PHYSICAL REVIEW A

VOLUME 40, NUMBER 3

AUGUST 1, 1989

Energy loss of fast nonthermal electrons in plasmas

Joseph A. Kunc
Department of Aerospace Engineering and Department of Physics, University of Southern California,
Los Angeles, California 90089-1191
(Received 8 February 1989; revised manuscript received 6 April 1989)

Simple analytical expressions for equilibration times of nonrelativistic monoenergetic electrons in
plasmas are evaluated in the “weak”-beam approximation when the density of the monoenergetic
electrons is much smaller than the plasma density. The equilibration time is defined as the time
needed by the beam of monoenergetic electrons to lose most of its energy as a result of collisions
with plasma particles having a Maxwellian energy distribution. The process of the energy equilibra-
tion is treated as a statistical superposition of both elastic (electron-electron, electron-ion, and
electron—neutral-particle) and inelastic (electron—neutral-particle) collisions in the plasma. The
possibility of collisionless equilibration is also discussed. Comparison of the equilibration times
with the Spitzer relaxation times indicates that the former times are more appropriate for an esti-
mate of the energy loss of the “weak” electron beams in highly ionized plasmas. The approach of
this work can be generalized in a straightforward way to beam-plasma and beam-gas systems with

ionic and neutral-particle beams.

INTRODUCTION

Kinetic analyses of plasmas containing electrons, ions,
and neutral particles are critically dependent on a
knowledge of the frequencies of the electron-impact elas-
tic and inelastic processes in the plasmas. Since in some
applications the presence of fast nonthermal electrons
(entering the plasma as, for example, an externally gen-
erated beam) can increase these frequencies substantially,
it is important to estimate the “lifetime” of the non-
thermal electrons in the plasma. A good measure of this
is the equilibration time, defined here as the time needed
by the nonthermal, monoenergetic electrons (a ‘“‘cold”
beam) to lose most of their energy, as a result of collisions
with plasma particles. The typical mean energy of parti-
cles in a partially ionized plasma is less than 2-3 eV.
The initial energy of the nonthermal electrons is assumed
to be much greater than the mean energies of the plasma
particles, but it can be as low as several tens of eV. The
question of equilibration of the nonthermal electrons with
such a relatively low energy is of significant importance
in many applications, but it is a difficult question, espe-
cially in the case of equilibration by inelastic collisions
(electronic and vibrational excitation, ionization, etc.).!

The process of equilibration is treated as a statistical
superposition of elastic and inelastic collisions of the non-
thermal, monoenergetic electrons (hereafter called beam
particles) with the particles of uniform plasma (electrons,
ions, and neutral particles—hereafter called plasma par-
ticles), with the possibility of equilibration by collisionless
effects. The density and initial energy of the beam parti-
cles are n, and €9, respectively, while the densities and
temperatures of the plasma particles are n,/’ and T,”, re-
spectively; the superscript (j) denotes the jth component
of the plasma. (We will skip the superscript when dis-
cussing equilibration of the electron beam by Coulomb
collisions.) The initial energy of the beam particles is
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dispersed through collisions with plasma particles, and
after the equilibration time most of the initial beam ener-
gy will be lost.

The effective equilibration time of the electron beam
passing through the plasma can be calculated as

1 1 1 1 1 1
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where 7, is the equilibration time for the beam equili-

bration resulting from interactions of the beam electrons
with the plasma electrons, 7\’ is the equilibration time
for equilibration by Coulomb collisions with the plasma
ions of the kth kind, 7.!) is the equilibration time resulting
from elastic collisions with the plasma neutrals (atoms,
molecules) of the /th kind, 7%/’ is the equilibration time re-
sulting from inelastic collisions with the plasma neutral
particles of the jth kind, and 7"’ is the beam equilibra-
tion time resulting from collisionless effects of the nth
kind. In this work we estimate the equilibration times
To-es Tei» Tens Tin» and 7, for interaction of fast nonrela-
tivistic monoenergetic electrons with plasma of particles
having Maxwellian distributions.

In general, energy equilibration of the beam-plasma
system can be investigated either by applying the
Fokker-Planck equation (when the equilibration occurs
via Coulomb collisions) or from the Boltzmann transport
equation (when electron—neutral-particle collisions dom-
inate the equilibration process). Solution of the Fokker-
Planck equation is difficult and requires advanced numer-
ical techniques. Therefore we use here an approach
based on statistical superposition of the energy losses re-
sulting from all the binary collisions of the nonthermal
electrons with the electrons and ions of the plasma. Such
an approach leads to simple, analytical expressions for
the corresponding equilibration times. Solution of the
Boltzmann transport equation, including
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electron—neutral-particle interactions, is also difficult.
The difficulty is caused by the complexity of the numeri-
cal techniques required for the solution and by difficulties
in formulation of the Boltzmann integrals for inelastic in-
teractions. Therefore, instead of solving the Boltzmann
equation, we use here the statistical superposition of the
energy losses of the nonthermal electrons resulting from
all binary electron-neutral-particle inelastic collisions.
Again, such a procedure leads to analytical expressions
for the corresponding equilibration times.

