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The linear and nonlinear hydrodynamics of the two-dimensional lattice-gas automata (LGA) are
discussed. The physics of the LGA is found to be richer than previously expected. Together with
sound and shear waves (characteristic of simple fluids) there are three new hydrodynamic modes.
The conserved quantities corresponding to the latter arise from a feature of the microscopic
definition of the LGA; i.e., the particles of the microscopic gas occupy the sites of a regular lattice
and can only hop from one site to its nearest neighbors. The presence of these new conserved quan-
tities has unexpected results on the macroscopic behavior of the fluid. In fact, there is a nonlinear
coupling between the two classes of modes, and while the new conserved densities are merely con-
vected by the momentum density, the current of the latter contains terms that depend only on the
new modes. Thus the presence of a finite amount of the new conserved densities produces flow pat-
terns that are not solutions of the Navier-Stokes equation. Although only the two-dimensional
hexagonal-lattice gas is discussed, the arguments described here apply with equal force to currently
proposed three-dimensional models.

I. INTRODUCTION

Lattice-gas automata' (LGA) have been recently pro-
posed as an alternate technique for the numerical solu-
tion of the Navier-Stokes equation. They are discrete mi-
croscopic models which can be easily simulated on a
computer and whose macroscopic behavior is similar to
that of simple real fluids. The practical advantages of
such a technique are many, e.g. , intrinsic numerical sta-
bility, extreme parallelism. It has not been definitively
clarified, however, whether the hydrodynamic behavior
of the LGA can be really mapped into solution of the
Navier-Stokes equation, and if this new technique is actu-
ally more "economical" than the standard approaches for
the numerical solution of partial differential equation,
e.g. , finite-difference schemes.

In its simplest form the lattice-gas automaton is a gas
of particles that occupy the sites of a regular lattice and
can hop from the lattice sites to their nearest neighbors.
The particles can collide only on the lattice sites and the
possible collisions are described by a set of deterministic
rules. In a collision, the particles are scattered between
the possible hopping directions, leaving the number and
linear momentum of the particles present at each site in-
tact. The transition from the microscopic to the macro-
scopic description of the LGA is done by defining
coarse-grained conserved densities, e.g., momentum den-
sity, obtained by averaging their microscopic equivalents
over subregions of the lattice. The presence of micro-
scopic conservation laws then reappears in the macro-
scopic dynamic as hydrodynamic modes and, when the
underlying regular lattice has been properly chosen, it is
usually argued that the form of the hydrodynamic equa-
tions is very similar to that found for simple fluids.

The hydrodynamic description of the LGA has been
the subject of numerous papers. ' ' Unfortunately, until

Ref. 8, the list of conserved densities has been incom-
plete. In fact, the macroscopic behavior of the LGA
models currently proposed is richer than expected. To-
gether with the conservation laws imposed by the choice
of collision rules, there are other extensive invariants
which are a pecularity of the discretized dynamics of the
LGA. The presence of these new invariants can be easily
understood by using a trivial one-dimensional example.
Let g (x) be the linear momentum of the particles present
at site x, define G, (t)= g„,„,„g(x,t), G, (t)
= g„,ddg(x, t) as the total momentum of the particles
on even or odd sites, and let the collision rules conserve
the momentum and the number of particles at each site.
Since the particles can only hop between nearest neigh-
bors, G, and G, are exchanged at each time step. The
dynamics of this one-dimensional model allows three con-
served quantities: M, G, +G„and H =( —1 )'(6, —G, ).
The first two are the usual total number of particles and
the total linear momentum; the third is due to our ex-
tremely simplified dynamics.

The conserved quantity H can be easily generalized to
the two- and three-dimensional LGA. However, we will
restrict ourselves to the discussion of the two-dimensional
model described in Ref. 9. The analog of H in this model
is three conserved quantities H„where a=1,2,3, with
corresponding microscopic densities h, . In this paper, I
discuss the implications of these new conserved quantities
for the macroscopic behavior of the LGA fluid. The
main result of this work is Eq. (24), the constitutive equa-
tion for the two-dimensional lattice gas. The most strik-
ing feature of Eq. (24) is the presence of a nonlinear cou-
pling between the two classes of hydrodynamic modes. '

Although the h densities are merely convected, albeit in
an anisotropic fashion, by the momentum density g, the
expression for the time derivative of g, Eq. (22), con-
tains a term that depends only on h. Thus the presence
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of a finite amount of the h density produces flow patterns
which are not solutions of the Navier-Stokes equation.
On the other hand, since the current for the h, , Eq. (23),
is zero for h, =0, the presence of the h, depends on the
initial conditions used for the LGA simulation. Al-
though only the two-dimensional hexagonal-lattice gas is
discussed; the arguments described here and the relevant
results apply with equal force to the currently proposed
three-dimensional models.

