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Pattern selection in binary-Auid mixtures heated from below is studied for separation ratios S in

the regime 0 (S„—S (& 1, where S„ is the critical value for which the wavelength 2~/k, of the in-

stability first becomes infinite. The basic equations are reduced to a scalar equation for the horizon-
tal planform whose coefficients can be determined analytically for boundary conditions of experi-
mental interest. Equivariant bifurcation theory is used to study pattern selection on both square
and hexagonal lattices. The results depend strongly on the parameter P describing asymmetry in

the boundary conditions at top and bottom. When P=O, squares are stable on the square lattice but
are replaced by rolls with increasing P. The transition between stable squares and stable rolls takes

place via a stable branch of new solutions called crossrolls. On the hexagonal lattice, hexagons are
stable if P =0, but rolls are stable when PWO.

I. INTRODUCTION

Some time ago Le Gal et al. ' reported the results of a
large-aspect-ratio convection experiment in which they
saw the initial instability develop into a pattern of
squares. With increasing Rayleigh number the squares
lost stability to an oscillation between two roll patterns at
right angles; with further increase these oscillations were
superseded by a time-independent roll pattern. These
phenomena were subsequently attributed to the mul-
ticomponent nature of the fluid used and similar behav-
ior was observed in a binary-fluid mixture. However, a
detailed explanation of the experimental observations is
still unavailable. A rigorous bifurcation analysis near a
steady-state bifurcation in a binary fluid with idealized
boundary conditions found no stable squares. A more
heuristic approach in which a set of modes was selected
to satisfy the crucial no-mass-flux boundary condition
was able to identify stable squares but only after ad hoc
side-wall forcing was incorporated. In the present paper
we develop an exact theory in which all the experimental
boundary conditions are satisfied and rigorous bifurca-
tion analysis can be carried out analytically. To do all
this we select the parameter region rather carefully. We
note that owing to the no-mass-flux boundary condition,
the wave number of the mode that first becomes unstable
will vanish if the separation ratio S exceeds a critical
value S . ' For values of S such that 0 & S —S «1,
the wave number is finite but small. It is therefore possi-
ble to take advantage of the smallness of the critical wave
number to introduce a small parameter into the hydro-
dynamical equations. The method follows the basic idea
developed by Chapman and Proctor and Gertsberg and
Sivashinsky for pure fluids, ' and yields an evolution
equation for the horizontal planform of the instability
that is much simpler than the original fluid equations. In
particular all the intricacies of the boundary conditions
are absorbed into a few coefficients that appear in this
equation. We calculate these coefficients for a variety of
velocity and thermal boundary conditions at the top and

bottom of the fluid layer and use the results to calculate
S analytically for each case. In addition, we find that
the boundary conditions influence the structure of the
nonlinear terms in the evolution equation. Specifically,
we distinguish between boundary conditions that are
symmetric at the top and bottom and those that are not,
and derive evolution equations that are characteristic of
these two cases. We find that the behavior of both equa-
tions is captured by a particular problem in which the
boundary conditions at the top and bottom plates differ
only slightly.

The analysis of pattern selection follows in the spirit of
earlier studies. The problem is formulated on a doubly
periodic lattice, and the techniques of equivariant bifur-
cation theory are used to determine the relative stability
of the various patterns that lie on the square and hexago-
nal lattices. " Since the evolution equation is similar to
another one studied at length by the author, ' many of
the mathematical details are omitted from the present pa-
per. We find that on the square lattice, squares are
indeed preferred provided the boundary conditions at the
top and bottom are sufficiently alike, as hypothesized in
Ref. 2. However, when the boundary conditions are
sufficiently different, in a sense described below, rolls are
preferred. In particular, if the terms representing this
effect are present, squares will be replaced by rolls as S
approaches S . We show, by analyzing a particular
podimension-two bifurcation, that with increasing Ray-
leigh number stability is transferred from the rolls back
to the squares via a stable branch of solutions called cross
rolls.

A parallel study of the hexagonal lattice is also present-
ed. Here it is necessary to distinguish between the "sym-
metric" problem with identical boundary conditions at
the top and bottom, and the "nonsymmetric" problem.
The former is found to be always degenerate in that a
particular nonlinear term in the bifurcation equations
vanishes identically. ' As a consequence, there are as
many as six possible primary solution branches that bi-
furcate from the trivial solution at criticality. We calcu-
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late the necessary fifth-order terms and apply existing
analysis of this degeneracy' to conclude that hexagons
are stable. In the nonsymmetric problem, four solution
branches bifurcate simultaneously and of these, rolls are
stable. Thus the hexagons lose stability as soon as the
boundary conditions at top and bottom become different.

The paper is organized as follows. In Sec. II the evolu-
tion equation is derived. The square and hexagonal lat-
tices are studied in Secs. III and IV, respectively. The
results are summarized and discussed in Sec. V.

