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Decay rates for a class of bistable potentials: Parabolic to wedge-shaped form
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The stochastic relaxation in a class of bistable soft potentials

f (x) = —Pin[cosh(x)]+2 in[cosh'-(x)+sinh'(R)] is investigated. The structure of these bistable
potentials varies from a smooth parabola to a wedge-shaped behavior as the bistability parameter R
increases. It is pointed out that the original (white-noise) Krarners formula for the decay rate ap-
plies to such bistable potentials in the weak-noise limit, i.e., for small diffusion constants only. An
improved analytical prediction for the decay rate valid for small Arrhenius factors is presented.
The novel calculation predicts a prefactor that depends on the noise intensity D. This prefactor
changes continuously from the Kramers value for small D to the expression for a 8-shaped wedge
potential for large D. Thus the traditional Kramers theory is extended by this approach. The com-
parison of our analytical prediction with the numerical results for the smallest nonvanishing eigen-
value is quite convincing for small Arrhenius factors Moreo. ver, a detailed discussion of various
mean-first-passage-time (MFPT) and correlation-time expressions in different types of potentials re-
veals that in the limit of small Arrhenius factors (i) all MFPT's, if applied properly, converge to the
smallest nonzero eigenvalue of the corresponding Fokker-Planck equation, and (ii) the structure of
the bistable potential at infinity has no dominant influence on the decay rate.

I. INTRODUCTION

In statistical mechanics the diffusion of a Brownian
particle in a one-dimensional bistable potential provides a
useful model for understanding the stochastic relaxation
of an externally driven unstable system towards equilibri-
um. Since the pioneering work of Kramers, ' this prob-
lem has received much attention because of the impor-
tant role it plays in many areas of physics and chemistry.
Recently renewed interest has been devoted to such sys-
tems owing to a special class of potential functions. In
Ref. 3 the one-dimensional diffusion in a bistable soft po-
tential was considered, i.e., in a potential with asymptoti-
cally constant binding force. The present paper is aimed
at pointing out that the conventional Fokker-Planck
techniques still apply to bistable soft potentials.

A quantity of major interest in such a bistable system is
the mean-first-passage time (TM„pT), that is, the time re-
quired for a thermally activated particle to escape from
one metastable potential well to a neighboring one. In
the limit of small Arrhenius factors exp( —b,f/D) « I
this MFPT determines the decay rate A, =2/TMFpT of an
initial distribution to its stationary state. Throughout
this paper we use the equivalent but shorter notation
Af /D )&1, i.e. , the noise intensity D is small compared
to the barrier height b,f. The decay rate is given by the
first nonvanishing eigenvalue of a one-dimensional
Fokker-Planck equation (FPE), which describes the pro-
cess in the overdamped limit. For Af &)D all higher ei-
genvalues of the FPE are much larger than X=A, &. The
analytical methods for obtaining the decay rate in bi-
stable confined (or hard) potentials available in the litera-
ture are based, e.g. , on the current-over-density or the
MFPT approach. Only in the limit of large Af /D the

connection between the MFPT, the escape rate, and the
smallest nonvanishing eigenvalue of the relevant Fokker-
Planck operator is well established, see, e.g. , Ref. 5.
Within this framework the involved integrals are then
evaluated in the usual Kramers approximation, which
consists of a parabolic expansion of the bistable potential
around the well from where the particle escapes and
around the top of the potential barrier. Of course
higher-order approximations can also be carried out and
lead to a reasonable improvement, see Ref. 7 and Sec. IV.

Based on some physical arguments, the MFPT ap-
proach has been criticized in Ref. 3 when applied to bi-
stable soft potentials. Various definitions have been pro-
posed in Ref. 3 for substituting the usual MFPT formula
of van Kampen. " An interesting calculation of the decay
rate by means of supersymmetric considerations has also
been given in Ref. 3 and the limitations of the usual Kra-
mers formula have already been indicated. However, all
calculations given in Ref. 3 have been carried out only for
the normalized noise intensity D =1.

In the following, it is our aim to present an analytical
evaluation of the decay rate for a class of bistable soft po-
tentials with varying shape, which have been investigated
in Ref. 3. Our calculation relies on the conventional
MFPT expression and is valid for small Arrhenius fac-
tors, i.e. , bf /D ))1. In detail we point out, that for the
class of bistable soft potentials considered, the weak-noise
limit and the limit of small Arrhenius factors, i.e.,
b,f /D ))1, have to be distinguished. [In the normaliza-
tion of Eq. (3.1) weak noise means D « 1.] The
difference between these two approaches is explained by a
detailed comparison of Kramers's approach and our
analytical result for the bistable soft potential. Further-
more, these considerations are corroborated by an expli-
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cit investigation of the MFPT problem in bistable
confined potentials, i.e., potentials with asymptotically in-
creasing binding forces.