The paper is organized as follows. In Sec. II I discuss
the linearized hydrodynamics of the LGA. The formal-
ism used is from Ref. 12 and the detailed concerning the
relevant calculations are relegated to Appendix A. In
Sec. II I give the linearized version of Eq. (22), which is
best expressed by the linearized hydrodynamic matrix, '

Eq. (10'). Equation (10') indicates that the new con-
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FIG. 2. Simulation with "pathological" initial conditions,
(hz) =hosin(2vry/W) and (g ) =0, in a two-dimensional box
with periodic boundary conditions. The coordinate axes are
oriented so that x~~C, and the box is a parallelogram of width (y
direction) W and length L. The solid curves plotted are the
momentum density (g, ) /ho vs y. The time difference between
curves is five microscopic time steps. The actual size of the sys-
tem used is L=2, W=64, the set of collision rules used in the
simulations is the FHP-III described in Ref. 9, and the sirnula-
tion is performed using a recently developed Boltzmann-
equation technique (Ref. 24).
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FIG. 1. (a) Plot of Ki obtained from a forced-Aow measure-
ment, as a function of the average number of particles per lat-
tice site. The set of collision rules used in the simulations is the
FHP-III described in Ref. 9. The solid line is the Chapman-
Enskog estimate for Kl given in the text. Together with K, (+ ),
I plotted the kinematic viscosity v (0), cf. the end of Sec. II.
The data for v are from Ref. 19. (b) Plot of K2, obtained from a
forced-flow measurement, as a function of the average number
of particles per lattice site. The set of collision rules used in the
simulations is the FHP-III described in Ref. 9. The solid line is
the Chapman-F. nskog estimate for K2 given in the text.

served densities h, , a = 1,2,3 have a nonisotropic diffusive
behavior. This is not surprising since the h are strongly
related to the underlying lattice. Equation (10') shows
also that there is no linear coupling between the "stan-
dard" hydrodynamics modes of the LGA, i.e., sound and
shear waves and the h, . At the end of Sec. II I give a
Green-Kubo expression for ~& and ~2, and h modes trans-
port coefficients, together with their Chapman-Enskog
values. In Fig. 1, I compare the transport coefficients ob-
tained by direct simulations with their Chapman-Enskog
analogs. Both the Green-Kubo expression Eq. (16) and
the Chapman-Enskog formula Eq. (17) are new. Section
III extends the previous one to include the nonlinear cou-
pling between conserved densities of the model. Here the
main result is Eq. (24), the "Eulerian" contribution to the
LGA hydrodynamic constitutive relations. Equation (24)
is obtained by keeping the first two orders of a perturba-
tive expansion in the intensive parameters conjugated to
the momentum density and the h -mode density. Once
again the details are relegated to Appendix B. The effects
of the unexpected nonlinear coupling between the two
classes of modes are illustrated by a simulation, whose re-
sults are depicted in Fig. 2. Section IV contains con-
clusions.

II. LINEARIZED HYDRODYNAMICS
OF THE LGA

A. Microscopic description of the model

The two-dimensional lattice-gas automation is defined
as a gas of particles that occupy the sites of a regular hex-
agonal lattice and that can hop from a site to its nearest
neighbors. The hopping is formally described by assign-
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ing to each particle a velocity selected from the seven-
velocity vectors C, =(cos[~(a —1)/3], sin[a. (a —1)/3]),
a =1, . . . , 6 and Co=(0,0). (Here and in the following
we take the abscissa axis to be oriented parallel to C, . )

To simplify the model even further, no more than one
particle is allowed to have a given velocity at a given site.
Thus the microscopic population density f, (r, t) is a
Boolean variable that indicates the presence (1) or the ab-
sence (0) of a particle of velocity C, at site r and time
step t.

The time evolution of the system is described as the
composition of a collision operator with a streaming
operator. The streaming operator describes the hopping
of the particles in the direction of their velocities, while
the collision operator conserves the total number of parti-
cles and the total momentum at any given site. Thus

g f, (r, t+1)= g f, (r —C„t),

g C, f, (r, t.+1)=g C, . f, (r —C„t) .

I will use the convention that a, b, c, . . . , label the micro-
scopic velocities, while i,j,k, . . . , label the Cartesian
coordinates. Repeated indices imply summation. I will

also define X as the time evolution operator obtained by
the composition of the collision and streaming ones. ' '
The order in which the collision and the streaming opera-
tor are composed is arbitrary; however, it does not affect
the results.