II. DERIVATION OF THE EVOLUTION EQUATION

Suitably nondimensionalized, the equations describing
two-dimensional Boussinesq convection in a binary-fluid
mixture heated from below take the form'

1 VP+—J( Q, V'$) =R ( 1+S)0„+SR P, +V g,

(2.1a)

+J($,0)=g +V 9,
at

Qh' +J(Q, P)=rV P —V 0,
at

(2. lb}

(2.1c)

DQ=O on z=+1, (2.2)

where D —=0/Bz, and consider the following possibilities
for the stream function g and the temperature 9:

where g(x, z, t) is the stream function, 9( , xtz) denotes
the departure of the temperature from its conduction
profile, and P(x, z, t) =2 —0, where X(x,z, t) is the similar-
ly defined concentration distribution. There are four di-
mensionless parameters, the Prandtl number 0., the Lewis
number ~, the separation ratio S, and the Rayleigh num-
ber R. Finally, the symbol J(f,g) denotes the Jacobian

f.g, f.g. —
As boundary conditions we impose the no-mass-flux

condition

DO=0 on z =+1 (2.3f)

corresponding to thermally insulating boundaries at both
top and bottom. Note that we have imposed boundary
conditions at z =+1 instead of the more usual z=1,0.
The present choice, however, allows us to take advantage
of certain symmetries inherent in the problem, as ex-
plained further below.

Equations (2.1) have the trivial solution /=8=/=0,
corresponding to no motion. As the rate of heating, mea-
sured by the Rayleigh number R, is increased, this state
loses stability and convection sets in. For sufficiently
large positive separation ratios S, the wavelength of the
mode that first becomes unstable is infinite. This behav-
ior, studied in detail in Ref. 6, arises because the separa-
tion caused by a destabilizing temperature gradient be-
comes so effective at setting up an additional destabilizing
concentration gradient that the stability of the system is
essentially controlled by the latter. Because of the no-
mass-flux boundary condition, the system behaves as a
pure Rayleigh-Benard convection with fixed thermal flux
boundary conditions for which the wave number of the
mode that first loses stability is well known to vanish. '

This occurs because, for example, the fluid near the top
boundary does not lose heat to the boundary and so does
not cool and descend. Since heat is still exchanged be-
tween up-welling and down-welling motions rendering
heat transport less efficient, long wavelengths are favored.
The same explanation applies to the no-mass-flux prob-
lem.

In the following we take advantage of the long wave-
length of the initial instability, and introduce the follow-
ing slow variables:

x =—X/e, t = T/e, 0&p«1 . (2.4)

In addition we scale

P=e+(X,z, T), H=e B(X,z, T), (5=4(X,z, T) (2.5)

and let R =R,(1+pe'). Since 0& e &(1, the scale of the
motion is O(1/e') in the original variables. With these
variables Eqs. (2.1) become

g=D /=0 on z=+1,

Q=DQ=O on z =+1,

g=D /=0 on z=1,
Q=DQ=O on z = —1,

(2.3a)

(2.3b)

(2.3c)

e (e 4xx+D 4)+e +x(E D+xx+D 4)
BT

e D% (F- % xxx +D 4x }

=R (1+pe )(1+S)e e +SR (1+pe }4

0=0 on z =+1,

0=0 on z =1,
DO=0 on z= —1 .

(2.3d)

(2.3e)

+& +xxxx+2& D +xx+D +

+&'(+,DB Doe, )=e,+~—'e, +D'e,
clT

e +e ( IIxD& D+4&x) =r(e 4&xx—+D P)
c}T

(2.6a)

(2.6b)

These conditions state that the boundaries z =+1 are
streamlines (/=0), either stress-free (D /=0) or no-slip
(D / = 0), and that the temperature is held constant
(0=0) or that heat is supplied at a constant rate
(DO=0). We do not consider here the case

e(e Bxx+D —B) .

(2.6c)

These equations can be solved by an asymptotic expan-
sion of the form
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4 =0,+e'4, +
e=e,+~'e, +
4 —+0+@N~+. . .

At leading order, Eq. (2.6c) yields

(2.7)

Finally, at 0 (e ), the solvability condition for @4 yields
the desired evolution equation for f,
a

RO—Sp Af" Bf—""+C(f'3)'+D(f'f")',

D +0=0, with D+0=0 on z =+] . (2.8)
where

(2.20)

Hence

+o=f(X, T) .

From (2.6a) we have

D 40= SRof—',
where the prime denotes 81'BX, and hence

(2.9)

(2.10)

,
'—f—'Pdz,—1

B=—
—,
'

w Udz+ Zdz

C =
—,'SRO DPV dz,

(2.21a)

(2.21b)

(2.21c)

+O=SRof'P(z) . (2. 1 1)

Here the quartic polynomial P(z) depend on the bound-
ary conditions (2.3a) —(2.3c). From (2.6b) we similarly ob-
tain

B =SR f"Q(z), (2.12)

7.D 42= —(~+SROP)f" SRODPf —' (2.13)

In view of the boundary conditions (2.2), this equation
has a solution if and only if

SRO f P dz+2r=0 . (2. 14)

This relation determines the critical Rayleigh number
corresponding to the different boundary conditions
(2.3a) —(2.3c). Note that the result is independent of the
conditions (2.3d) and (2.3e). The corresponding solution
of (2.13) takes the form

&b2= f2(X, T)+f"U(z)+f' V(z),

where

(2.15)

SR 0 SR 0
D U= — 1+ P, D V= — DP . (2.16)

Similarly,

4'2 =SRof2P (z)+@Sf'P (z)+f'f"W(z) +f"'Z (z),
(2.17)

where

D W= (SRD) (PD P —DPD P) —2SRDV—,
4 1

D Z= —2SRQD P SR (1+0S)Q SR—QU . —

Moreover,

D B =(SR ) (f" PDQ f'f "'DPQ)—
—SR of q'P p,Sf"P—
—(f 'f ")'W f""(Z+SRQQ) . —

(2.18a)

(2.18b)

(2.19)

where the sextic polynomial Q(z) depends not only on
the boundary conditions (2.3d) and (2.3e), but through P
also on (2.3a) —(2.3c).