The outline of the paper is the following. In Sec. II we
give a brief review of the MFPT problem and its connec-
tion with the smallest nonzero eigenvalue of the relevant
FPE. The special, bistable, soft potential under study is
reported in Sec. III. In Sec. IV we confirm that the para-
bolic Kramers approximation is valid for bistable soft po-
tentials in the weak-noise limit D «1 only. An improved
(higher-order) Kramers approximation, however, gives
better results for the escape rate. Moreover, an analytical
formula is presented in Sec. V for the class of soft poten-
tials of Sec. III, which applies for arbitrary noise intensity
D provided the barrier height bf is large enough, i.e., it
is valid in the limit bf /D )&1. In particular, for large
barrier heights b,f we derive an analytical expression for
the prefactor of the Arrhenius law which strongly de-
pends on the noise intensity D and recovers the relevant
limits of Kramers's expression for small D and the wedge
potential result for large D. All analytical expressions are
tested through comparison with the lowest nonvanishing
eigenvalue of the Fokker-Planck operator, which is ob-
tained by numerical integration techniques. Finally, a de-
tailed comparison of the conventional MFPT expression,
some recent approximations suggested in Ref. 3 and our
analytical result are presented in Sec. VI. In Sec. VII we
summarize our work.

II. THE FOKKER-PLANCK EQUATION AND THE
MEAN FIRST-PASSAGE TIME

The general process under consideration is commonly
described by a stochastic differential equation of the
Langevin type

b,f /D. For large b f /D one obtains an approximation
for twice the inverse of the first nonvanishing eigenvalue
describing the transition from the left to the right poten-
tial well. The appropriate choice of x, and x2 is then
near the left and the right minimum of the bistable poten-
tial, respectively; see also the discussion in Ref. 4. (For
symmetric potentials one may take x, near the left
minimum and x2 =0 thus obtaining an approximation for
the inverse of the first eigenvalue. )

For small Arrhenius factors, i.e., b f /D » 1, the inner
integral in (2.3) is almost constant for those y where the
integrand of the outer integral has its sharp maximum.
Therefore the double integral in (2.3) splits into two sin-
gle integrals according to

1
T( —x;„,x;„)= I&I2, —

D

I, = f exp[f(x)/D]dx,
min

X

I2 = f exp[ f(x)/D]d—x;

(2.4)

(2.5)

see also Ref. 7, p. 124. Here x,„denotes the position of
the barrier separating the potential wells, and +x;„are
the positions of the minima of the symmetric potential
f(x). In Eq. (2.4) I2 and I/I& are proportional to the
probability density for finding the Brownian particle in
the left poten, tial well and to the probability current over
the barrier, respectively.

For small Arrhenius factors, i.e., for Af /D )&1, the
connection between T, the escape rate r from one well,
and the smallest nonvanishing eigenvalue A, , of the FPE
(2.2) (=decay rate A. ) is also well established. ' The es-

cape rate for one potential well is given by the reciprocal
of the MFPT, while for symmetric potentials the decay
rate A. =A, , equals twice this escape rate, i.e.,

x = f'(x)+I (t)—, (2.1) 1/T=r =A, /2 . (2.6)

where f(x) represents a bistable nonlinear potential
(overdot and prime denote diff'erentiation with respect to
t and x, respectively) and I (t) is an external Gaussian
white noise of strength D with correlations ( I (t) ) =0,
(I (t)l (x)) =2D5(t —s). The corresponding FPE is
given by

III. THE BISTABLE SOFT POTENTIAL WITH
VARYING SHAPE

We consider the particular potential f(x)

a . =a ~
aP(x;t)= f'(x)+D P(x;t) .

Bt Bx C)X
(2.2) f( ) 21

cosh(x)
cosh (x)+sinh (R)

(3.1)

Following van Kampen, the MFPT from the left
minimum —x;„ofa symmetric bistable potential to the
right minimum x;„,denoted by T, reads

T= T( —x,„,x;„),
T(x, , xz ) =—J f P„(z)dz dy,1 2 1

D ~~ P„(y)

(2.3)

where P„(x)=lim, P(x; t ) is the (normalized) station-
ary solution of the one-dimensional FPE (2.2).
P„(x)=IV exp[ f(x)/D ] with an approp—riate normali-
zation constant N. Equation (2.3) is an exact expression
for the MFPT for particles injected at x, and absorbed at
xz with a reflecting wall at —~. It is valid for arbitrary

R & R =arcsinh(1) =0.881 37. . . .