The total number of particles of the system
M = Q, Eti g, f, (r) and the total linear momentum

G = g, E n g, C, f, (r ) are c. learly conserved. 0 indi-

cates both the region of the hexagonal lattice occupied by
the system and its volume. A less trivial invariant is the
total staggered momentum

8, =( —1)' g (
—1) ' C, g(r, t), (2)

rEA

where C, is obtained by rotating C, by ~/4 counter-
clockwise, B, is the reciprocal space vector perpendicular
to C„ i.e., B, =(2/&3)C, . 1 also have introduced
the microscopic momentum density g (r, t)
= g, C, f, (r, t). Late.r we will need the density of
mass n(r, t)= g, f, (r, t) and the staggered-momentum
density

h, (r, t) =( —1)'( —1) ' C, .g(r, t) .

The index a in H, runs over 1, . . . , 6, but H, +3= —H,
and thus it is enough if we choose a = 1,2,3. Equation (2)
can be verified by inspection' and gives, together with N
and G, six extensive invariants.

In the following, the physically relevant formulas are
expressed in terms of thermodynamic equilibrium aver-
ages. The latter, indicated by (( », should be understood
as averages on the grand canonical ensemble

((f ». , „=y p.(,y, q)f. , (3)

where x indicates a possible microscopic configuration of
the LGA, f is the quantity f, e.g. , g (r), calculated on
x. The weight p„(a,y, g) is the grand canonical weight

aM —y 6—
yl H

p(a y n)=
Z(a, y, il)

Z(a, y, il)= g e™~ G ~'Ha
.

X

The intensive parameters a, y, g completely determine
the average values of the conserved densities. However,
due to the discrete nature of the model (i.e. , its lack of
Galilean invariance), the behavior of fluctuations around
the equilibrium is not independent of the equilibrium
average value of g and h, . This does not constitute a
problem since I will only compute averages on the equi-
librium state described by y, q=O, and e=o.o, where the
average number of particles per site is
((n (r) » oo=no=7d, and write ((f»=((f »
Note that for these values of the intensive parameters,
Eq. (4) completely factorizes on the sites and directions
and has the hexagonal symmetry of the underlying lattice
(see Appendix A).

B. Linearized hydrodynamics

Here, as in Appendixes A and B, I use the formalism of
Ref. 12. A microscopic state of the LCxA is indicated
with ~x & and the state of the system is expressed as a for-
mal sum on all the microscopic states of the system, each
weighted by their probability, e.g. , the state of the system
at time step t is

~
t &

= g p (t) ~x &. The application of X
on ~t & is defined as X~t &= g p&, (t)~x & (see Appen-

dix A). The Liouville equation is then ~t+1& =X~t &,

i.e., p (t + 1)=p, (t)
To obtain the linearized hydrodynamic of the LGA we

have to find its hydrodynamic modes, i.e., long wave-
length, slowly relaxing, eigenvectors

~e(q), t &=e-'""~e(q)&
of the Liouville operator X,

'q'I'p(q) & =&
I
q'(q) & . (&)

The eigenvector ~V(q), t & can be split, Appendix A, into
two "orthogonal" parts. The first is obtained by project-
ing ~%'(q), t & on the analogous Fourier components of the
conserved density fluctuations

n (q) = —g e 'q'[n (r) —no],&N r~n

g (q)= & g e 'q "g (r),
N rcn

h, (q)= —g e 'q'h, (r),
N rEn

where N is the total number of sites in the system. This
projection can be written in a more compact way by
defining the operator

p( ) y ~'(t(q) & ('(t(q)l (7)
(P(q) ~P(q) &

where P runs over I n, g, h, ], ( r1~ ~%' &
= (( O'P &&, (( @&&

is the equilibrium average of the quantity N, and + is the
complex conjugate of W. For future reference we also
define the susceptibilities y&= (P(q)~P(q) & and the com-
plement of P (q),

Q(P)=1 P(q) . — (8)
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The conserved density fiuctuations of Eq. (6) are not
eigenvectors of X for any finite q, but they are good ap-
proximations, to O(q), of eigenvectors of X. By adding
to them an appropriate correction of O(q) we can con-
struct a better approximation, correct to O(q ), to an
eigenvector of L and thus obtain an estimate for the ei-
genvalue which is correct up to O(q ). This suggests
that it is possible to recast the eigenvalue equation, Eq.
(5), into a more manageable form where only the local
equilibrium-conserved quantities enter. In fact, Eq. (5)
can be transformed (Appendix A) into