At 0 (e ) we obtain from (2.6c),

D =
—,
' 2r f V dz+ f W dz+SRo f DPU dz

+(SR0) f DPQ dz (2.21d)

In writing these expressions for the coefficients, we have
used integration by parts, the boundary conditions
P(+1)=W(+1)=Z(+1)=0 and the relation (2.14) to
simplify the results. One important consequence is that
the unknown function f2 drops out and need not be
determined. The coefficients A, 8, C, D for various com-
binations of the boundary conditions (2.3a) —(2.3c) and
(2.3d) —(2.3e) are listed in Table I. Note that C)0 al-
ways.

Equation (2.20) takes the same form as the correspond-
ing equation for the Rayleigh-Benard convection in a
pure fluid with no-heat-flux boundary conditions at
z =+1. ' In particular, when both the stream function
and thermal boundary conditions are the same at both
top and bottom, the coefficient D vanishes and (2.20) is
equivariant with respect to the symmetry f~ f inher-—
ited from a reflection symmetry in z =0. The resulting
equation has been studied at length in Ref. 7 for B)0,
and a roll of finite wave number was found to evolve con-
tinually towards smaller and smaller wave numbers. The
most notable difference between the pure fluid problem
and the present problem is that the coefficient 8 becomes
negative for sufficiently small positive S. The value of S
where this first happens, called S„ in Table I, is the
smallest value of S at which the linear problem has k, =0
as the mode that first becomes unstable. This is illustrat-
ed in Fig. 1 where the numerically calculated neutral
curves for the boundary conditions (2.3b) and (2.3d) are
shown for S (S,S =S, and S)S„. For S)S the
neutral curve has a minimum at k =0. Consequently the
present method can be used to deduce analytically the
values of S„(cf.Fig. 8 of Ref. 6). Observe, finally, that
in the case (2.3c) and (2.3e), the coefficient D can change
sign as a function of the Lewis number ~.

The derivation of an evolution equation for two-
dimensional patterns is complicated by the presence of
vertical vorticity. However, when the Prandtl number
o. = ~, an assumption we henceforth make, the deriva-
tion of the corresponding evolution equation for the hor-
izontal planform function f (X, Y, T) is quite similar to
that given above. Omitting the details we obtain



1552 E. KNOBLOCH 40

TABLE I. The critical Rayleigh number and the coefticients in Eq. (2.20) for various combinations of the boundary conditions
(2.3a) —(2.3c) and {2.3d) and {2.3e). The value of the separation ratio S for which B =0 is also given.

Conditions Ro

(2.3a) and (2.3d) 15
2 S

2
15 1386 1386S

155r
126

691r
1091—691r

(2.3b) and (2.3d) 45—7
S

1

45 1+—2+—'" r
231 231

10r
7

131r
34 —131r

(2.3c) and (2.3d) 20—
S

1

20 371+2+6937S
760r
567

r 5 r' T'—+—
3 21 t7 9

410r
261 —410r

(2.3a) and (2.3e) 15
2

2
15

12077
1 + P + 1091

1368 1386
155r
126

2077r
1091—2077r

(2.3b) and (2.3e) 45—r
S

1

45

10r
7

181r
17—181r

(2.3c) and (2.3e) 20—
S

1

20

760r
567

5 + r2
3 21o

459r
116—4597

B

at
= —R 13SP A V f Bv f—

+cv.
I vf I'vf + ,'D(v. v'f v-f + v'I vf I'),

(2.22)

where (X, Y) =e'(x, y) are the appropriate slow variables
in the horizontal, V=(B/BX, B/BY), and the coefficients
A, B,C, D are given by (2.21). Equation (2.22) is very
similar to (2.20); note, in particular, that
—,'(V V fVf+V IVf I ) reduces to (f'f")' in the one-
dimensional case. It can be shown that the structure of
this term is a consequence of the self-adjointness of the
linear problem.

In the above derivation the small parameter e specifies

750-

500-

S =S„(1—ve ), 37) 0

R =Ro(1+ve +pe ), p)37

(2.23a)

(2.23b)

Then the linear terms in Eq. (2.22) both pick up a factor
of e . For consistency it is now necessary to scale
T~T/e and either f~F. f (if DAO) or f~ef (if
D =0). This has the effect of introducing the term V f
into the evolution equation at leading order in e. One ob-
tains evolution equations of the form

a RoS„(P—v )A—V f+vBV f

the wave number of the pattern. When B )0 (i.e. ,
S )S ), this wave number is selected by nonlinear pro-
cesses that are beyond the scope of ~he present paper.
However, when 0 &S —S ((1, the quantity e is related
to the wave number at the onset of the instability and
hence to the parameters of the linear theory allowing us
to impose the wave number externally. Consequently, we
focus in the following on analyzing (2.22) in a neighbor-
hood of (RO, S„)that is sufficiently small where that the
above derivation still applies. This point is a type of
codimension-two singularity for the present problem.
Specifically, we let

250- +FV f+ (V V fVf+V IVfl )
3

(2.24a)

+Fv'f +cv.
I vf I'vf, (2.24b)

F&G. 1. Neutral stability curves R, (k) for the boundary con-
ditions (2.3b) and (2.3d). The dashed line indicates the values of
k, which minimize R, (k) for each value of S. Note that k, van-
ishes when S ~S =0. 130. After Ref. 6. F=—,

