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Linear response of two-phase composites with cross moduli: Exact universal relations
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We consider the linear-response properties of composites made of two isotropic materials. We
concentrate on linear-response phenomena, with nonvanishing cross coefficients, such as the magne-
toelectric effect, the thermoelectric effect, and coupled, multispecies diffusion. We find that the
moduli of the composite must obey a number of compatibility relations, involving the moduli of the

components, but totally independent of the mixture ratio of the components and the microstructure
of the composite. The compatibility conditions take the form C(L,L„L„)—=LL, 'Lb —LbL, 'L =0,
where L„Lb are the response matrices of the components, and L is that of the composite. These
come about because there exists a choice of driving forces and fluxes —an eigenbasis —that are
decoupled in both components. When the composite itself is isotropic, these constitute n(n —1)/2
relations that its moduli must obey (i"or real response matrices), leaving only n independent
coefficients to be specified —n being the number of driving fields. When the composite is anisotrop-
ic, the elements of L are spatial tensors and the same conditions apply as relations between these
tensors. In the latter case one can eliminate the moduli of the components, and obtain relations that
the moduli of the composite must satisfy among themselves. The mere fact that the composite is

made of two isotropic components, without any further information, imposes strong relations
among its moduli. For example, we show that all the tensor moduli of such a composite are sym-
metric. The same compatibility conditions must also be obeyed by the response matrices of any
three composites of the same two isotropic components; so, knowledge of the moduli of two com-
posites supplies constraints on any third, or, for that matter, on the components themselves. We
discuss the general properties of the compatibility conditions and their possible relation to parallel
and series construction of composites, and demonstrate our findings for the most common case of
two driving fields in three dimensions. The compatibility conditions apply not only for the effective
response matrices of well-homogenized composites, but also for the local response —at any point
within some region that is filled with an arbitrary two-phase mixture —to the potentials on the
boundary of the region. All the above apply, with little change, to the case where the response ma-

trices are complex-symmtric or Hermitian. We have nothing to add to the lore on composites, in

the case where all the cross coefficients vanish; the compatibility conditions are identities in this
case. All our results remain intact for multiphase composites, when all the components but two are
either perfect conductors or perfect insulators.

I. INTRODUCTION

There exists an enormous lore on the effective linear
moduli of composites that are made of t wo
components —or phases. ' Most of the present
knowledge pertains to systems with uncoupled linear-
response properties. Particularly noteworthy are the re-
sults on bounds of various sorts on the allowed values of
the effective constants of two-phase mixtures. '

In contrast, we shall concern ourselves, in this paper,
with the moduli of multifield, coupled, or cross linear-
response, in which the application of one driving force in-
duces not only its own conjugate Aux but aIso other
cruxes. Two distinct types of phenomena are involved:
Equilibrium phenomena, which are exemplified by the
magnetoelectric effect, ' whereby the application of ei-
ther a magnetic field or an electric field induces an elec-
tric polarization as well as a magnetization. The other
class includes dissipative, nonequi librium phenomena

such as the thermoelectric effect, " in which thermal and
electric transports are coupled; similarly, one finds that,
often, the diffusion of particles of different species
through some materials or membranes is coupled, involv-
ing so-called cross effects. ' A partial treatment of the
thermoelectric effect in composites can be found in Ref.
13.

We will show that in such materials, with nonvanishing
cross moduli, the allowed values of the effective moduli of
any composite are strongly constrained not only by the
known bounds, but, in fact, by exact compatibility rela-
tions that they must satisfy. Moreover, these relations
are oblivious to the volume fractions of the components
and the microstructure of the composite. Given only the
moduli of the components, those of the composite must
obey a large number of universal linear relations among
th emsel ves.

Consider a linear-response problem, in a space of arbi-
trary dimension d involving n driving fields, derivable
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V.F=V.(L VQ) =0 . (2)

For a dissipative phenomenon the role of the generating
function is played by the entropy-increase rate. ' One
can work, in this case also, with divergencetess fi'uxes

The elements of L are the kinetic coefficients, and the On-

sager reciprocity relations' state that the matrix L is

symmetric, in general. One exception occurs when one of
the intensive parameters on which L depends, in general,
is an externally applied magnetic field H in which case

(H)=L»( H). We t—ake all along H =0. Casimir"
pointed out another exception: When some of the poten-
tials are even under time reversal, say the first k of them,
and the rest are odd, then elements of L connecting fields

with different time-parity are antisymmetric. Then, L
takes the form

s'" a
(3)

with 5" symmetric. We are not aware of a continuous
system for which this needs be taken into consideration,
and assume thus that the response matrices we deal with
are symmetric; exceptions will then receive a special
treatment.