The barrier height is explicitly given by

(3.2)

which has been investigated in Ref. 3 ~ The scaling pa-
rameters P and y, which have been used in Ref. 3, can be
eliminated by rescaling the time t and the variable x in
the FPE (2.2). Therefore we adopt the normalized poten-
tial (3.1) in dimensionless units throughout this paper.
For the transformed FPE the diffusion D becomes also di-
mensionless. The potential (3.1) and similar bistable soft
potentails arise in the study of the dynamics of sine-
Cxordon kinks in soliton physics. '

In the present case the potential (3.1) exhibits a bistable
structure for
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cosh (R )

2 sinh(R )
for R ~Ro

=2R —4ln(2) for R »1; (3.3)

and thus increases linearly with R for large R. The po-
tential (3.1) exhibits a peculiar structure which is depict-
ed in Figs. 1(a) and 1(b). With increasing bistability pa-
rameter R, the regions near the extremal points of the po-
tential become more and more wedge shaped, see Figs.
1(a) and l(b). [In the limit R ~ ~, f (x) recovers the ex-
actly solvable 8'-shaped wedge potential, " if the rescaled
variable x/R is used. ] A closer inspection of the region
near the extremal points in Fig. 1 shows, however, that
the deviations from the parabolic expansion occur at the
order 1 in the ordinate as well as in the abscissa, almost
independent of the bistability parameter R. Details of
the potential are only important if they are of the order
of or larger than D. Thus for D «1, the particle "feels"
a parabolic form of the potential near its extrema,
whereas for D ))1 it "feels" a wedge-shaped form. For
this reason the parabolic approximation of the potential
leading to Kramers's escape rate works well only in the
small-noise limit D « 1. It will be shown that, due to the

=R for R »1 . (3.4)

With the compact notation f "'(x) denoting the nth
derivative of f{x)with respect to x we have for the po-
tential (3.1)

structure of the potential (3.1) near the extremal points,
the usual requirement Af /D »1 is not sufficient for the
Kramers approximation to hold. This is in contrast to
the behavior of the quartic potential (6.15). There, the
deviations from the parabolic expansion occur at the or-
der one of the variable x rescaled by the bistability con-
trolling parameter. Obviously, the analytical determina-
tion of the MFPT (2.3) involves two levels of approxima-
tion, which have to be distinguished. The first one is due
to splitting the double integral in Eq. (2.3) while the
second approximation step is concerned with the evalua-
tion of the two resulting single integrals (2.5). Our con-
siderations throughout confirm the sensitivity of the
second approximation step to the actual potential shape.

We want to report here some data concerning the spe-
cial potential (3.1), which we will use later. The positions
of the maximum x „. , and the minima +x;„of the bi-
stable symmetric potential (3.1) are given by

x „=0, x;„=arccosh[sinh(R)]

30

f(x)
25—

20—

I I I I I I I l I I I I ~ I I l I I I I I I I I I I ~ I ~

f' '(x „)=—2+4cosh (R),
f' (x,„)=0,
f' '{x,„)=4+16cosh (R) —24cosh (R),

f ' I(x,„)=2 —2 sinh (R ),
f'3'(x, „)=6[sinh (R)—1]' sinh (R),
f' '(x,„)=—4 —8sinh (R)+18sinh (R) .

(3.5)

f(x)
100—

50—

-10 0 10

I a I I ~ I I a s s I

I f I I
f
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IV. KRAMERS'S ESCAPE RATE IN THE WEAK-NOISE
LIMIT D «1 {ARBITRARY BARRIER HEIGHT)

In the conventional Kramers approach the integrals I,
and I2 in Eq. (2.5) are evaluated in the Gaussian approxi-
mation around the relevant potential well and the poten-
tial barrier. This parabolic approximation gives the
well-known Kramers's escape rate r~ (Refs. 1, 6, and 7),

V'f"(x,.)lf"(x ..)letup( af /D), (4.1—)1

2~

which has been successfully applied to confined and
periodic bistable potentials, see, e.g. , Ref. 12. The appli-
cation of Kramers's formula (4. 1) to the potential (3.1) re-
sults in the following expression for the decay rate:

—50
r I ~ 0

I

50 2 sinh (R) —1 2sinh(R)
~ cosh(R)sinh(R) cosh2(R)

' (2/D)

2 sinh (R) —1
exp{ ~f /D )~ cosh(R)sinh(R)

(4.2)

FIG. 1. Bistable soft potential Eq. (3.1) for R =5 (a) and
R =20 (b). The harmonic approximations (dotted line) around
the maximum and the left minimum are also shown.

This approximation can be improved by employing an ex-
pansion of f (x) up to the fourth order, see Ref. 7, p. 124
and also Ref. 13 for a recent application. Using the expli-
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cit expressions for the higher-order derivatives of the po-
tential (3.1) reported in Sec. III, we thus obtain the im-

proved Kramers rate

R ~ 3, A, ,~ provides a reasonable approximation for the
eigenvalue k„„ in the region 0 & D ~ 1.