' L +0 dz, (2.2s)

where vB =B/e . In these equations all the terms are
formally of the same order. It is a simple matter to
derive them from Eq. (2.1) given the above scalings. One
then finds that
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where

D2L = —wU —Z,
D H= —Ro(1+S„)M

(2.26a)
f (x)=f (x+~,ai+ npa2), (3.3)

(cf. Fig. 1). 'I'o study pattern selection we look for solu-
tions to (2.27) that are doubly periodic in the plane"

ROS
L 2D Z ROS P (2.26b)

D M= —ROS Q —Z, (2.26c)

+ —(V V fVf+V IVf I'),
3

(2.27)

where the coefficients p, v, lr, P are related by an obvious
transformation to those appearing in (2.24). Evidently,
Eq. (2.27) includes both the possibilities (2.24) as special
cases. However, it is more appropriate to think of (2.27)
as arising from the scaling f~ef, D ~eD, and
T~ T je . To make the coefficient D of order e it is
necessary to change the boundary conditions at z =+1
and choose boundary conditions on the two plates that
agree to within O(e). For example, we can take the tem-
perature to be fixed at z =1, i.e., 0=0, and can suppose
that due to constant power supplied to the bottom plate
the appropriate thermal boundary condition there is
@DO+0=0, where e is now the inverse of the Biot num-
ber. With identical boundary conditions on g at the top
and bottom this problem has D =O(e). The analysis of
the spatially periodic patterns described by Eq. (2.27) that
begins in Sec. III shows that the symmetry-breaking
terms (P&0) have an important effect on the stability of
the possible patterns in the present system.

III. PATTERN SELECTION
ON THE SQUARE LATTICE

with L, H, and M having the boundary conditions of 4,
4, and 8. Some tedious algebra readily shows that at the
codimension-two point (R,S)=(RO, S ), F is always pos-
itive, as already indicated by Fig. 1. For example, one
finds that F =0.095' for case (2.3b) and (2.3d) and
F =0.485' for case (2.3a) and (2.3d). Consequently we
can scale out F by appropriately changing the units of
X, Y and henceforth assume that this has been done.

In the following we shall find that neither equation
(2.24) is completely satisfactory because of the presence
of nongeneric behavior. For example, Eq. (2.24b) has the
reflection symmetry f~ f which m—ay be weakly bro-
ken. Consequently we focus here on the more general
equation

a
BT pV f+v—V f+V f+lrV ~Vf ~

Vf

ik X ik Y 2fo =
—,
' [z&e

' +z2e ' +c.c. ~(z, , zz) HC ], (3.4)

and for p —p,:—k )0 the amplitudes z, , zz satisfy the
equations'

r)
1

, ]

=p +q6
r2

(3.5a)

4i =4'v=0 . (3.5b)

Here z = r exp i/, , j= 1,2, and the real-valued functions
p and q are functions of the invariants N = r

&
+ r z,

b, =52=(rz —
r& ), and of A, . Existing results from singu-

larity theory show that provided the nondegeneracy con-
ditions

p~(0)WO, q(0)WO, p~(0}&q(0}

hold, the steady-state solutions of (3.5a) are in one-to-one
correspondence with the zeros of the normal form'

r, r)
n (r, , r2;X) =(A, +mX) +F05, m&O, eo,

2
'

2

(3.7)

where n „n2 are integers and the vectors a, satisfy
a;.ki =2rro;~, ~k, ~

=k, . This restriction to periodic solu-
tions enables us to make use of the techniques of
equivariant bifurcation theory. This is because at p =p,
only a finite number of wave vectors are now marginally
stable, and all remaining wave vectors have eigenvalues
that are bounded away from zero. The vectors a, or
equivalently k, define a two-dimensional lattice. Two
cases are of interest. In the first the lattice has a square
unit cell; the symmetry of the lattice is then the group
D4X T, D4 being the symmetry of the unit cell and the
two-torus T arising from translations (mod 2m/k, ) in
the directions a„az. In the second the unit cell is hexago-
nal, and the lattice symmetry is D6 X T . In the following
it will be important to observe that when P=0, Eq. (2.27)
has the additional Z2 symmetry generated by f~ f. —
Consequently, the full symmetry of the problem is
D4 X T X Z2 and D6 X T X Z2. However, since
D4X T XZ2 —D4X T —(see Ref. 3) the extra reffection
symmetry is important only on the hegagonal lattice.

In this section we study the square lattice. Here at
p =p, the center eigenspace is spanned by vectors of the
form'

In this section we begin our study of pattern selection
described by Eq. (2.27). The linearized equation has solu-
tions of the form exp(st +ik x), x—:(X, Y), where

where

eo=sgn[q(0)], m =p~(0)/~q(0)~, (3.8)

s = k (p + vk —k ) . (3.1)

p, = —(v/2), k, =v/2 (3.2)

Hence the neutral stability curve s =0 has a minimum at
k =0 when v (0, but when v) 0, the minimum occurs at

and p~(0) denotes t}p/r)N evaluated at X =b, =A. =O, etc.
The analysis of the normal form (3.7) shows that there
are two nontrivial zeros, (r „rz ) = (rR, O) and
(r, , r2)=(rs, rs), corresponding to rolls and squares, re-
spectively. The normal form (3.7) can also be used to
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determine the stability of these solutions with respect to
perturbations on the square lattice. ' One finds that
rolls are stable if p«, (0)—

q (0) & 0, q (0) &0, while squares
are stable ifp«(0) & 0, q (0) & 0.