As the entropy-generation function is positive, L must
be positive in the dissipative case as well. The symmetry
and positive definiteness of L, which are compelled by
different physical arguments in the two types of phenom-
ena, will play a crucial role in our derivation of the com-
patibility conditions.

We derive the compatibility conditions in Sec. II and
expound their properties in Sec. III. In Sec. IV, we gen-
eralize to the case of anisotropic composites. Section V
concerns composite, electric circuits. In Sec. VI, we
demonstrate our results for the case of two fields. Section
VII summarizes our findings and discusses further issues.

II. DERIVATION OF THE COMPATIBILITY
RELATIONS

Consider two isotropic substances, a and b, with their
response matrices L„Lb, respectively. Within each sub-
stance separately, the fluxes and potentials are related by

from potentials P=(P„P2, . . . , P„), and the vector of
fiuxes F=(F,, Fi, . . . , F„). When the material is isotro-
pic the fluxes are related to the driving fields in the linear
approximation, that we assume all along, by

F= LV—W,

where L is the n X n response matrix.
The system possesses a generating function G in which

the elements of L appear as parameters. In the equilibri-
um case 6 is some energy function (such as the free ener-

gy) that is a functional of the degrees of freedom P of the
problem. By virtue of the structure of G, L is a sym-
metric matrix. The functional G attains a minimum in
the equilibrium state and for this to be stable, L must be
positive definite. The Euler-Lagrange equations derived
from G are

F= L—, VP, s =a, b; (4)

the L's are real, symmetric, and positive-definite (the non-
real case will be discussed below).

Given two such matrices, one can diagonalize them
simultaneously by a congruent transformation, using a
real, regular matrix 8', such that

WL, W=k'=diag(A, ;,A. z, . . . , X'„);

WLbw=kb=diag(A1, 12b, . . . , A, "„) .
(5)

(The matrix W is not orthogonal, in general; indeed it
cannot be if L, , Lb do not commute. )

To prove this, one first diagonalizes, say, L, by a simi-
larity transformation U; then one rescales the fields such
that L, is transformed into the unit matrix (this can be
done only when L, is positive definite); the combined
transformation takes Lb into another symmetric matrix
which can, in turn, be diagonalized by another similarity
transformation; the latter does not affect L, any further
(as it is the unit matrix now). The desired matrix W is
the product of these three transformations. '

Now, define the eigenpotentials and eigenfluxes as

A. (A,") 'k —k"(A.') 'X=0 (8)

J=WF .

In terms of these fields, the response matrices in the two
substances are given by A.

' and A.
" . Also,

g& J».Vg» =g& F» VP„; so, the generating function is
invariant under (6). Now, in the eigenbasis of the prob-
lem, every flux-potential pair is decoupled from all the
others in each of the substances. In component a one has
J» = A, '„Vg», while in b, J» = A, » Vit ». Moreover, the
eigenfluxes satisfy V JI, =0, because they are linear
combinations —with coefficients that are fixed for the
problem —of the physical fluxes F. Hence, in any com-
posite of a and b, an applied Vg» for any k can drive only
the flux JI, In other words, the response matrix of any
composite cannot connect different eigenpotentials of the
problem.

We treat, first, isotropic composites, and defer the
treatment of anisotropic composites to Sec. IV. In the
former case, the effective response matrix of the compos-
ite is also an n Xn matrix L. As we have just shown, it
must also be diagonal in the eigenbasis,

WLW=A. =diag(k A|, , .2. . , X„) .

It is clear at this point that L is given, once one
specifies the n values of the elements of A, ; the relations
between L and A, are through 8, which depends only on
L„L„. All the information on the volume fractions of
the components and the microstructure of the composite
enters through the constants k, . Thus, the n (n +1)/2
measurable elements of L —which are quite arbitrary for
a general medium —must satisfy n (n —l)/2 constraints
that depend only on the elements of L, , Lb. We now
proceed to derive these constraints.

Obviously, k, X', and k all commute. This fact can be
cast in forms that involve only L, L„and Lb but not 8'.
For example, writing
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we get

C (L,L, , Lb ) =LL, 'Lq L—bL, 'L =0 .