A.,~=A,»[1 D—a(R)], (4.3)
V. DECAY RATE FOR SMALL ARRHKNIUS FACTORS

(ARBITRARY DIFFUSION)
(4.4)a(R) =—,'+ —,

' [sinh(R )/[sinh (R ) —1][

For R )) 1 the correction factor a(R ) becomes —,', i.e.,

X,K =A»(1 D/4)—for R )&1 . (4.5)

In Fig. 2 we present the ratios kz /X„„as a function of D
for several bistability parameters R, where A,„„denotes
the smallest nonvanishing eigenvalue of the FPE (2.2) cal-
culated by means of numerical integration. The integra-
tion procedure employed is explained in Sec. 5.9.2 of Ref.
7. One essentially integrates the FPE (2.2) with
(8/Bt )P(x, t) replaced by —AP(x) (eigenvalue ansatz).
For an odd eigenfunction, the integration procedure
starts at x,„=0with the initial conditions P(0) =0, and
P'(0)=const. The eigenvalue A, is determined by either
setting the eigenfunction P or the current —DP' f'P—
equal to zero at the upper integration bound x =x„„d.
Physically speaking this corresponds to replacing the po-
tential f (x) for x =x,„d by either an absorbing or a
reAecting wall. The upper integrational bound should be
chosen large enough. In the actual calculation we adopt-
ed x,„d =2R + 10D.

From Fig. 2 we immediately recognize that A, &/A. „„
approaches 1 only for very small D values independent of
the bistability parameter R, i.e., no matter what the actu-
al barrier height Af is. This is due to the special struc-
ture of the potential under study. The original Kramers
formula (4.1) is applicable to the bistable potential (3.1)
only in the small-noise limit D &(1,because the parabolic
Kramers approximation of the potential near the ex-
tremal points breaks down for larger D values. It is also
evident from Fig. 2 that the improved Kramers rate A, ,K
Eq. (4.3) gives a better approximation for the decay rate
which improves with increasing R. In particular, for

We continue by evaluating the decay rate for the spe-
cial bistable soft potential (3.1), which is applicable for
arbitrary noise intensity D, provided the barrier separat-
ing the two potential wells is high enough, that is in the
limit b,f/D » l. In particular, this limit allows for
values D ) 1, where the conventional and the improved
Kramers rates cannot be applied, see Fig. 2, due to the
wedge-shaped structure of the potential (3.1). The basic
idea of our approach is to directly evaluate the integrals
in Eq. (2.4) in the limit of large R, but without employing
any polynomial approximation of the potential f (x). In
particular, we thus circumvent the Gaussian approxima-
tion, i.e., the parabolic expansion of the potential around
its extremal points.

The explicit calculation runs as follows. First we split
off the factors exp[f (x,„)/D ] and exp[ f(x;„)/D—] in
the integrals I, and Iz in Eq. (2.5), respectively. Accord-
ing to Eq. (2.6) we replace T by 2/A, in Eq. (2.4), which is
thus transformed to

exp( —b f /D ),2D

A] A2
' (2/D)

cosh (x)+sinh (R)
dx

cosh(x)cosh (R)
E.

(2/D)
2 sinh(R)cosh(x)

dx
cosh x + sjnh R

(5.1)

(5.2a)

(5.2b)

For large values of R the integrand of Eq. (5.2a) can be
safely replaced by [cosh(x)] '. Then the integration
limits of the integral A, are replaced by +~. On the
other hand, the integrand of Eq. (5.2b) has a distinct
maximum around x = —R. Therefore it is approximated
in the limit R )&1 near x = —x;„=—R by

1.5 a s s ~ I a ~ ~ a I a a a s I a a a a

2 sinh(R )cosh(x )

cosh (x)+sinh (R)
eRe —x

—2x+ 2R

1

cosh(x +R )
(5.3)

0.5

~IK/ ~num

-. 2

s a s s
/

~ s s s ( s s s ~ ) s s s

0.5 1 1.5

Now a simple variable substituion x +R ~x is employed.
Replacing the new upper boundary R of the transformed
integral (5.2b) with oo we finally obtain

A, =32= cosh x ' 'dx . (5.4)

I (1/D)
I ( 1/2+ 1/D )

(5.5)

The integration of Eq. (5.4) (see formula 3.512 of Ref. 14)
and the application of formula 8.384.1 and the doubling
formula 8.335.1 of Ref. 14 for the I function gives

FIG. 2. Ratio of Kramers and improved Kramers approxi-
mation A.z and X&z and the numerical result A,„„asa function
of the noise intensity D for different bistability parameters R. Xz =Q(D)exp( 5f /D ), — (5.6)

The insertion of Eq. (5.5) into Eq. (5.1) thus yields the
special result for the decay rate
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E
/
l

1.2 —I'

I

-::1.0

0.8 -'

2.0 4.0

f(x)=2R(1 —Ixl/R), lxl &R,
f«) =2R(lxl/R —1),

(5.1 1)

which has been investigated by Morsch et al. , see Ref.
11, Eq. (57). [For an explicit comparison the variable
transformation of Eq. (3) in Ref. 11 has to be considered. ]

From the asymptotic expressions (5.9) and (5.10) one
can derive a [1/2]-Pade approximation Qp for the prefac-
tor of the decay rate (see Ref. 15 for details on Pade ap-
proximations),

10

=2 1+aD
1+(a+ —,

' )D+D a /~
(5.12)

FIG. 3. Ratio of the special result A, z and the numerical re-
sult k„„as a function of the bistability parameter R for
different noise intensities D.