We consider in this work the case (see Fig. 1) when the
initial energy distributions of the beam and plasma parti-
cles are, respectively,

fole,)=8(g, —ed), f;f)(ep)=f}é’(sp), (2)

where ¢, and €, are energies of the beam and plasma par-
ticles, respectively, €) is the initial energy of the beam
electrons, f5(g,) is the energy distribution of the beam
electrons, fj/(e,) is the energy distribution of particles
belonging to the jth component of the plasma, and the
subscript M denotes Maxwellian distribution.

We will assume, in what follows, absence of a meaning-
ful magnetic field in the beam-plasma system and that the
beam diameter is considerably less than the plasma diam-
eter. Also, we use the “weak”-beam approximation re-
quiring that n, <<n,/’ (a common case in beam-plasma
applications). If n, <<n}/', then to the first order in n,
the particles of the beam interact only with particles of
the plasma (i.e., the beam electrons behave like nonin-
teracting particles). Therefore, the beam particles ‘“‘see”
the plasma as practically a uniform gas of particles in
equilibrium at all times. (A comprehensive analysis of
typical assumptions made in theoretical analyses in rela-
tion to the conditions existing in real beam-plasma
systems—the effects of inhomogeneity, lack of electrical
neutrality, finite geometry, magnetic fields, etc.—can be
found in Refs. 2 and 3.)
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FIG. 1. Initial energy distributions for beam [f,(g,)] and

plasma [f,/'(¢,)] particles. The plasma particles of the jth kind
have Maxwellian energy distribution with temperature T,”,
while the incident-beam electrons are almost monoenergetic
around the energy €}.
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EQUILIBRATION BY ELASTIC COLLISIONS

The average rate of energy loss, per beam particle and
per unit volume, resulting from collisions with the parti-
cles of the jth component of the uniform plasma is

ey’ e . .
~a—t~n[§f’f0 Del)(0y,0, 0,0 (0,0, f (v, )dv, ,
(3)
where e,, myuv?/2 is the energy of the beam particles,

€, =mpv, 2 /2 is the energy of the plasma particles, Ae

the average energy loss of a beam particle in a single col-
lision, and a‘ﬁ,’ is the cross section for the elastic scatter-
ing. In general, As | is a function of velocities v, and v,
the scattering angle X, and the initial angle 6 between the
vectors v, and v, (Ref. 4)

Ae‘j’(vb,vp,)(,G)

bp
=gy (1—cosy)[myv—mi/v}
+(my —m,vyv,cos0] , (4)
where
(j)
. mbm
K(,,j):—-“— , (5)

P (mb+m ))2

and m,;, and m//’ are masses of the beam particles and the
particles of the jth component of the plasma, respective-
ly.

Assuming that the particles of the jth component of
the plasma have a Maxwellian distribution (i.e., their spa-
tial distribution of velocity vectors is isotropic), the distri-
bution p (6) of the angle 6 between the vectors v, and v,
is

p(6)d6=15in6d6 . (6)

Taking the above into account, the average energy loss
Aey) is

7rf f Aey)(v,,v,,X,0) sinfsinyd 0 d x
vl 7

Asbp VU

=4mcbp(mbv,,—

Coulomb collisions

The scattering cross section for Coulomb collision of a
beam particle (with charge Z,e and mass m,) and a plas-

ma particle (with charge Z,e and mass m,,) is®
z,Z,e* |?
Opp(w)=47 |———- | InA, (8)
:u'bpw
where
(kT )3/2
9)

2zbz edmn, )2’
n, and T, are the density and temperature of the charged -

P
particles in the plasma, respectively, w=v, —v, (w?
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=v,f+v,f because (cosf)=0), and sy, is the reduced

mass of the collision system,
mbmp

=—, 10

Hep my,+m, (10)

Introducing Egs. (7) and (8) into Eq. (3) and using a

Maxwellian distribution for plasma charges, leads to the

following equilibration rate for the incident electron

beam:
de, 64n,m?Z2*InA m,
e P 14 B(pZ) , (1 1)
ot m,v, m,

where m, is the electron mass, and v, and g, are velocity
and energy of the incident electrons, respectively,
2)

© (1—x’p " ?)x2exp(—x?)