2z ]Z= +i (z, —z~)

+i (z, —z~)

2Z2
(10)

with z~, z2 arbitrary, complex numbers, cannot be diago-
nalized, out of the six real-parameter set of all complex,
symmetric matrices. (These are the matrices with two
equal eigenvalues. ) Barring such unlikely occurrences for
the response matrices, the compatibility condition must
apply here as well. In the complex case, where the
response matrices may depend on the frequency of the
driving fields, the compatibility conditions must hold for
every frequency.

III. GENERAL PROPERTIES
OF THE COMPATIBILITY RELATIONS

The compatibility conditions enjoy some very useful
symmetries and superposition properties. These can be
straightforwardly derived from the compatibility condi
tions themselves —without reference to the way in which
the latter where arrived at —and we state them here
without detailing the proofs.

(1) As expected, the conditions C(L,L, , Lb)=0 are
symmetric in L, and Lb. In fact, they are totally sym-
metric with respect to the three arguments of C.
Knowledge of any two of the three constrains the third.

(2) The conditions are satisfied automatically for the
cases L =L, and L =Lb.

These are the desired compatibility conditions.
One can also write more relations such as

[A, 'k', k 'X ]=0 leading to [L 'L, , L 'L&]=0 and
other such relations; they can all be shown to add noth-
ing to Eq. (9).

The same arguments apply for the response matrices of
any three composites made of the same two components
These matrices must commute in the eigenbasis and
hence in the physical basis they must satisfy the compati-
bility conditions. Hence, it is enough to measure the
response matrices of two composites to provide con-
straints on any third (including any of the two com-
ponents).

We now attend to cases where the response matrices
are not real symmetric as we assumed in the proof.
When the problem can be formulated in terms of complex
potentials and fluxes with Hermitian, positive-definite
response matrices, the same proof applies, mutatis mu-
tandis, and Eq. (9) must still be satisfied.

Many linear-response problems of interest are de-
scribed by complex, symmetric response matrices. Strict-
ly speaking, our proof fails in this case because not all
complex, symmetric matrices can be diagonalized by a
matrix U satisfying U= U ' (U may now be complex).
However, the set of n Xn complex, symmetric matrices
that cannot be diagonalized in this way is a set of mea-
sure zero among all the complex, symmetric matrices.
For example, for n =2, only the four-real-parameter fam-
ily of matrices of the form

B

where 3 ' are antisymmetric matrices. Again we see
that only one set of n (n —1)/2 off-diagonal elements of C
are independent.

Are all these conditions linearly independent? We con-
jecture without proof that in the generic case, where no
degeneracies are present, they are. We checked this by
algebraic computation technics for the case n =3 (and
trivially for n =2) and found that, indeed, in the general
case, the three compatibility equations obtained are in-
dependent: any three of the six unknowns determine the
other three.

IV. ANISOTROPIC COMPOSITES

Many composites, even of isotropic components, are
themselves anisotropic. Such are, for instance, laminated
structures, or composites in which one component is in
the form of aligned, similar, triclinic grains, or in the
form of long needles or fibers —as in fiber reinforced ma-
terials. For arbitrary anisotropic materials exhibiting a

E.

coupled linear-response phenomenon in d space dimen-
sions, the relations between potentials and fluxes are

Fj;.= —QLt; .PP (12)

Latin indices designate the field type, as before; Greek in-
dices designate space coordinates: a, @=1, . . . d. The
response matrix is symmetric with respect to the simul-
taneous exchange of both: L&, &=L ~& . For a fixed
pair of fields, Pk, P,„, let T(km) be the d Xd matrix
whose ag element is L& &, it is the space-tensor modulus
of the material (such as the heat-diA'usion tensor, the

(3) When the three arguments are diagonal, the compa-
tibility conditions are identities, so we have nothing to
add to the knowledge of such systems.

(4) If two matrices commute, and the third is compati-
ble with them, the latter must also commute with them.

(5) If three matrices are compatible, so are their
in verses.

(6) If matrices L „L~, . . . , are compatible with L, and
L&, so is any linear or harmonic combination of them;
i.e., any matrix of the forms g, v, L;, or (g, v, L, ') '

(v,
are numbers). Thus, the series or parallel combination of
mixtures that are compatible with two components, pro-
duces another one that is also compatible with them.

Given two of the matrix arguments of the compatibili-
ty function, the compatibility conditions constitute linear
equations in the components of the third. How many in-
dependent equations do we get thus? When the response
matrices are symmetric (Hermitian), as we have assumed
so far, the compatibility matrix C is antisymmetric (anti-
Hermitian). One then has n (n —I)/2 real conditions in
the real case, and n ( n —1 ) real conditions in the
complex-symmetric case, and in the Hermitian case.