To calculate the coefficients p~(0), q(0) we employ
standard perturbation theory, writing

f =efo+E f, +F. fz+
P —Pq+FP]+6 P2+

and seek steady-state solutions of (2.27) in the form

f (X, Y) =r, cos(k, X)+rz cos(k, Y) .

(3.9a)

(3.9b)

(3.10)

At each order we determine p, from a solvability condi-
tion for the problem

n —]
(3.1 1)

(0) (b)

—+ —+

FIG. 2. Bifurcation diagrams N(A. ) on the square lattice for

(a) P(k, and (b) P& k, . The stability of rolls (R) and squares

(S) is indicated by the signs of the eigenvalues: negative

(stable), positive (unstable). Solid lines denote stable branches.

n(r, , rz;A, , a)=(A, +e,N+ezb, )
r2

stable rolls can be studied analytically near the
codimension-two degeneracy p=p„k, =P, where we

have set, without loss of generality, ~=1. Singularity
theory' shows that in this case the zeros of the vector
field (3.5a) are in one-to-one correspondence with those of
the normal form

where Lo —= —k, V —2k, V —V and I' denotes nonlinear
terms. At 0(e ) we find p, =O, while at 0(e') we obtain
the two conditions

where

+(a+N)5
r2

(3.16)

(3.12a)

(3.12b)

e, = sgn[piv(0) ],
ez =sgn[q«, (0)pg(0) —qg(0)p~(0)],

(3.17)

p"=(—'«k + 'P )r-
p =( '«.k, + ,'P )r—— (3.13a)

(3.13b)

Since ~) 0 it follows that both rolls and squares bifurcate
supercritically with increasing p.

If we compare these results with those obtained from a
Taylor expansion of the vector field (3.5a) we readily ob-
tain

=
—,'(«k —P )

(0)
pz(0)

Jzx(0) = —
—,'(5«.k, +3P ),

(3.14a)

(3.14b)

where pz(0) =k, & 0. Hence, when

«k =P (3.15)

the nondegeneracy condition q (0)WO fails, and we have a
degenerate or codimension-two bifurcation. This bifurca-
tion separates the two cases «k, &p (squares stable) and

«k, & p (rolls stable), shown in Fig. 2. Note that squares
are stable provided the boundary conditions at the top
and bottom are not too diA'erent. Note also that as S ap-
proaches S„ from below, k, tends to zero, so that condi-
tion (3.15) occurs for smaller and smaller values of P.
Thus in this limit the region of stable squares shrinks to
zero.

The nature of the transition between stable squares and

by eliminating from the right-hand side of (3.11) terms of
the form cos(k, X) and cos(k, Y), respectively. From
these results we deduce that the branches of rolls and
squares bifurcate simultaneously from p=p, with their
directions of branching given by

At 0(e ) we obtain no solvability condition, while at
0 (e ) we find that the following two conditions hold

1 4 851 2 2 139 4
( ~4" i ~44o" i"2 iso "z i

4 851 2 2 1 4(sor i or irz+ —„rz)rz= 0

(3.20a)

(3.20b)

These conditions are to be identified with the fifth-order
terms in the vector field (3.5)

and A, , a are the two unfolding parameters, proportional
to p —p, and q(0), respectively. The vector field (3.16) is

a normal form provided the two nondegeneracy condi-
tions

p~(0)WO, q«, (0)p~(0) —q~(0)p«(0)%0 (3.18)

hold at the degeneracy. Analysis of the zeros of (3.16)
and their stability shows that if a &0, there is a branch of
steady-state solutions of the form (r„rz), r, Wrz, hereaf-
ter referred to as crossrolls (CR), which bifurcates in
secondary pitchfork bifurcations from the S and R
branches, and is stable when e, &0, e2)0 and unstable
when e& &O, e2&0. In the present case, E]=—1 since
piv(0) &0 [Eq. (3.14b)], and it remains to calculate ez to
determine the nature of the transition from stable squares
to stable rolls. Note that since p~(0) and q«(0) are
coefficients of fifth-order terms in (3.5a) while q~(0) is a
coeScient of a seventh-order term, it is necessary to go to
seventh order in the calculation that follows. ' Essential-
ly identical conclusions follow from a singularity theory
analysis in which A. is treated as a distinguished parame-
ter. "

To calculate these coefficients we carry expansion (3.9)
to seventh order. The calculation is done at the degen-
erate bifurcation point. With v= 1 we therefore set

p, =iu„P=k, . (3.19)
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1
I[—,'p»(0)+pa(0) —qiv(0)]r', +[p»(0) —2p (0)]r,r +[—'p (0)+pa(0)+q (0)]rz jr, =(), (3.21a)

[[2pxw( ) pa(0)+qx(0)]ri+[p»(0) —2pa(0)]rir2+[ —,'p»(0)+pa(0) —q&(0)]rzjr2 ——0
4

(3.21b)

We deduce that

p»(0) =0.0984pq(0),

pa(0) =0.3447pi (0),
q~(0) =0.3783pi (0) .