L&&., U&& is directly related to equilibrium correlation
functions between the microscopic currents conjugated to
the density P(q) and P'(q) and therefore contains infor-
mation on the dynamics of the system. Formulas (11)
and (12) allow us to bridge the microscopic description of
the lattice-gas automaton to its macroscopic hydro-
dynamics. By comparing Eq. (12) to its macroscopic
equivalent, ' we can obtain the Green-Kubo expressions
for the kinematic velocity v and the second viscosity g,
1.e.)

e '~'P (q) l%'(q) ) =P (q)XP (q) l
q'(q) ~

v= g g (J (0,0)lJ (r, t))+v, ,
+g rEO t =0

(13a)

x Q (q)x l %(q) ),
+P(q)X (q)

e "~'—Q(q)XQ(q)
(9)

v+g= g g ( J~( 0, 0)l J~(r, t)) +v, +g, ,
+g rEQ t =0

(13b)

where the transverse microscopic current J' is given by
and finally, by projecting Eq. (9) on the lp(q) ) modes, I
can express the decay rates s (q) as solutions of J,'(r, t) = g (C, .;C, , —c, 5,, )(f, (r, t) —d ), (14)

The matrices L&& (q) and U&& (q) are

( Jg(q)lg'(q) &

&xpxg
L&& (q) =iq lim

q 0

q, q
Uq~ (q) =

v'sprat

det[(e ' ~' —I )6~~ L~~ (q—) —U~~ (q)]=0 . (10)

U.,(q) =5.„q'~(Q ) =6.,q'[~, +Ir,(q.C', )'] (15)

c, is the speed of sound for the lattice gas, and v, and g,
are corrections to the transport coefficients due to the
discrete nature of the model. ' ' While expressions simi-
lar to Eqs. (13a) and (13b) were given in Ref. 17, we have
a new result in the expression for the diA'usion coefficient
for the h, modes. In fact, it is easy to show, using the
hexagonal symmetry of the lattice (Appendix A), that

x D,~~ + li g ( J, lQ(q)X'Q(q)J~(q) )
&-0 i =0

(12)

with

g (
—1)'( —1) '

reo, t=0

where J')(q) is the microscopic current of the density p
along the Cartesian vector j, and we neglect, in Eqs. (11)
and (12), terms O(q ). The D,~~ are corrections to the
transport coefficient due to the discreteness of the model
and they are explicitly given in Appendix A.

In Eq. (10) we split the matrix to be diagonalized into
two parts. The "Euler" term L&& is a streaming contri-
bution which is completely contained in the equilibrium
statistical mechanics of the LGA. In the case at hand,
only the P=n, P'=g elements of L&& are not null. They
represent the coupling between the longitudinal fluctua-
tions of momentum density and number density fluctua-
tions, i.e., the presence of sound waves. In contrast to

x (J,"(0,0)
l J, (r, t) ) +~, , (16a)

x, +~z= g g (
—1)'( —1) '

rEA t =0

x(g&(0,0)lJ (r t) ~+&, +& .. .

(16b)

where the K, are corrections due to the discrete nature of
the model, ~, , =v, = —

—,
' and ~2, = —

—,'. Having
identified the various pieces of Eq. (10) with their macro-
scopic equivalents we can summarize Eq. (10) in the more
compact form given below:

&x Cy hi h2 h3

L~~.(q) = x

hl

0

ic, q„

ic,q

ic,q

—(gq„+vq )

—gq„q

0

Ecs qy

—(gq +vq )

—
q x, (q)

0
(10')

h,
—

q x3(q)
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K = +K1

28d(1 —7/8d )
(17)

The symbols c„v, and g indicate, respectively, the speed
of sound, the kinematic viscosity, and the second viscosi-
ty of the LGA fluid. The transport coefficients for the h,
densities are anisotropic, i.e., v, (q) =K, +Kg(q C, ) .

In contrast to v and g, ~ has a nontrivial angular
dependence v=v(q). In fact, the h, modes are a pecu-
liarity of the microscopic definition of the model and thus
it is not surprising that this is reflected in the symmetries
of their transport coefficients. The diffusion coefficients
K& and K2 can be directly obtained by using a forced-flow
technique similar to that used in Refs. 19 and 20. In Fig.
1 these coefficients are plotted as a function of the aver-
age number of particles per lattice site. The set of col-
lision rules used in the simulations is FHP-III described
in Ref. 9. The solid lines in Fig. 1 are the Chapman-
Enskog estimate for K, K2

( —1)' g ( —1) ' (J"(0,0)l» (r, 0) &

= g (J"(0,0) lXJ"(r,0) & . (21)

Thus, using the analog of Eq. (13a), i.e. , Eq. (16a), to esti-
mate K~, we obtain K =v . This rough argument
gives one some intuition into why there is no difference
between K and v . However, the full value of v K& ob-
tained by the simulations, Fig. 1(a), clearly mirrors the
difference between Eqs. (13a) and (16a).