2D I (1/2+1/D)
I (1/D) (5.7)

Discussion of the prefactor Q(D)

It is interesting to note that the prefactor Q(D) de-
pends on the noise intensity D. For the sake of complete-
ness we report here some special values of 0,

Q(0. 5) =
—,', , fl(1)=

—,', O(2) =4/~ (5.&)

Next we discuss the asymptotic behavior of the prefactor.
For small values of the noise intensity D, we use Stirling's
formula for the I function and obtain for the prefactor

The ratio of A.z and the numerical value k„„as a func-
tion of the bistability parameter R is shown in Fig. 3.
Clearly, the analytical approximation A, & for the small ei-
genvalue applies for a wide range of D values, provided R
is large enough. (Note that the evaluation of Xs relies on
the assumption R ))1.) For D ) 1 and decreasing R the
lowest nonzero discrete eigenvalue k„„reaches the lower
bound A,„„,=1/D of the continuous part of the spectrum
at a certain value R '~ Rp ~ Therefore A,„„does not ex-
ist for R Rcrit.

a = [n 1+[(—vr —1) +4' ln(2)]' ) /[81n(2)],
=1.0438. . . . (5.13)

O
~ 0.6

(D
L~ 0.&

I I I II I I I II I I I II I I I Il I I I I

In Fig. 4 the prefactors of the decay rates from the vari-
ous analytical predictions are shown. The solid line and
the dotted line represent the exact expression (5.7) and
the corresponding Pade approximant (5.12), respectively.
The Pade approximation (5.12) has been derived by fitting
the asymptotic expressions (5.9) and (5.10). The small de-
viation of the Pade approximation (5.12) from the exact
expression (5.7) for intermediate D values is hardly visible
in Fig. 4. (An alternative [1/2]-Pade approximation,
which reproduces the asymptotic expression (5.9) and re-
covers the first-order term in Eq. (5.10) and the exact
value 0.5 for D =1, leads to a =(16—57r)/(4' 12)—
=0.5156. . . . )

Obviously, Fig. 4 summarizes our results of Secs. IV
and V for large R, i.e., R ~ 3. The Kramers rate may be
safely applied to the bistable potential under study in the
region D ~0. 1. The higher-order approximation of the
potential near the extremal points adopted in the im-
proved Kramers approximation extends the range of ap-
plicability to D ~ 1. On the other hand, for D ~ 40 poten-
tial (3.1) can be safely replaced by the W potential, which
has been investigated in Ref. 11. In the intermediate

Q(D)= —(1 D/4)+O(D —),=2 (5.9)

0.2—
and thus recover the improved Kramers result (4.5) valid
for large R. For large D we employ a Taylor expansion
of 1"(1/2+1/D) and of I (1+1/D)=I (1/D)/D and get

I I I I
)

I I ~ I I I I ~ ) I I I I
f

I I I ~

1p 2 10-~ 1po 10~ 1p2 1p3

A(D)= —1 — +O(D ) .
D D

(5.10)

In the large-D limit the special result kz Eq. (5.6) with
the leading term 2/D of the prefactor in Eq. (5.10) is just
the lowest nonzero eigenvalue of the ( W-shaped) wedge
potential

FIG. 4. The prefactor Q(D) and its approximations as a
function of the diffusion constant D. The solid line gives the ex-
act expression for A, (D), Eq. (5.7), and the dotted line is the
Fade approximation Az(D), Eq. (5.12). The other approxima-
tions are indicated in the figure.
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Xs = 8 exp( —2R ), (5.14)

which coincides exactly with the analytic result derived
by Marchesoni et al. The integral expression (5) of Ref.
3 coincides very well with our X„„.The maximum devi-
ation is about 0.06% for R =2. We note that the im-
proved Kramers approximation (4.3) already leads to a
value reasonably close to Eq. (5.14), i.e.,

A. ,~ = —8 exp( —2R ) =(7.639. . . )exp( —2R ),=3 (5.15)

whereas the original Kramers result

=—8 exp( —2R ) = (10.185. . . )exp( —2R )
4 (5.16)

yields a rather poor quantitative agreement as already
mentioned in Ref. 3.