(3.22)

pNNX(0) =4. 145p A. (0»
p~a(0) = —1.306p) (0),
q»(0) = —1. 159p),(0),
qa(0) = —0.0425pi (0),

(3.24a)

It follows that e2 = 1. Since A, —:p —p, and
o. =—,'(k, —p ), we now know all the coeflicients in the
normal form (3.16). The results of the corresponding
analysis are summarized in Fig. 3.' For p& k, [Fig. 3(a)]
the initial instability gives rise to a pattern of squares
which remain stable with increasing Rayleigh number p.
For p) k, [Fig. 3(b)] the initial instability develops into a
pattern of rolls. As p increases the rolls lose stability at a
secondary pitchfork bifurcation producing a branch of
crossrolls. This branch is stable and terminates on the
branch of squares in another pitchfork bifurcation. At
this bifurcation the squares acquire stability and remain
the stable solution for yet larger p. Thus stability is
transferred from rolls to squares via a secondary branch
of crossrolls. This completes our discussion of the bifur-
cations on the square lattice.

(a)
~R

—+
(b)

]R
I

I
/«+

I
CR

+

FIG. 3. Bifurcation diagrams N(X) near the codimension-
two degeneracy for (a) 0 & k, —13« I, and (b) 0 &13 k, « l. In-
(b) stability is transferred from rolls to squares via a stable
branch of cross rolls.

Note that (3.20) by themselves do not admit solutions
with riWrz The . crossrolls are present in the unfolding
of (3.20) only. At O(e ) there is ayain no solvability con-
dition. Finally, at 0 (e ) we obtain

(0.0067r i +3.831r ir 2+2.927r ir 2
—1.237r& )r, =0,

(3.23a)

( —1.237r i +2.927r ir2+ 3.831r ~rz +0.0067r2 )r2 =0,
(3.23b)

and conclude that

IV. PATTERN SELECTION
ON THE HEXAGONAL LATTICE

On the hexagonal lattice the center eigenspace at
p =p, is spanned by vectors of the form ' "

ik X ik (+3Y—X)/2fo= —,'[z, e ' +z2e
—ik, (+3Y+X)/2 +c.c.(z „z2,z3 ) E I(: ] . (4.1)

We consider first the case p=0. Then Eq. (2.27) has the
additional reflection symmetry f~ f, and—symmetry
considerations lead to the following equations for the am-
plitudes (zi, zz, z, ): ''

z, —z, (l, +u, l3+u, l5)

+zpz3q(m& + u im7 +u im9) (4.2)

together with the equations obtained by cyclic permuta-
tion of (z, , z2, z3). Here the quantities l, , m are real-
valued functions of O. „o.2, o.

3 and q given by

cT] =u
) +u2+u3

u Ju2+u2u3+ u3u J

03 —u )u2u3

q —Z )Z2Z3 +Z JZ2Z3

(4.3a)

(4.3b)

(4.3c)

(4.3d)

where u =z z, j = 1,2, 3, and of the bifurcation parame-
ter k—:p —p, .

In Table II we list the six types of steady solutions that
are of interest to the present problem. The table lists the
representatives from the fixed-point subspaces of each
solution type together with the terminology that will be
used to refer to them. In the generic case, studied in Ref.
11, the following nondegeneracy conditions are assumed
to hold:

1, (0)+13(0)%0,

21, (0)+13(0)&0,

31, +13(0)WO,

13(0)%0, m~(0)WO .

(4.4a)

(4.4b)

Under these conditions four primary branches bifurcate
simultaneously from the trivial solution at p=p, . These
are rolls (R), patchwork quilt (PQ), hexagons (H) and

regular triangles (RT) (see Table II); of' these PQ can nev-

er be stable. However, in the present problem 13(0)=0.
To show this we determine perturbatively the roll and
hexagon branches. We find that
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TABLE II. The six most important solution types to Eqs. {4.2).

Pattern

Rolls
Hexagons
Patchwork quilt

Rectangles

Regular triangles

Imaginary rectangles

(z[,z2, z3)

x(1,0,0)
(1,1, 1)

x(0, 1, 1)
1 1x 1,—,—'a'a

y(i, i, i)
I 1

y i, —,—'a' a

Conditions

x&0
x&0, x(0
x &0

x &0, a&0, 1, ~

y&0

y &0, a&0, 1, ~

Abbreviation

R
H+, H
p

RT

IRA

I, (0)+13(0)
~~ 2 3 Kk 2X~ 2

R 4 c R (4.Sa)

31, (0) +13(0)

l, i.
(4.5b)

Since I i i (0)=k, , we therefore have

I, (0)= —3i~k, &0, (4.6a)

13(0)=0 . (4.6b)

The degeneracy (4.6b) has a number of important conse-
quences. ' Specifically as many as six primary solution
branches can now bifurcate simultaneously at p =p, .
These are the solutions listed in Table II. Since
I, (0) &0, all bifurcate supercritically. To determine

their relative stability, i.e., stability with respect to per-
turbations on the hexagonal lattice, it is necessary to
determine three fifth-order terms in the Taylor expansion
of (4.2). The results of the abstract theory' are summa-
rized in Fig. 4, showing the (13 (0),15(0)) plane for

m~(0) )0. The plane splits into 12 regions with distinct
bifurcation diagrams. In the insets we show which of the
six possible solutions exist in which region, and list the
nonzero eigenvalues characterizing their stability. The
stable patterns are explicitly indicated in each of the 12
regions. It will be observed that in each at least one pat-
tern is stable, with stable rolls and hexagons coexisting in
regions 2, 3, and 12, and stable hexagons and patchwork
quilts coexisting in regions 8 and 9. Neither rectangles
nor imaginary rectangles can ever be stable.

