)—
k 1/2 (g)

XBp(g ig, ), —

(4.28a)

(4.28b)

k, —i lnDO
dg

where

W, (g) = —', +i

W, (g')

S(ao. /ako)

14k d ink'
+ $0

dg 2g

(4.37)

6ko

S

(4.38)

Due to the condition (4.25), the solutions of Eq. (4.23) are
written as

T, = A, (g, g)e
(4.29)

a~
Bko S

= —(rip —if)—6ko
S2

(4.39)

T„=B,(g, t))e '+

Setting

Ai(k no)=Ai(k» Bi(k no)=Bi(P ~ (4.30)

The above procedure can be continued to the further-
order approximations in the region where /%0 and
Bo./Bko&0. No difficulty seems to occur. The dispersion
relation formula (4.22) and the amplitude formula (4.37)
have significant physical implications. In the next sec-
tion, we shall focus on the discussion of these results.
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V. LOCAL INSTABILITY THEORY OF DENDRITIC
GROWTH

h =doexp — kod + t
E'

(5.1)

The dispersion relationship formula (4.22) can be written
into the following form:

(5.2)

where

(5.3)

In the preceding section, as the lowest-order approxi-
mation, we derived the dispersion relationship formula
(4.22) for the normal mode perturbations of the interface
shape:

VI. DEFECTS OF THE LOCAL NORMAL SOLUTIONS
AND A PATTERN FORMATION CONDITION

In the preceding section, we demonstrate the local in-
stability mechanism of the normal modes (5.1) in terms of
the dispersion formula (4.22). We verify that the inter-
face of the dendrite permits various local unstable modes.
Here, significant questions arise as to whether those local
unstable modes can form a coherent structure in the
whole region (0& g & co ); can one obtain global-mode
solutions to the problem with a fixed eigenvalue
o =o.z —iso, which satisfy appropriate boundary condi-
tions? Apparently, for any fixed constant o. , one can
solve the wave-number function ko(g') from the disper-
sion formula (4.22), hence determine a normal-mode solu-
tion (5.1). This solution, however, is not uniformly valid
in the whole region (0&(& ~ ). Therefore it cannot be
used as a global-mode solution. In the following, we are
going to illustrate this in detail. An alternative form of
(4.22) is derived

are the normal component and tangential component of
the local growth velocity of interface at g, respectively,
while

ko =M(g)cos(z), o. =N(g)cos(3z),

where
1/2

(6.1)

ko =(o. ) i ci)— (5.4)

2S(k) — —i/z
'9o

(6.2)

The function k, (g) can be regarded as the local wave
number at g, measured by the local arc length (hl), of the
element (b,(); whereas (cr~ )„and co, are the local growth
rate of amplitude and frequency of perturbation mea-
sured by the local time scale based on the above local arc
length. Suppose that we have a local perturbation at g
with a real wave number k, , then the first term in the
RHS of (5.2) represents the local Mullin-Sekerka mor-
phological instability generated by the normal growth ve-
locity V„; whereas the second term in the RHS of (5.2)
shows that beside the Miillin-Sekerka morphological in-
stability, the local interface has an oscillation with the
frequency cu, = V,k, generated by the tangential com-
ponent of the local growth velocity of the interface. The
local dispersion formula (4.22) or (5.2) has a particular
significance for the full understanding of the instability
mechanism of general growing interfaces with a nonzero
tangential component of growth velocity. As we see that
the well-known Mullin-Sekerka dispersion formula is a
special case of our results (4.22) for the unidirectional
solidifying planar interface, where the purely growing
type of modes are the only possible type of unstable
modes; the surface tension effect suppresses the short
wave perturbations, and the marginal stability wave-
length is a constant. However, for the more general den-
drite case, the local marginal stability wavelength is a
slowly varying function of g, the energy of perturbations
is transferred along the interface with a group velocity
V, . As a consequence, various traveling waves form.
The presence of these unstable traveling waves on the in-
terface is one of the most important features in the den-
dritic crystal growth, which is responsible for the forma-
tion of sidebranching structure. We shall explore this in
details in the remaining sections of this paper.

ko" (g) =M(g)cos —cos
1

N(()

(short wave branch),

ko (g) =M(g)cos —cos
1 o 2'

N(j)
(6.3)

1
ko '(g) =M(g)cos —cos

o 4~
N(g)

( long wave branch) .