VI. VARIOUS MFPT EXPRESSIONS IN COMPARISON
WITH THE DECAY RATE

In this section we give a detailed comparison between
various analytical MFPT and decay-rate expressions and
the lowest nonvanishing eigenvalue of the FPE (2.2) ob-
tained numerically. For the sake of completeness this
comparison is carried out for the bistable soft potential
(3.1) and for an archetypal bistable hard potential.

First we report some analytical expressions for the de-
cay rate A, given in Refs. 3 and 4:

range 1 SD 540, however, either the exact formula (5.7)
for the prefactor or its Pade approximant (5.12) must be
used.

Finally we want to compare the special result kz and
the improved Kramers result X,K with the relevant eigen-
value calculated in Ref. 3 by exploiting the property of
isospectrality of supersymmetric quantum mechanics.
Only the case D =1 was treated in that reference. There-
fore we have to restrict the comparison to this value. For
D = 1 and R »1 Eqs. (5.6) and (3.3) give

in the definitions (6.1) and (6.2), it can be shown that for
symmetric potentials [f(x)=f(—x)~P„(x)=P„(—x)]
the following relation holds:

(6.5)

Thus A., is always less than A, b. This can also be inter-
preted physically. Namely, if the particles injected at
—x;„reach the top of the barrier at x =0, they have a
50% chance to go back to the left well or to move to the
right well. Therefore T( —x;„,x;„)is at least twice as
large as T( —x;„,0). If the particles have crossed the
top of the barrier they still need some additional time AT
to reach the bottom of the right well. Thus we have

T( —x;„,x;„)=2T( —x;„,0)+ b, T,
(6.5a)

ET=2 1

The difference hT is much smaller than 2T( —x;„,0) for
large barrier heights, and therefore k, and A. b become al-
most identical.

On the other hand, Eqs. (6.3) and (6.4) have been
claimed in Ref. 3 to supply a more refined approximation
for the lowest nonvanishing eigenvalue in the bistable soft
potential (3.1). According to Eq. (6.3) I/A, , is obtained
on averaging T(x, , x2 =0) [see Eq. (2.3)] with respect to
the normalized distribution function 2P„(x, (0) of the
negative starting points. In other words, the particles
are injected at any negative x ] and the starting points are
weighted according to the stationary distribution func-
tion. We are then interested in the mean time it takes the
particles to reach the potential barrier at x =0. Finally,
Eq. (6.4) is an attempt to substitute I/A. with the auto-
correlation time of the variable x (t), see Ref. 3, Eq. (10).
The definition (6.3) can also be interpreted in terms of
correlation times. This can be seen as follows. The
correlation time T of a general autocorrelation function

A,, =2/T( —x;„,x;„),
X„—= 1/T( —x;„,0),
X,:I/(r(x, , O)). „

(6.1)

(6.2)

K„(r)= ( [r(x(t))—(r ) ][r(x(t+r))—(r ) ]),
(6.6)

(r ) = f r(x)P„(x)dx

may be defined by the integral over the normalized corre-
lation function K, (r) /K„(0)

=—f f P(y)dy dx,
St

(6.3) 7.= f "K„(r)d~/K„(0) . (6.7)

A, d
——1/T,

f f yP„(y)dy dx,
st

(6.4)

It has been shown in Ref. 16 that the correlation time T
in one-dimensional stochastic systems can be expressed
by integrals, e.g. ,

=K„(0) Df-
(x )=f x P„(x)dx.

Here Eqs. (6.1) and (6.2) rely on van Kampen's formula
(2.3). Thus, in accordance with Eq. (6.5) of Ref. 4, we ask
for the mean time a particle needs to reach the right
minimum x;„,or the potential barrier x =0 in Eqs. (6.1)
and (6.2), respectively, if the particle had been injected at
the left minimum —x;„. By manipulating the integrals

2
XP„(x')dx' dx .

(6.8)

Equation (6.8) represents a generalization of Eq. (2.43) of
Ref. 16, because it describes the correlation time of an ar-
bitrary function r(x) of the variables x(t), instead of x(t)
itself. (Of course, we assume that the integrals exist. )
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(6.8a)
Obviously, for r(x)=x, Eq. (6.8a) recovers exactly T, of
Eq. (6.4). If r(x) in Eq. (6.8a) denotes the step function

1 for x)0
r(x) —=e(x) —e( —x) = —1 for x(0 (6.9)

[e(x) is the Heaviside stepfunction], it is evident that Eq.
(6.8a) reproduces ( T(x &, 0) ) &o of Eq. (6.3).