When the arguments of C have the Casimir form [Eq.
(3)], then C can be shown to take the form
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dielectric tensor, the thermoelectric tensor, etc.). The? s

are, in general, asymmetric tensors, unless k =m, in
which case the symmetry of L dictates that they are. We
can write L as an nd X nd matrix of the form

T(11) T(12)
T(12) T(22)

T(ln) T(2n)

T( ln)

T(2n)

T(nn)

(13)

As we argued in Sec. II, in the eigenbasis of the prob-
lem, L must be diagonal in the field indices; i.e., the
response matrix of a composite of two isotropic materials,
in this basis, takes the form

k
~km aP aP ~km (14)

For fixed a and /3 we get a matrix that is diagonal in
km. This implies —as all our basis changes do not act on
the space indices —that for every a/3, L, as a matrix in
km, must satisfy the compatibility conditions [Eq. (9)].
We thus get d such matrix conditions. In other words,
if in Eq. (9) we put for the km-matrix-element of L, the
space-tensor matrix T(km ), we get the generalization the
compatibility conditions for anisotropic composites.

Interestingly enough, we can now extract from the
compatibility conditions, relations between the moduli of
the composite with no information on those of the com-
ponents. The mere fact that the composite is made of two
isotropic components constrains its allowed response ma-
trix.

For example, in the general case, where no special de-
generacies are present, every tensor coefficient T(km)
can be written —through the compatibility conditions-
as a linear combination of the n tensors T(ii), lying along
the diagonal of L. The latter are, however, all symmetric,
and so must all the T {km )'s be. This can also be deduced
from the fact that the T(km) are linear combinations of
the symmetric tensors t" appearing in Eq. (14). To recap-
itulate: all the tensor moduli of an anisotropic composite
of two isotropic materials are symmetric (this is not the
case for an arbitrary material).

There are additional constraints that make no use of
the moduli of the components. These come about in the
following way: the response matrix of a general aniso-
tropic materials has nd ( nd + 1 ) /2 independent com-
ponents (we confine our discussion here to the real case,
the generalization to the complex case is straightfor-
ward). The compatibility conditions provide
d n (n —1)/2 constraints on those, with parameters that
depend on the moduli of the components. [These are, in
general, independent; as we can see from Eq. (14), only
nd {d + 1)/2 constants need be specified, to determine all
the elements of L of the composite; thus, there must exist
d n ( n —1)/2 independent compatibility conditions. ]
The number of these parameters is smaller than the num-
ber of constraint; so, they can be eliminated, leaving some
constraints that involve the moduli of the composite only.
The above symmetry requirements account for some of
these constraints, but some still remain.

A different, and more useful, way of perceiving the ex-
istence of such component-independent relations is as fol-
lows: The d, n Xn matrices l(a/3) formed from L by
fixing the space indices, are diagonal in the eigenbasis,
and hence, every three of them must satisfy the compati-
bility conditions among themselves, just as any three
composite response matrices must. In such relations, the
moduli of the components do not appear, and we are left
with the desired relations

C[1(aP), / (y6), 1(er/) ]=0, (15)

for all the choices of the six space indices (not all of these
relations are independent).

We note here that, in general, the principal axes of the
different tensor coefficients, T(km), need not be the
same. In composites that have symmetry axes —such as
laminar ones —all T(km) do commute and can be diago-
nalized in the same axes. In this frame we have d ma-
trices l(aa); a=1, . . .d. On these, we have (, ) sets of
compatibility conditions —each set still consisting of
n (n —1)/2 conditions. In three-dimensional composites
with common principal axes, there is at least one such set
of component-independent conditions —always in addi-
tion to the conditions that relate the composite to the
components.

We shall demonstrate all this for the case d =3,n =2
in Sec. VI.

V. ELECTRICAL CIRCUITS
AS DISCRETE REALIZATIONS

We now discuss electrical circuits as examples of
discrete systems that are subject to the compatibility con-
ditions. One need not bring the above proof to bear on
circuits; the necessity of the compatibility conditions fol-
lows directly from their general properties and the con-
struction of the circuits.

Consider electrical circuits (that we shall term n-pair
circuits) having n pairs of external terminals:
1, 1';2,2', . . n, n' (n .will be fixed for the rest of our dis-
cussion), with an internal structure that guarantees that
the current I; going into terminal i is the same as that
coming out of i '. Let V, be the voltage difference be-
tween i' and i. Suppose we describe the system by the
impedance matrix Z such that the voltage vector
V=( V, , Vz, . . . , V„) is given by V=ZI, where
I =(I, , I2, . . . , I„) is the vector of currents. V, I, and Z
may be complex, and Z frequency dependent.