III. NONLINEAR COUPLINGS

For a more complete description of the LGA fluid
macroscopic behavior we need to include in the constitu-
tive relations the nonlinear contributions of the local
equilibrium densities. In essence, we have to extend Eq.
(10') to include nonlinear effects.

The local conservation laws can be written as

cE CF 3(2—1 ld+32d —44d +32d )

4d ( 6 —29d +66d —48d )

(18)

a, (n(r, t) &
= —a„(g (r, t) &,

a, (g, (r, t)&= —a, (J' (r, t)&,

a, (h, (r, t) &
= —a„(J'(r, t) & .

(22)

(J"(0)
l J,"(0)&

& J,"(0)
I J,"(0)&

—
& J,"(0)I&J,"(0)&

(19)

where

(J"(0)lJ"(t)&
=—g ( J"(r,O)J"(r', t) & .

r, r'
(20)

It is easy to show that

with d =d(1 —d). Equations (17) and (18) are obtained '

using a technique similar to the one described in Ref. 18.
The formula given above for K& is exactly the

Chapman-Enskog estimate for the kinematic viscosity
v Ref. 9. On the other hand, the Green-Kubo expres-
sion for v, Eq. (13a), is clearly different from Eq. (16a).
The coincidence between the Chapman-Enskog estimates
of the transport coefficients K, and v is, however, not
surprising. To support this statement we can use the fol-
lowing heuristic argument. Rivet argues that, in the
Boltzmann-equation approximation, the correlation func-
tion on the right-hand side of Eq. (13a) can be estimated
as

In the equation above, (P & are the local equilibrium den-
sities obtained by a suitable coarse-grained averaging pro-
cedure. Equation (22) is considered true in the long-
wavelength limit; thus, in that expression, r and t are
treated as continuous variables.

The dissipative contribution to the currents on the
right-hand side of Eq. (22) has been discussed in Sec. II.
The Eulerian, or nondissipative, part of the currents can
be estimated as an expansion in the intensive parameters
conjugated to g and h, . For our purposes it is enough if
the expression is truncated to the second order (see Ap-
pendix B). The resulting expression for (J' (r, t) & is then
(Appendix B)

(J'(r, t)&= —(5 ~+2C, . C, .~)(g (r, t)&(h, (r, t)&

+(K)5 +KpC . C . . )a„&h. (r, t) & . (23)

The physical processes described in Eq. (23) are convec-
tion [by the (g; (vr, t) & ] and diffusion, but neither of the
corresponding terms in Eq. (23) has rotational symmetry.
This should not be surprising since the staggered-
momentum modes are very strongly tied, Eq. (2), to the
microscopic structure of the model.

The current ( J, (r, t) & is given by

3

(J; (r, t) &
= 5( (pr, t)& A+, (g (r, t) &(g, (r, t) &+ g C, . C, , (h, (r, t) &(h, (r, t) &

a =1

+v[a„(g (r, t) &+a„(g;(r,t)&]+(g—v)5;a„(g/, (r, t) &, (24)

where the "pressure" p is given by

p(r, t)=c, (n(r, t)& —Ac, ( —', )[(g (r, t)&(g (r, t)&

+ (h, (r, t) &(h, (r, t) &] . (25)

I

In the equation above, c, is the speed of sound for the
gas, e.g. , c, =

—,
' for the seven-velocity model FHP-III of

Ref. 9, and A, = ( I —2d ) /4g, . '

The constitutive equations presented in Eq. (24) show
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some unexpected and striking features. In fact, Eq. (24)
contains, together with a pressure term and a standard
momentum convection term, a term that depends only on
the &h, (r, t) & densities. This term (together with a simi-
lar one concealed in the definition of p) makes the macro-
scopic behavior of the LGA fundamently differently from
that of simple real fluids. In fact, the h modes can act as
a source, through the presence term and/or the other
term explicitly indicated in Eq. (24), for the &g & densi-

ty. Hence the LGA can produce flow that are not the
solution of the Navier-Stokes equation.