To use this classification it is necessary to determine
the three coefficients 13 (0), I&(0), and m&(0). We first

note from (4.2) that the hexagon and RT branches are
given by

I, i(0)A, +3xHI, (0)+xH[ —',I, (0)

+31, (0)+313 (0)+I~(0)+2m~(0)]+O(6)=0,

(4.7a)

Ii i(0)A. +3yR~Ii (0)+ya~[ —'Ii (0)

+31, (0)+313 (0)+15(0)]+O(6)=0 . (4.7b)

Hence by computing hexagons and RT to fourth order
we determine the coefficient m5(0). It is also possible to
show from (4.2) that the RA branch exists provided'

[13 (0)+I~(0)]aR~+21i (0)+I~(0)—2m5(0)

=0(2), (4.8a)

while the IRA branch exists provided

[13 (0)+15(0)]a,a~+213 (0)+1,(0)=O(2) . (4.8b)

FICx. 4. The (13 (0), l, (0)) plane for m5(0) &0, showing the
12 regions in which distinct bifurcation diagrams occur. The in-
set tables give the number of negative (stable) and positive (un-
stable) eigenvalues for each of the solution branches present in
each region. The stable pattern(s) in each region is (are) indicat-
ed explicitly. After Ref. 12.

Note that the parameter a is uniquely specified. This is a
consequence of the fact that 13(0) vanishes identically,
and thus cannot become an unfolding parameter. In
more general circumstances the RA and IRA solutions
would have two-dimensional fixed-point subspaces. From
the results (4.8) it follows that if we determine the value
of a for the RA and IRA branches, we obtain two in-
dependent relations between 13 (0) and 1~(0). Together
with m~(0) this provides sufficient information to deter-
mine the three fifth-order coefticients. '
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A. Rectangles 197l3 (0)+ 164lq(0) =0 . (4.17)

To find a solution of Eq. (2.27) in the form of RA we
use perturbation theory starting with the linear result
(4.1) with (z&, zz, z3)=xz&(1, 1/a, 1/a). At second order
in the amplitude xRA, we find m, (0)= —,', k, )0 . (4.18)

If we now use the results (4.11b) and (4.15) in (4.7), we
can determine the coefficient m &(0),

pRA 3Kk2
a

Moreover, from (4. 13) and (4.17) we deduce
(4.9)

(4.19)

RA 3 15 93
64 14a 56a

~4
X RA

16
(4.10a)

P4 1 15 93 381
a a 56 56a 448a

~4
X RA

16
=0, (4.10b)

from which it follows that

R
P4 =

&O24XR

1245 X~ 4
p4 7 ~ 68 xH

(4.11a)

(4.11b)

The corresponding results for PQ can be obtained by tak-
ing the limit a ~0 with x /a fixed, but are not required in
what follows. In addition, by eliminating p& from (4.10)
we obtain the value of a on the RA branch,

Note that when a =1, this reduces to the result (4.5b) for
hexagons, and when a = ~, it reduces to the result (4.5a)
for rolls. The result (4.9) holds for any a. This is no
longer true at fourth order in xRA, where one obtains two
solvability conditions,

We conclude, therefore, that the present system falls in
region 11 of Fig. 4, and that hexagons are the stable pat-
tern, with the remaining four patterns, rolls, PQ, RT, and
IRA, all unstable.

When P&0 the midplane refiection symmetry is absent.
In this case equations (4.2) are replaced by

z, =z, (h, +u, h3+u, h, )

+zqz3(p2+ u )p4+ u @6), (4.20)

where the quantities h -,p are now real-valued functions
of 0.

&,
o.z, o.3, q, and A, . One must now distinguish be-

tween H+ (xH )0) and H (xH (0). When pz(0)%0,
one can easily show that there are only three primary
branches, rolls and hexagons (H+, H ), which bifurcate
simultaneously at p, and that all are locally Unstable. "
In the present problem, owing to the self-adjointness of
the operator L, p2(0)=0, and there are four primary
branches, rolls, hexagons (H+, H ), and rectangles. "

This bifurcation problem is described by the normal
form

3a +11=0, a&0, 1, ~ . (4.12)

Since a has to be real, this result implies that the RA
branch does not, in fact, exist. Nonetheless this result
can be used in (4.8a) to obtain the relation

n, —:z, (A, +ao, +eu
&
+do, )

+z2z3(bcr, +u, +cq )=0 (4.21)

5l, (0)+81~(0)+6m, (0)=0 .

B. Imaginary rectangles

(4.13) analyzed in Ref. 11. The analysis shows that if e )0 and
a +e (0, rolls are stable regardless of the various
higher-order terms. We now show that this is the case in
the present problem. To do this we calculate the hexagon
branch to second order in the amplitude, obtaining

A similar procedure for solutions in the form of IRA
yields at second order in y&a~ a relation identical to (4.9).
At fourth order in y, RA we obtain

p2 =( —,'xk, +P )xH (4.22)

&RA+ 3 +
64 14a

w 4
33 ~ IRA

56a 16
(4. 14a)

Thus, since ~) 0, pz) 0 and both hexagon branches bi-
furcate supercritically. From the normal form (4.21) we
have, however,

a a 56
3 129

112a 448a

w 4
& &RA

16
(4.14b)

A, = —(a + ,'e)cr, +O(—cr'-,)

for hexagons and

(4.23a)

Setting a = co, we recover the result (4.11a) for rolls; for
RT we find (a +e)o &+O(o ]) (4.23b)