If any number of n-pair circuits with impedances
Z„Zb, . . . , are connected in series {terminal i ' of each to
terminal i of the next), we get another n-pair circuit
whose impedance matrix Z is the sum of Z . We call
this an additive connection with respect to Z. When cir-
cuits are connected in parallel the inverses of Z add to
give the inverse of Z and we term this a harmonic con-
nection with respect to Z.

Now, consider two n-pair circuits, a and 6, with Z,
and Z&, respectively, which we use as basic building
blocks, to build any n-pair circuit following these rules:
Beginning with a number of a and b circuits, we build the
circuit in stages; in each stage we put together, into an n-
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pair circuit, either in series or in parallel, any number of
n-pair circuits built by the same rules in previous stages.
It is clear that the impedance matrix of the resulting cir-
cuit must satisfy the compatibility conditions with
Z„Zb, so, for that matter, must the impedance matrices
of any three circuits composed in this way (from the same
building blocks a and b) Th. is follows, straightforwardly,
by induction, from properties (2) and (6) of the compati-
bility conditions (Sec. III) and we need not resort to the
proof given for the continuous case.

When the circuits contain only standard elements, the
Onsager theorem applies, and the impedance matrix must
be symmetric. The circuit may, however, contain gyra-
tors: time-reversal antisymmetric elements. ' The matrix
Z is then not symmetric but has the Casimir form. The
compatability conditions must still apply for composite
n-pair circuits containing gyrators (because the additive
and harmonic joining of the response matrix still applies).

The n-pair circuits themselves offer more examples of
such systems with asymmetric response matrices: Pick
any k of the n terminal pairs —say the first k —and call
them even, while the rest we call odd. Instead of working
with the impedance matrix, describe the system by the
matrix N that gives V* —= ( V&, V&, . . . V&, I&+&, . . I„)in.
terms of I*=(I&,I&, . . . , I~, V&+&, . . . , V„): V*=NI*.
It is straightforward to show that, if Z is symmetric,

Z= R

Q S

with R and S (complex) symmetric of orders k and n —k,
respectively (and S ' exists) then, N has the form of a
response matrix in the Casimir case [Eq. (3)]

R —QS 'Q QS

S —1Q S—1

One can define connections of n-pair circuits that are
additive and harmonic with respect to the X matrices.
Here, in the additive connection, even terminals are con-
nected in series, while odd ones are connected in parallel.
In this way, the V' vector for the combined circuit is the
sum of those of the components, while the I* vectors of
all the components and of the composite are all equal. In
the harmonic connection, the even terminals are connect-
ed in parallel and the odd ones in series. As before, all
circuits hierarchically constructed from two basic units,
must have X matrices that obey the compatibility condi-
tions.

These results for circuits —for which the necessity of
the compatibility conditions is quite evident —are in-
teresting for themselves, but they may also illuminate the
applicability of these conditions to continuous cases. It
may well be that the appearance of a microstructure-
independent and mixing-fraction-independent compati-
bility conditions is a vestige of a parallel and series com-
bination of the two component substances to form the
composite. This view may be strengthened by noting that
all the moduli of an isotropic composite can be deter-
mined by cutting a thin slice of the composite, making
each of its two faces an equipotential, and measuring the
fluxes which will be perpendicular to the surface. In this

one-dimensional configuration, it is easier to envisage the
composite as being put together by a successive series and
parallel joining of pieces.

What can we learn from circuits about continuous sys-
tems with Casimir-type response matrix? Does the fact
that circuits of this type conform to the compatibility
conditions imply that continuous systems do too? This
need not be the case; the topology of wiring circuits al-

lows one to interchange the role of any number of driving
potentials and their conjugate fluxes. This can always be
used to achieve an equivalent description of the system by
a symmetric response matrix. We know then that the
most general composite circuit is specified by only n-

independent moduli. It is not surprising then that the
compatibility conditions apply. In the continuous, iso-
tropic case, all fluxes flow in the same channels, so to
speak, and we cannot think of a physically meaningful
description whereby some fluxes are swapped with driv-

ing forces, in a way analogous to connecting some wires
in parallel instead of in series.

The validity of the compatibility conditions for the
Casimir case remains an open question for us.