1

It follows from the expansion of the Green's function
of the FPE with a discrete eigenvalue spectrum [see, e.g. ,

I

Since in our actual problem the variable x(t) extends to
—~, the lower integration bound in Eq. (2.43) of Ref. 16
has to be replaced by —ac. The function g (x) in Eq.
(2.43) of Ref. 16 is identified with the diffusion constant D
(additive noise). For symmetric potentials f(x)=f( —x)
and odd functions r(x) = —r( —x), the mean value ( r ) in
Eq. (6.8) vanishes. Hence the integrand of the first in-
tegral in Eq. (6.8) is an even function, and we replace Eq.
(6.8) with twice the integral over the half range of x,

o l x r(x')P„(x')dx' dx .
(6.10)

The asymptotic behavior of kb d can be evaluated simi-
larly as in Sec. V, and it turns out that the asymptotic
values for k, , coincide, i.e.,

for b,f /D »1 . (6.1 1)

The favorite proposal of Ref. 3, however, exhibits a
different asymptotic behavior

Ad =k„s=ks[1+p(D)/R ] for b f /D »1 (6.12)

with p(D) giv, en by

Eq. (5.46) of Ref. 7], that for symmetric potentials the in-
verse correlation time of any autocorrelation function of
an odd function r (x) is always larger than or equal to the
lowest nonvanishing eigenvalue. This property is
preserved if the eigenvalue spectrum has a continuous
part. [For R larger than the critical value R„;, the spec-
trum consists at least of two discrete eigenvalues, 0 and
A, „and a continuum t(, & 1/D; see the discussion below
Eq. (5.7) and Sec. VII.] Thus X, and A, d provide upper
bounds for the eigenvalue A, i.e.,

p(D) = I x [cosh(x)]' 'dx
0

cosh(x ' 'dx
0

(6.13)

For D = 1,2 Eq. (6.13) yields

p(1) =tr'/12, p(2) = tr'/4 . (6.14)

E

1.2

X

K

tttt ~ ~ ~ ~ ~ ~~ ~ ~ ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

I
I

08 ) i

I

hf/'D
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FICi. 5. Various ratios A,„/k„„ for the bistable soft potential
(3.1) as a function of the ratio Af /D for D =1. The barrier
height bf is given by Eq. (3.3). The index x in X„stands for
a —d, see Eqs. (6.1)—(6.4); E, see Eq. (4.2); IK, see Eq. (4.3); S,
see Eq. (5.6); and AS, see Eq. (6.12).

In Fig. 5 we show the expressions A,, d and the approxi-
mations k~, k,K, and kz divided by the lowest nonvanish-
ing eigenvalue X„„,determined numerically, as a func-
tion of b,f /D. Let us brie(Iy summarize the main points
that should be recognized from Fig. 5.

(i) For small potential barriers b f /D S2 the analytical

predictions A., d describe different physical situations.
[In this regime the MFPT depends strongly, e.g. , on the
integration bounds xt and x~ of Eq. (2.3).] Therefore de-
viations from the numerically exact eigenvalue occur in
this region.

(ii) At the end of the bistability region b,f /D~0, A.,
and i(.b diverge, because x;„tends to zero for /3 f~0.

(iii) The expressions A, , converge to k„„very fast in

the limit b,f /D »1. The relative error seems to be of
the order of the Arrhenius factor exp( —b,f /D ).

(iv) The expression Xd approximates the eigenvalue
reasonably close near b,f /D =0 and fairly well in the
whole bistability region, but it converges much more
slowly to A.„„ than k, , for large b f /D It converges, .
however, very fast to its asymptotic form (6.12). The
good agreement between A.d and A,„„near the end of the
bistability region at b,f /D =0 is related to the fact that
the (almost) monostable potential can be well approxi-
mated by a parabola (structural details of the potential
which are smaller than D are unimportant). For a para-
bolic potential, however, the correlation time of the auto-
correlation function K (t) is exactly equal to the inverse
of the first nonvanishing eigenvalue.

(v) As discussed before k,~ turns out to supply a
reasonable improvement over A,~; both, however, con-
verge to a value different from A.„„ for hf /D » l.

(vi) Our analytical approximation A,s reproduces the ei-
genvalue A.„„very well for b f /D »1, and the relative
error is also of the order of the Arrhenius factor. Finally,
we note that our analytical approximation k& of A,, is in
better agreement with k„„ than X, itself for
6f /D & 0.3. This is just an artifact of the approximation
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carried out in Sec. V and due to our choice of D =1.
Similar investigations for D =0.5, 2.0 show that the be-
havior of kz changes considerably with the noise intensi-
ty D for small values of b f /D.

For the sake of colnparison we have also investigated
the quartic double-well (hard) potential

f&(x)= —ax /2+x /4 .

The barrier height is given by

Aft=a /4, a &0 .

(6.15)

(6.16)

0.8—
Q=I. Q

hf/'D
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FIG. 6. Same as Fig. 5 but for the (quartic) bistable hard po-
tential (6.15) for D =1. The barrier height Af is given by Eq.
(6.16). The analytic results A.z and k» do not exist in this case.