RT 237~4
4 716S& RT (4.15) for rolls. It follows from (3.10a) and (4.22) that

33a —131=0, a&0, 1, ~ . (4.16)

Finally, solving (4.14) for a along the IRA branch shows
that

a+ —'e = ——'~k ——'P
4 |. T

a +e = —
—,
' rck, —

—,'P

(4.24a)

(4.24b)

Hence the IRA branch does exist; Eq. (4.8b) yields the re-
lation

Since e =P /8) 0 and a +e &0, we conclude that rolls
are stable with respect to perturbations on the hexagonal
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(a)

PQ (3-1+)
H (4-)
IRA (2-2+)
RT (l-3+)
R (1—4+)

R(5-)
RA (3—1+)

H+ (2-2+)
H+ (1—3+)

lattice (see Fig. 5). Thus hexagons are stable only in the
special case /3=0.

V. DISCUSSION AND CONCLUSION

This paper was motivated by a desire to understand the
types of transitions between squares and rolls that can
occur in binary-fluid mixtures heated from below. Since
it is well known that the boundary conditions, and, in
particular, the no-mass-flux boundary condition, are
essential for such an understanding, we selected a separa-
tion ratio regime 0 & S —S « 1 in which the wave-
length of the initial instability is long, though finite, and
the basic equations can be reduced to an evolution equa-
tion for the horizontal planforrn only. Such an equation
can be derived for a great variety of boundary conditions,
including any that are of experimental interest, and re-
quires no approximation. We have found that an impor-
tant role is played by the lack of symmetry in the bound-
ary conditions at the top and bottom, and found that the
small amplitude dynamics of the system can be fully cap-
tured by analyzing a system with slight asymmetry only.

In order to understand the transition between squares
and rolls we studied pattern selection on the square lat-
tice. This procedure, appropriate for large-aspect-ratio
systems, showed that with symmetric or nearly sym-
metric boundary conditions squares are indeed stable, at
least with respect to perturbations on the square lattice,
in agreement with the suggestion made in Ref. 2. We
found, however, that if a small asymmetry is present then
squares will be replaced by rolls as S approaches closer
and closer to S from below. To elucidate the nature of
this instability we studied a particular codimension-two
bifurcation. The analysis showed that the rolls are stable
at small amplitudes only. As the Rayleigh number is in-
creased the rolls lose stability at a secondary pitchfork bi-
furcation producing a stable branch of crossrolls. This
branch, in turn, terminates on the branch of squares,
which thereby gain stability. Thus the squares remain
the preferred pattern at larger Rayleigh numbers even
with substantial asymmetry in the boundary conditions.
Consequently the analysis is unable to describe the transi-
tion from squares to rolls that is observed in the experi-
ments at R —R o = 0( l ).

We also carried out a similar analysis on the hexagonal
lattice. Here the symmetric problem was found to be de-

FIG. 5. Bifurcation diagrams o. l(k j on the hexagonal lattice
for (a) /3=0 and (b) /3~0. In (a) there are five primary branches
of which hexagons are stable; in (bj there are four branches of
which rolls are stable.

generate. Consequently, as many as six primary branches
could bifurcate simultaneously from the trivial solution.
We have determined that of these the hexagonal pattern
is the only pattern that is stable with respect to perturba-
tions on the hexagonal lattice. In addition, we showed
that with an asymmetry, however small, in the boundary
conditions at top and bottom the hexagons lose stability
to rolls.

Taken together these results suggest that squares will
be stable near onset for 0 (/3 (k, while rolls will be stable
for /3& /c, . However, no such conclusion can be drawn
about the special case /3=0. The prevalence of stable
squares in the nearly symmetric case suggests in turn that
an exact treatment, along the lines of Ref. 3, of binary-
fluid convection with smaller values of S would also yield
stable squares. Together with the fact that experiments
in circular, ' square, and rectangular containers all re-
veal stable squares near onset, these results suggest that
side-wall forcing is unnecessary for the existence of stable
squares. The possibility remains, however, that the oscil-
1ations observed at larger amplitude are affected by the
side walls, and additional experiments on the influence of
side walls are clearly desirable.

In view of the role played in the pattern selection pro-
cess by the asymmetry in the boundary conditions at the
top and bottom of the layer, it is important to observe
that small non-Boussinesq terms also break the up-down
symmetry. However, as discussed elsewhere, ' these
terms break in addition the self-adjointness of the linear
stability problem and so have a qualitatively distinct
effect. On the square lattice, squares remain stable when
these terms are sufficiently small; with increasing non-
Boussinesq terms, squares bifurcate subcritically but ac-
quire stability at a secondary saddle-node bifurcation.
On the hexagonal lattice, no stable patterns are produced
by the primary bifurcation, although hexagons (either
H+ or H, depending on the sign of the non-Boussinesq
term) acquire stability in a secondary saddle-node bifur-
cation; when /3=0 the other hexagon branch also ac-
quires stability but in a secondary bifurcation producing
an unstable branch of triangles. ' On the other hand,
when /3&0 rolls become stable at larger amplitude. Thus
when the non-Boussinesq terms are small their effect is
confined to the vicinity of the primary bifurcation.

In conclusion, we note that with stress-free boundary
condition oscillations may also arise from a coupling to a
mean Row of strength 0 (e ), required by Galilean invari-
ance. The evolution equation for such a flow requires
perturbation theory to O(e''). Only then would it be
possible to describe the resulting oscillatory instability of
the finite-amplitude patterns found above.
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