VI. EXAMPLES

We shall now look in some detail into the case of most
immediate interest: two driving fields in three dimen-
sions. For concreteness we shall describe the universal
results in the context of the magnetoelectric effect,
whereby each of the two isotropic components is de-
scribed by its dielectric constant and permeability: e, and

p, , respectively, and by the magnetoelectric coefficient o.,

(i = 1,2 for material 1 and 2, respectively).
There is here only one compatibility relation for the

effective coefficients e, p, a, of an isotropic composite. In
this n =2 case, the condition can be conveniently written
as

p A

p) 0,') —0

P& A&

(18)

exhibiting the symmetry of the condition in the three ma-
terials. The three triads of coefficients are in one plane in
the e,p, e space.

The two-field result also serves as an approximation
when all the off-diagonal elements of the response ma-
trices involved are small compared with the diagonal
ones, and may be taken only to first order. In this case,
the compatibility conditions break into n (n —1)/2 two-
field compatibility conditions, one for each pair of fields.

In the degenerate case where one of the three minors
multiplying one of the effective coefficients vanishes, e.g. ,

E']pp F~, =0, the condition gives a relation between the
other two.

We have calculated the three effective coefficients of an
isotropic composite by solving directly the field equa-
tions, with the appropriate boundary conditions, for the
coated sphere composite. In this composite, space is
filled with spheres of different sizes, each made of a
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sphere of one material coated with a spherical shell of the
other, with a fixed ratio of radii. The problem was solved
exactly with the aid of computer-algebraic technics. The
effective constants are rather cumbersome functions of
the volume-ratio of the two components and of their con-
stants. It was then verified that they satisfy Eq. (18).

We now turn to the anisotropic case. The effective
moduli e,p, a are now 3 X 3 tensors that, satisfy Eq. (18).
Because E and p must be symmetric, Eq. (18) implies that
a is also a symmetric space tensor —barring the degen-
eracy e, le&=@,I@2. Thus, an anisotropic composite of
two isotropic magnetoelectric materials cannot have a
vector (antisymmetric) magnetoelectric effect. This may
be due to the fact that one cannot define a vector in such
a mixture.

An orthorombic magnetoelectric material has, in gen-
eral, nine independent constants, three for each modulus.
An orthorombic composite of two isotropic material has,
as we now show, only eight. There are three compatibili-
ty conditions that relate those nine to the coefficients of
the components. As we stated for the general case, the
latter can be eliminated to give relations between the
effective constants, that require no knowledge of the com-
ponents (except that they are isotropic). In our case, one
such relation remains, and it can be obtained, directly, by
noting that the three matrices

toelectric material (one component being vacuum) —the
compatibility conditions for the tensor moduli reduce to

a&a= (e—p) .
P&)

(21)

Thus —as the constants of the components enter through
only one parameter, a, /( E, —p, ), that needs be
eliminated —there are only 13 independent constants
(seven in the orthorombic case).

We calculated —by solving the Maxwell equations-
the dielectric, permeability, and magnetoelectric tensor
moduli for two porous media, both involving triaxial el-
lipsoids surrounded by vacuum. The first was the
coated-ellipsoid configuration in which space is filled with
similar, oriented, triaxial ellipsoids —with an assortment
of sizes —each made of an inner ellipsoid of an isotropic
material, surrounded by vacuum inside a larger ellipsoid
confocal with the inner one; here the composite has an
orthorombic symmetry (the principal axes of the three
moduli are the same). The other configuration is a dilut-
ed mixture of (noninteracting) triaxial ellipsoids in vacu-
um, with different axes ratios and different orientations;
here the three moduli may have different principal axes.
As expected, we find that Eq. (21) is satisfied in both
cases.

&xx &xx

+xx I xx

sly aye

. n ~v~.

~zz +zz

cz„p„ (19)

must obey the compatibility condition, Eq. (18), which
reads here as

~xx Pxx +xx

I vx n
~zz I zz +zz

(20)

A general (triclinic), anisotropic material has 21 in-

dependent constants describing a two-field phenomenon:
in our case, six each for the dielectric and permeability
tensors, and nine for the magnetoelectric tensor. Our
analysis shows that an anisotropic composite of two iso-
tropic materials has only 14 independent constants.
Three of the 21 fall because the cross modulus must be
symmetric, thus using three of the total of nine compati-
bility conditions —one for each pair of space indices. Of
the remaining six, two can be used to eliminate the two
parameters that depend on the constants of the com-
ponents entering the compatibility conditions. The
remaining four relations can be cast in a determinant
form similar to Eq. (20}: In addition to Eq. (20) we now
write three equations with zz in the last row replaced by
xy, xz, and yz. These four conditions amount to stating
that the six triads ez&, pz&, ez& are in the same plane in the
e,p, a plane (y, 5=x,y, z). (The 14 independent constants
must still obey two conditions relating them to the modu-
li of the components. } These are special cases of Eq. (15).