In the simulations reported thus far (with the exception
of Refs. 23 and 24) there has been no clear indication of
the presence of the staggered-momentum density h. This
is not surprising since the initial conditions used had a
negligible projection on the h modes, and the macroscop-
ic flow does not [at the order of Eq. (23)] self-generate the
h densities. Nonetheless, the non-Navier-Stokes effects
described by Eq. (24) can be striking. In Fig. 2, I show
the results of a simulation with "pathological" initial
conditions &h~ &=hosin(2iry/W') and g =0 in a two-
dimensional box with periodic boundary conditions. The
coordinate axes are oriented so that xllC, and the box is a
parallelogram of width (y direction) W and length L
The curves plotted in Fig. 2 are the momentum density
&g„& versus y at successive times. The time derivatives
B, &g & measured in the simulations are in quantitative
agreement with Eq. (24). ' The actual size of the system
used is 8'=64, I,=2 and the simulation is performed us-

ing a recently developed Boltzmann-equation tech-
nique.

IV. CONCLUSIONS

to allow also for nearest-nearest neighbor hops. Unfor-
tunately, I think that it would be very difficult to prove
that this, or any other "simple" extension to the model,
will remove any undesirable extensive conserved quanti-
ty. In fact, a closely related problem in lattice-gauge
theory (doubling of the number of fermions modes) can-
not easily be solved.

The lattice-gas automaton has some very interesting
qualities, e.g. , intrinsic numerical stability; however, we
are not guaranteed that the flow patterns produced by
simulating it are automatically, apart from an essentially
trivial rescaling, solutions of the Navier-Stokes equation.
This does not imply that the lattice-gas automaton is not
a feasible numerical technique, but rather that, as many
other numerical methods, it requires some additional care
in the analysis of the simulation results before it can be
completely trusted.
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APPENDIX A

Here I give some of the details of the calculation
sketched in Sec. I. Since it is a rather straightforward
application of Ref. 12, what appears below is just a brief
summary of the formalism used and its application to the
LGA.

In the preceding sections, and especially in Eq. (24), we
have seen that the macroscopic behavior of the LGA
model currently used is richer than expected. There are
six conserved quantities, three are the usual mass and
momentum densities, the other three are the staggered-
momenturn densities h, that are a peculiarity of the mi-

croscopic definition of the LGA.
The effects of the staggered momentum on the "flow"

of the momentum and mass densities are not clear. It is
easy to conceive "pathological" initial conditions (see
Fig. 2) such that the macroscopic behavior of the LGA is
qualitatively different from simple real fluid flows. On
the other hand, it seems unlikely that the simulation set-
ups commonly used ' ' have, either in the initial condi-
tions or while running, an appreciable projection on the h

modes. The effects of a "controlled" injection of h on the
initial conditions of a standard test flows, e.g. , flow past a
cylinder, are currently under study.

The h-conserved densities are a peculiarity of the
definitions of the LGA: particles occupying the sites of a
regular lattice that can only hop between nearest neigh-
bors. Thus the new hydrodynamic modes are very
strongly tied to the microscopic structure of the model,
cf. the anisotropy of a., Eq. (15), and hence the "full"
macroscopic behavior of the LGA does not seem to have
any interesting physical application. The h, can be easily
destroyed. For instance, one could generalize the model

1. Local equilibrium perturbations

In Sec. II, I defined the scalar product

(A 1)

where p'" is the equilibrium probability for the micro-
scopic configuration x of the LGA system, Eq. (4). Equa-
tion (Al) suggests the formal vector notation

(A2)

& If & =&fleq& = g p„'qfz i lx & (A3)

The equilibrium "state" is invariant,

X leq& = leq&,

and

(A4)

(A5)

As in Ref. 12, I construct local equilibrium perturba-

together with the convention &xly & =5„. The operator
L applied to a "vector" means
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tions to the equilibrium state Eq. (4) by adding, to the
uniform value of the equilibrium intensive parameters, a
small amplitude modulation with wave vector q, e.g. ,

a(r) =ao+(el&N)e

lloc eq) =Z[a, v, g] 'exp g a(r)n (r)

are defined as

J"(r) =g,„(r),
J"„(r)=Jk (r),
JP. . . (r)= g C, . C, . „C,. ; (f, (r) —d),

—g y(r). g(r)

—g il, (r)h, (r) g lx ),
(A6)

ln(q)) = g e '~'(n (r) no)—leq),
& .~n

and then keeping only up the first order in the expansion
in e of the perturbed state. The corrections to Eq. (4) due
to the perturbation are then proportional to the vectors

As advertized, the vectors defined in Eq. (A7) are, for
q ~0, good approximations to eigenvectors of the Liou-
ville operator X (cf. Sec. II B). The term proportional to
q in Eq. (AS) represents the local conservation laws
obeyed by the densities. However, the discrete nature of
the lattice makes Eq. (AS) diff'erent from its continuous
analog. ' In fact, the currents that appear in Eq. (AS) are
"retarded, " i.e., X

l Jg (q) ) rather than
l Jg (q) ), and

there are also second-order corrections in the gradients
which, as it is shown in Eq. (12), have an eff'ect on the
transport coefficients of the lattice-gas automata.