The numerical results show that Re( ko ~

) &0. In view
of the boundary condition (4.14) this root is ruled out.
By use of the wave-number function kot '(g) or ko''(g),
one can write the normal-mode solution (5.1). This solu-
tion is not uniformly valid in the region (0 & g & oo ), since
from the formula (4.37) we see that the multiple-variable
expansions fail in the tip region (=0 and in the vicinity
of the critical point („where

Bo

ak,
6k O2—

( re i g)——1 =0.
S

(6.4)

One can easily derive that for the given o. , this critical
point g, is also the root of the following equation:

(6.5)

N(g)= — (go i() .—
3&(g)

For a given o, one can obtain three roots from (6.1) as
shown in the Fig. 3,
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0,3

0.2--

a: 1. (0.09269, -0.1166)

2. (0.1038, -0.1155)

3. (0.1093, -0.1150)

4. (0.1149, -0.1145)

5. (0.1 260, -0.1 1 34)

0.1--

=0

0

-0.1-:

-0 2-—

-0.6 -0.4
-0.3

0.2 0.4 0.6

R

FIG. 3. Curve of wave-number functions I ko (g);ko' (();ko"(g) I corresponding to various eigenvalues cr for r)o=0. 5.

1.0

0.8

Q.2

.5'

-O.2

FIG. 4. Eigenvalues a of global modes and corresponding critical points g, on the real axis. (go=0. 5.)
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It is seen that

as o =0, g, = i—qo,

as o =+ oo, g, =iso .
(6.6)

When g, is on the real axis of the complex g plane
(0&/, & ao ), the corresponding o =cr, (g, ), which del-
ineates a curve on the complex o. plane as shown in Fig.
4. Therefore, if the given o is in the domain (X,) on the
complex o plane, the corresponding critical point g, will
be below the real axis on the complex g, plane; if cr is in
the domain (Xz), the corresponding g, will be above the
real axis.

Figure 5(a) shows that for a eigenvalue cr belonging to
the domain (Xz) when g moves along the real axis and
passes by the critical point g, the wave-number functions

OI

o. E(X, ) .

(6.7)

We also deduce that the glowing global modes can only
exist in the low-frequency band (0&co &co,„; as rio=0. 5,
co,„=0.27). Furthermore, Fig. 5(b) shows that even for
o. satisfying the condition (6.7), the normal-mode solu-
tions (5.1) may still not be uniformly valid in the region
(0&/& co ), because as g pass by the critical g„ the
derivatives

ko" (g) and ko '(g) will have a jump. This discontinuity,
of course, is not permissible. Thus we deduce that the ei-
genvalue cr must belong to the domain (X,) on the com-
plex cr plane. In other words, the critical point g, must
be located in the lower half of complex g plane. We call
this necessary condition "the pattern-formation condi-
tion, "which can be expressed as

Im(g, ) &0

0 2--

k)
d d

(ko)I (ko)z = ~ .
dg dg

0 I--

-0 l--

'II
ck

k(P)

(i)
k, (4)

kR

To obtain a uniformly valid global-mode solution, one
must study the characteristics of solution near the critical
point g, and the tip, respectively. This work will be done
in paper II.

VII. CONCLUSIONS

(a)
-0 6 -04 -0.2

-0.2--

02--

O.l--

k( )
ko(

-O. I--

02 0+4 06

We summarize the above results as follows.
(1) In a dendritic crystal growth process, the local in-

stability mechanism of the interface consists of two in-
terfering parts: (i) a Miillin-Sekerka-type morphological
instability generated by the normal component of the lo-
cal growth velocity of the interface V„; (ii) a local oscilla-
tion generated by the tangential component of the local
growth velocity of the interface V, . This mechanism re-
sults in various local unstable traveling waves, which we
call sidebranching waves.

(2) The normal-mode solution (5.1) based on the local
dispersion relationship is not uniformly valid in the whole
region (0 g& oo). It fails validity near the tip and the
vicinity of critical point g, . In order to obtain a global-
mode solution, one must study the characteristics of the
solution near the tip and the critical point g„respective-
ly, and propose an appropriate mathematical formulation
for the problem. This will be done in the following pa-
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FICx. 5. (a) Curves of wave-number function corresponding
to an eigenvalue in the domain (X2); (b) the curves of wave-
number function corresponding to an eigenvalue in the domain
(&I).

APPENDIX

The linearized perturbed system written in the multiple
variables [g,g, g , i++rt++]+is+listed as follows:
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a2 a2

ag , aq ,
2e aT aT d, aT

ln( k
agag a~a~, dg ag,

1 6'
k

QT + QT + E
I

BT + BT + C) T + Q T+E
ag, ag ~ a~ 'aq '

ag' a~' (Al)

The boundary conditions are

as F]++—+ ~, T~0,
as' —,T, 0.
At n++

——o a=no
T= T, +noh,

(A2)

(A3)

(A4)

Ts = — k
2

+2@k +, 0'h Bh
s(g) ag'„ agag„

dk I ah ah 7 +2(
+e +e

ag, K' gs'(g)
dh Bh+eag„ag

h
E

S (g)
(AS)

+e ( T — T) +S(g)
a

I++ t++
+( k +e h+2eh =0 .
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