When the response matrix of one component (say 2) is
a multiple of the unit matrix —which is the case, for ex-
ample, for the effective constants of a porous magne-

VII. CONCLUSIONS AND DISCUSSION

(o)=P ob(o); o CX, (22)

where, b(o ) is the same for all potentials and p 0 are
constants. (The treatment is generalized straightforward-
ly to the Neumann boundary conditions. ) The region is
filled with some material and one measures the cruxes at

We have shown that the allowed linear-response modu-

li of composites made of two isotropic components are
strongly constrained by a set of compatibility conditions
in the form of algebraic equations containing only the
moduli of the components and of the composite. The
volume fractions of the components do not appear, nor
do the details of the microstructure. The same relations
are obeyed by the moduli of any three composites of the
same two components, and require no knowledge of the
moduli of the latter. All the response matrices of com-
posites of the same two isotropic materials have to be of
the form O' 'A, W ', where X is diagonal with elements
that are positive (and conform to the known bounds on
the moduli of uncoupled response matrices). For aniso-

tropic composites of isotropic components, relations exist
between the effective constants, that are altogether in-

dependent of the moduli of the components.
All through the paper we have treated the composite

as homogeneous on the scale over which the gradients of
the potentials are obtained from differences and over
which the Auxes are averaged. In fact, however, the com-
patibility conditions apply under more general cir-
cumstances for a system that is not necessarily homogen-
ized. Consider a region, R, of space, with a boundary X.
On X one dictates the potentials as boundary conditions
of the form
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r ER; linearity implies that the 0; space component of the
fluxes is given by

FP (r) = —
Al, „,(r)P„,„; (23)

A (r) may be considered the response matrix, at r, to the
potentials on X; it depends on the choice of R, on b (o ),
as well as on the distribution of L in R. When R is filled
with a homogeneous, isotropic medium with a response
matrix L, it is easy to see that

Ai,.„,(r)=L& r} g(r), (24)

Fx Fl&F))E (E2&E1 El& 2 (25j

where g(r) is the solution of the Laplace equation in R,
with b(o ) as boundary condition. If we now fill R with
two isotropic components in whatever fashion —possibly
with pieces not much smaller than R itself —we find, us-
ing arguments as in Sec. II, that any three matrices
A (r), each corresponding to an arbitrary choice of cz, r,
R, or b(o'), but with the filling material being a mixture
of the same two components, must satisfy the compatibil-
ity conditions among themselves. Our findings for the
effective response matrices of composites are all special
cases of this result. Also, we see that to check our
findings, experimentally, one needs not prepare a homo-
genized composite; for example, one can work with an ar-
bitrary mixture filling the space between two parallel con-
denser plates that are each an equipotential.

Our interest here has been focused on relations that are
independent of details of the preparation of the compos-
ite. We can, however, make the following note concern-
ing bounds: There are various constraints known for un-
coupled phenomena in the form of bounds on the (uncou-
pled) moduli of the composites in terms of those of the
components. ' We can now put these to use by bounding
the diagonal elements of L in the eigenbasis (A. , ) in terms
of A,

' and X,". These bounds can, in turn, be formulated as
bounds on the elements of L that depend on those of
L„Lb. We hope to demonstrate this procedure and de-
scribe the resulting bounds in a future publication.

Many results that are known to hold for the single-field
case are straightforwardly generalized to the coupled
multifield case using the following procedure. Take any
such result constituting an equality or an inequality in-
volving the constants of the components and of the mix-
ture. If this result ho1ds for all the eigenfields, it can be
written as a diagonal-matrix relation. This relation has
then to be written such as to have, on each side, an ex-

ression of the form. . .X'(A. ) 'A. '(A, ") '. . . where the
X's are the diagonal response matrices in the eigenbasis,
all of which transform in the same way. The same rela-
tion then holds in the physical basis, with the A, 's replaced
by the L's. We give a few examples of this procedure in
Ref. 18 deriving, among other things, the effective
response matrix for the coated-sphere model. Here we

give, as another example, the generalization of the rela-
tion'"' between the principal effective constants e,*,e' of
a two-dimensional, two-phase mixture of isotropic com-
ponents having constants e, and e2