lg (q))= g e ' i'g (r)leq),
& .en

(A7)
3. Equal-time correlation functions

lh, (q)) = —g e 'i'h, (r)leq) .
N ran

2. Microscopic currents

I will now systematically apply the evolution operator
to the local equilibrium perturbations of Appendix

A 1. The purpose is to verify that Eqs. (A7) are a good
approximation, up to 0 (q), to eigenvectors of X, and to
compute the scalar products needed for formulas, Eqs.
(11) and (12), of Sec. II. Using Eqs. (A3) —(A5) one ob-
tains, neglecting terms of 0 (q ),

&ln(q)&=In(q)&+iq Ig (q)& — &IJk (q)&,
2

&lg (q)&=lg (q)&+iqk&IJk (q)&+ '&IJkj(q)&,
2

(AS)

&lh, (q)) = —lh, (q))+iq &IJ'(q))

« (f, (r) —d)(f. (r') —d) )) =d (1—d)5., 5„, (A 10)

and using the hexagonal symmetry of the lattice, one
quickly obtains, in the long-wavelength limit,

& y(q) ly (q ) ) =y,5„5„, (A 1 1)

where the label P is n, g, or h, and the susceptibilities

y& are g„=7d (1—d) and y =pi, =3d (1—d). Using Eq.
(A 1 1) one can normalize the vectors, Eq. (A7), to
lp(q)) =(I/Qy )lp(q)).

The goal of the formalism presented in Sec. II is to ex-
press the linearized hydrodynamics of the system in
terms of equal-time correlation functions, i.e., thermo-
dynamic derivatives and transport coefficients. The prob-
ability distribution, Eq. (4), at the intensive parameters
corresponding to « n )) =7d and «g )) = « h, )) =O
completely factorizes on the sites and microscopic veloci-
ty directions and maintains the hexagonal symmetry of
the lattice. Thus the equilibrium equal-time correlation
functions can be easily evaluated. In fact, starting from

+ "~IJ',(q) &,

together with their "adjoints"

& n (q) I& =
& n (q) I

+ iq & g (q) I

—
& JP(q) I,

2

&g (q)l&=&g (q)l+iqk&Ji, (q)l — " ' &JPj(q)l,

4. Evaluation of the L&& matrix

The matrix elements &P(q)ling'(q)) that appear in
Eqs. (11) and (12) can now be readily evaluated. They
have the structure

& y(q) l&y'(q) & =5 + & P(q) I Jg(q) &

&xx

& h, (q)l& = —
& h. (q)l+iq &

J' (q)l

(A9)
& y(q)IJ f„(q) & .

XyXy
(A12)

where the currents J~ and their generalizations J~& . .

As I mentioned earlier the result is different from its con-
tinuous analog: the contribution 0(q ) present in Eq.
(A12) is a lattice eff'ect only due to the streaming part of
the LGA time evolution which, nonetheless, gives a
correction to the LGA transport coefficients. To make
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this transparent, L&&, Eq. (11), is defined as the O(q)
contribution of Eq. (A12), while the higher-order ele-
ments are absorbed in the definitions of U&&, Eq. (12).

5. Dissipative dynamics

The matrix elements

U&& =(P(q I Q(q) Q(q)LQ'(q)&

(A 13)
require additional formal manipulation. One first notices
that U„& = U&„=0, then one can show, using

Q(q}XI+(q)&=Q(q)XQ(q)l+(q)&+O(q), (A14)

&h. (q)IJ;)(q) &
= — "(&;,+2c.'. , c.'., ),

h

and D" =D"'=D '=0. The speed of sound of the
LGA, c„is defined by c, =ps jy„.

6. Green-Kubo formulas

The expressions, Eq. (12), can be drastically simplified
by using the underlying hexagonal symmetries of the lat-
tice and assuming translational invariance. Thus one can
rewrite

Ui =qkq, [(0 v—}~a,~, +v(& i&a, +(i klieg, )l

ab Qk9j ~ab Ca;m a;1

that

while

(A15)

T

g ( —I)'& J'(q) IQ(q)&'Q(q}J,"(q) &

t=0

g & J'(q)
I Q (q)&'Q (q}J, (q}&

+g t =0

—(J,'(q) IJ;(q) &

X [«2 &i@—o, &m, +&i(&m(&~, + fink &i, )]
and show that U, &

=0. The resulting Green-Kubo ex-
pressions for the transport coefficients K), Kp, v and g are
given in Sec. II, Eqs. (16)—(18). The lattice correction
I, = ) (g, +v, } is not completely given by Eq. (A17). In
fact, since the decay rate for the sound waves is
s(q)=+icq+I q, I =

—,((v+g), there is another lattice
contribution of order q concealed in the expansion of the
term e 'q' —1 that efT'ects the decay of sound waves and
should then be incorporated in I, .