The explicit results are shown in Fig. 6. An inspection of
Figs. 5 and 6 confirms that there exists no qualitative
difference between the bistable soft potential (3.1) and the
bistable hard potential (6.15) with respect to the MFPT
problem. The only principal difference is due to the
structure of the potentials near the extremal points. The
quartic potential (6.15) is well approximated by a parabo-
la near the extremal points in an increasing interval of x
values as the barrier height increases. This is not the case
for the class of bistable soft potentials (3.1) as pointed out
before. Therefore, the Kramers rate and especially the
improved Kramers rate work very well in the quartic po-
tential (6.15) for large b,f /D even for arbitrary D & 0.

Finally we comment on a simple, bistable model poten-
tial. The eigenvalue A, , (as well as all the other eigenval-
ues) and the expressions A,, d can be calculated analyti-
cally for arbitrary barrier heights in a bistable square mell

potential, see, e.g. , Ref. 7, Sec. 5.7 or Ref. 11. The results
are essentially the same as for the bistable soft potential
and the quartic double well potential in Figs. S and 6, re-
spectively. The most important difference are the follow-
ing.

(i) The expressions A,, and Xb do not diverge for
b f~0, because x;„(defined as the middle of the square
well) does not tend to zero in this limit.

(ii) For large b f /D the ratio (A,d
—A.„„)/k.„„con-

verges to a finite value, which is given by 27.
(iii) Of course, the Kramers approximations do not ex-

ist in the square-well potential.

VII. SUMMARY AND DISCUSSION

We have pointed out the limitations of applicability of
the conventional Kramers formula (4.1) for a potential
where the usual parabolic approximation for arbitrary
noise intensity D is not possible. An improved Kramers
formula (4.3) taking into account higher-order derivatives
of the potential gives somewhat better results in the
weak-noise limit. The comparison of the special result
A,z, however, is quite favorable for arbitrary D in the lim-
it b,j/D»1.

The proposed procedure for calculating kz is valid
within the conventional current-over-density approach
and may also find application for different types of poten-
tials which resist the parabolic Kramers approximation.
Thus, contrary to what is stated in Ref. 3, the conven-
tional Fokker-Planck techniques also apply to the bi-
stable potential (3.1). The limitations of applicability of
the different approaches are not due to the softness of the
potential under study but arise because of its shape near
the extremal points. In the limit b,f/D »1 the usual
current-over-density approach for the MFPT problem
works well.

%'ith another argument we also conclude that the soft-
ness of the potential does not cause troubles in the limit
of small Arrhenius factors. It follows by inspection of
the corresponding Schrodinger potential

Vs(x) =f ' (x)/(4D) f"(x)/2—
that f '(x) is a constant for large values of ~x~, and there-
fore Vs is also constant, Vs=1/D. The lower bound of
the continuous part of the eigenvalue spectrum is thus
given by k„„,= 1/D. For b.f /D »1 the smallest non-
vanishing (discrete) eigenvalue, i.e., the decay rate A, , is
proportional to the Arrhenius factor exp( —6f /D ).
Since the Arrhenius factor is much smaller than the con-
tinuum bound k„„,= 1/D the computed lowest eigenval-
ue always corresponds to a bounded eigenfunction which
decreases exponentially with increasing ~x~.

A detailed investigation of the numerical result A.„„
with respect to the different boundary conditions em-

ployed in the numerical integration procedure clarifies
the discussion even more. In general, if we set the
current equal to zero at x =+x,„d (refiecting wall=hard
potential) the corresponding eigenvalue A,„„ is smaller
than the eigenvalue computed from the absorbing wall
boundary condition, P =0 at x =+x,„d. However, if x,„d
is taken large enough both eigenvalues agree within the
prescribed numerical accuracy. In other words, in the
limit b f /D » 1 the localized eigenfunction correspond-
ing to the smallest nonvanishing eigenvalue is practically
independent of the shape of the potential at very large x.

Finally we want to emphasize that the analytic expres-
sions for the decay rate, which have been discussed in
Secs. V and VI, are exactly valid only in the limit
bf /D ~ oo. For large but finite Af /D the relative error
is of the order of the Arrhenius factor exp( —b,f /D ) for
not too small D Thus, e.g. , for .hf /D =5 the relative er-
ror is of the order l%%uo, see Fig. 5. For small and inter-
mediate b,f /D we do not know an analytic expression for
the lowest nonvanishing eigenvalue (decay rate). In this
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regime van Kampen's formula (2.3) (or similar
definitions) may be used for calculating the MFPT. Due
to the different integration boundaries, which describe
different physical situations, the MFPT's are generally
not equivalent. The decay of initial distributions to the
stationary state is also more complicated in this regime,
because the actual description now involves contributions
from the continuous part of the eigenvalue spectrum.
Obviously the connection (2.6) between the MFPT and

the smallest nonvanishing (discrete) eigenvalue k, breaks
down for small and intermediate Af /D.
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