In the multifield case this relation holds for any of the
elements of the (diagonal) response matrices in the eigen-
basis. We then write for these matrices

A.„*(k i, X 2)A. , 'A. *(A2, A. i)A2
' =I,

where I is the unit matrix; this generalizes to

L,*(L, ,.L2)L, 'L,*(L2,L, )L2 ' =I,

(26)

(27)

as we can see by multiplying Eq. (26) by Won the left and
W ' on the right, and inserting the appropriate factors
of W W ', etc. , in between the factors. (We thank K.
Schulgasser for suggesting that we generalize this rela-
tion. )

We now list some of the limitations that, we think, our
analysis is subject to. We have not been able to extend
the results to composites of more than two components.
It is, in general, impossible to diagonalize simultaneously
three symmetric matrices in the way that underlies our
derivation for two components. For a composite that is
made of three components by preparing first a composite
of two of them which is then mixed with the third, our
analysis shows that it is enough to specify 2n constants
for the final composite to determine all the rest (when all
the samples involved are isotropic, say). But this helps
only if n ) 3, and besides, such a composite is, of course,
not the general three-component composite. A likewise
unlikely three-phase composite is one in which the
response matrix of a component is a linear combination
of the other two. All matrices can then be diagonalized
simultaneously, and the compatibility conditions still ap-
ply. Similar arguments apply to composites with more
components.

There is, however, an important class of multiphase
mixtures that is still amenable to our treatment: all the
components but two are either perfect "conductors" or
perfect "insulators. " In the former case, all the potentials
are constant within a conductor; in the latter, all the
fluxes vanish within an insulator. An example for the
former is a superconductor in the thermoelectric case or
vacuum in the case of particle diffusion; the latter case is
exemplified by vacuum in the thermoelectric case
(neglecting radiation transport). The presence of the add-
ed components could render the effective properties of
the composite, trivial —i.e. , if the conductor percolates in
the direction along which the fluxes are measured; we as-
sume that this is not the case. The effect of the presence
of the added phases is purely geometrical. The mixture
may be considered a two-phase one, but with appropriate
boundary conditions on the contact areas of the normal
phases with the added components: Constant potentials
in the case of a conductor and a vanishing normal com-
ponent of. all the fluxes, for an insulator. At any rate, the
eigenfields —defined as before, with regard to the two
normal components —remain decoupled, and all our pre-
vious results remain intact.

In the same context, we ask what is the appropriate
compatibility conditions, when we have only one normal
phase which is neither a perfect conductor nor an insula-
tor? Examples are the thermoelectric effect or mul-
tispecies diffusion in a porous medium. Again, the effect
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is purely geometrical and the compatibility conditions
amount to saying that the response matrix of the compos-
ite must commute with that of the normal component;
this matrix relation consists, as before, of n (n —1)/2 re-
lations among the coeScients.

Our method is also limited in that the changes of bases
that we employ must operate on the potentials and not on
the driving forces themselves as we must preserve the fact
that the fields are derivable from potentials. Also, di-
agonalizing the response matrices in the space coordi-
nates will prove futile, as the field equations couple the
coordinates. Thus, the Hall effect, and the thermomag-
netic effect, are not directly amenable to our treatment.
We also have not found a way to generalize our results to
the general case of nonscalar potentials —such as effects
involving elastic stresses —because here there is more
than one way to couple the fields derived from the same
potential, even in isotropic materials. Again, the need to
diagonalize more than two matrices, simultaneously,
would arise. In some special cases of this type where
every two potentials interact through only one coupling,
our results do apply for the matrices of coupling
coeScients. Other exceptions are, for example, the
piezoelectric and piezomagnetic effects in two-
dimensional composites (i.e., a cylindrical configuration)

when the strains are limited to axial shears, and the com-
ponents have a cubic symmetry.

We have also been limited to isotropic components. It
is evident that, be this not the case, we would have
effectively had to diagonalize more than two matrices
simultaneously (even if a composite is prepared such that
the principal axes in all the regions of a given component
are all aligned).

Milgrom and Shtrikman ' have used arguments, simi-
lar to those employed in this paper, to derive constraints
on the response matrices of polycrystals that are made of
a single uniaxial crystal. The two symmetric matrices
that define the eigenbasis, in that case, are the two princi-
pal response matrices of the uniaxial single crysta1.

There are various approximations that are used to cal-
culate effective moduli of composites (for example, the
coherent potential approximation ). For some approxi-
mations, the response matrices calculated consistently
also satisfy the compatibility conditions.
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