—
& J;(q }IJ,'(q) & (A16) APPENDIX 8

Summing second-order correction terms of Eq. (A12)
with Eq. (A13), one recovers Eq. (12) with

I C~(.(q)IJ„"(q) &
=

Xn

(g((q) I J;, (q) &
= ,'(&( 6;,—+—25(;5,),1

Xg
(A17)

I

In this Appendix I derive the local equilibrium, or Eu-
lerian, contributions to the currents (J~(q)&. This is
done as an expansion, up to second order, in the con-
served densities, Eq. (6).

1. Intensive parameters

I start by rewriting the local equilibrium distribution,
Eq. (A6), as

Iloc eq& =
exp ao g n (r)+ g a( —q)n(q) —y( —q).g(q) —il, ( —q}h, (q)

rEB, q

Z[a, y, i), ]
lx&, (B1)

where I split the intensive parameter a~a(q)+ao, a(q=0) =0, ao, such that ((n (r) && =no, and define

also

n(q)= g e 'q'(n(r) —no);v& .~n

Z[a, y, i) ]= g (xlexp ao g n(r)+ ga( —q)n(q) —y( —q) g(q) —g, ( —q)h. (q) lx & .

(82)

(B3)

Equations (23) and (24) of Sec. III are obtained in two steps. First I compute an expression, correct to the first order,
for the intensive parameters in terms of the local equilibrium densities (n &, (g &, and (h, &. Then I use the value thus

obtained for a, y, i) to evaluate ( Jg (q) &.

Before we consider the nonequilibrium average ( &, we need to express y, i)„and a in terms of the required local

equilibrium fields (n(q) &, (g (q) &, and (h, (q) &,

Z [a(),0,0]
(q(q)) = q(q)exp pa( —q')ri(q') —y( —q'). g(q') —q. ( —q')h. (q')

)lZ[a.+a r ~]
(1—2d)gz=x.a(q)+ ' g r(q —q'). g(q')+n. (q —q')n. (q'» (B4)
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where I used

Z [a()+a,y, i)]
Z [ao, 0,0]

exp g a( —q)n(q) —y( —q) y(q}

—q, ( —q)h. (q)
))

same order,

&g (q) &
= —y, y (q), & h. (q) &

= —
grail.

(q) . (B6)

Equations (B4) and (B6) can then be solved for a(q),
y(q), and il, (q).

=1+0(y, i) ), (B5) 2. Euler constitutive relations

and neglected higher orders of y, il in Eq. (B4). At the The current

imp(q)) =((&p(q)exp X ee( —q')e(q') —r( —q') )'(q') —q. ( —q')h, (q') (B7)

can then be expanded up to second order in y, g, a to obtain

(J;"(q))=—,
' g ee(q')n(q")((~,

~ „))+);iq')r)tq")((&, '& „)) q, (q')qe(q")((&, '& „)) .

(B8)

The thermodynamic derivatives above can be easily evaluated (see Appendix A 3) and Eq. (B8) can be simplified to

(J; (q))=&;p(q)+ —g[(g (q —q'))(g;(q'))+C, '. C,'.;(h, (q —q'))(h, (q'))],
&N

(B9)

where the pressure

A.Cs 12c,
p(q)=c, (n(q)) — — — g [(g (q —q') ) (g (q')) + (h, (q —q') )(h, (q') )+ (n(q —q') )(n(q') ) ], (Blo)

and I neglect higher-order contributions. c, =g /g„ is
the speed of sound for the LGA, e.g. , in the seven-
velocity model c, =—,', while A, = ( 1 —2d ) /12d ( 1 —d ).
The term proportional to (n ) present in Eq. (B10) is
kept for formal consistency. In the actual simulations,
(n ) balances the (g ) and (h, ) terms of the pressure
equation, Eq. (B10). Hence (n ) became a fourth-order
term in (g ) and ( h, ) that can be neglected.

With similar manipulations one obtains

(J' (q) &
= —g (5;+2C, . C, .; )

2 X
q

&(g;(q —q')&&h, (q')& . (Bll)

Equations (B9}—(Bll) can then be Fourier transformed
back to Eqs. (23)—(25).
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