)= dx , 12

BpH= [ (Txtpty x (12)
2

2_ "% 13

¥ =T, (13)

and

2
2 mpUb

= 1

P = 2kT, (14)

The values of the integral (12) are given in Table I. The
integral is very weakly dependent on the parameter p
when p >>1 (a common situation in applications). Then,
the integral B(p?) can be replaced by its asymptotic value
B.. =B(p*— x)=V7/4, so that

de, 64np1r3/Zsze4lnA m, P
at '\/2me€e mp ®©

(15)

Integrating the function (15) over the energy ¢, (from the
initial energy of the beam € to its final energy &/ one ob-
tains the time necessary for the beam electrons to de-
crease their energy, through the Coulomb collisions with
plasma charges, to €/. This time is

m, (2m,)'2

m, 24m*Z2e*n,InA

Top(€0,60)= [(e2)32—(e/)*"2] . (16)

(Note that these equilibration times are weakly dependept
on the temperature 7, of the plasma charges.)
Relationship (16) can now be used to determine the
time (the equilibration time) after which the energy of the
beam will decrease, as a result of Coulomb collisions of
the beam electrons with plasma charges (electrons or
ions), more than, let us say, 80%. Then one obtains,
neglecting the second term in the square brackets in Eq.

TABLE L. Values of the integral B(p?) [Eq. (12)].

o’ 5 10 50 100 1000
Blp®) 0219 0300 0406 0.424 0441 V7/4=0.443

(16), the following equilibration times for equilibration of
the electron-beam energy by Coulomb collisions:

(2m )1/2 (EO )3/2
Teo(€))=———— . (17)
24m*Z2 A 1,
(n, is the density of the plasma electrons), and
T, m;
= (18)
T m

e-e e

(m; is the mass of the plasma ions), if the plasma is elec-
trically neutral, that is, if n,~n;. Equation (17) can be
rewritten in a more practical form as

_ 6.87x10° (£2)*7

Z[f InA n,

Tool€2) , (19)

where 7, is in seconds, €° in eV, and n, in cm ™3 In

most partially ionized plasmas (5000 < T}, 30000 K and
10°<sn, 510" cm™?) 551InA 510, so that InA=7 can be
assumed in Eq. (19). At higher temperatures in fully ion-
ized plasmas, 10<InA <25 and InA=15 seems to be a
reasonable value.

It should be noted that the expressions (17)-(19) give
reliable estimates of the equilibration times of the in-
cident beam (with at least 80% of the beam energy
transferred to the plasma) if the following conditions are
met: (1) the final energy €/ of the electron beam is much
less than the beam initial energy 82, but at the same time
e/ should be distinctively greater than the average energy
of the plasma charges (e, )=3kT,/2; (2) the parameter
p? should be large at €, =&/ (see Table I); and (3) the final
energy of the beam particles must be greater than some
critical energy €.,. The last requirement is a result of the
fact that the beam of fast particles will heat the plasma,
whereas a beam of slow particles will cool the plasma;
this is in contrast to the momentum of the beam parti-
cles, which is always transferred from the beam to the
plasma. The energy of the beam is transferred (collision-
ally) to the plasma particles of mass m, and temperature
T, when the beam energy g, is greater than some critical
energy €.; when g, <g_, the energy is transferred to the
beam from the plasma particles. The critical energy of
the beam-plasma system is®

_ mb 5
= xo kT, , (20)
p

where x . can be obtained from the numerical solution of
the equation

|4 e 72 exp(x2,)
my 2x .,
_ * 2 —
X |1 —i fxaexp( y4)dy |=0. (21)

An approximate solution of Eq. (21) gives
xi=1 (22)

(for electron-electron collisions), and
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xzrzln(mp/mb)zlo (23) where
- 4 -2
(for electron-ion collisions), so that e, <3kT, always. Ap -—87er2e nymy InA -, (28)
Thus the third requiremgnt is 'always fulfilled in the D(sy)—sd2D'(s)
beam-plasma systems considered in this work. Summar- G(sy)= 5 , (29)
izing the above, one can say that the physical assump- So
tions of this work require that m. €
; Sg=—L—2 | (30)
e 1 ; ., 2 f my kT,
— S e1>(¢,)=31kT,, p*(e})R50. (24)
g and ®(s,) is the error function
These three conditions are easy to meet in the case of the 2 (590172 2 31
electron-beam equilibration by plasma ions [then the first D(sp)= 72 exp(—y~dy )
of the requirements (24) is sufficient]. In the case of equi- ) )
librium by plasma electrons the conditions (24) lead to  that can be approximated with a good accuracy as
the requirement 1
G(sqg)=—— when s, 4. (32)
22 100(e,) , (25) 250

which is also easy to fulfill in real beam-plasma systems.

One should mention that we treated, when evaluating
the times 7, , and 7,;, the equilibration process as a sta-
tistical superposition of electron binary encounters with
charges of the plasma. Several analyses showed that such
a representation is indeed valid in most plasmas if the
magnetic field is not too strong.”!!

Comparison of the equilibration times
with Spitzer’s relaxation times

We compare in this section the equilibration times 7,_,
and 7, of the present work with the commonly used
energy-exchange relaxation times introduced by Spitzer!2
to characterize the rate of the energy exchange, between
incident electrons and the plasma electrons and ions, that
produces a large alternation in original energy distribu-
tion of the incident electrons. These relaxation times
were obtained by using the Fokker-Planck approximation
(only the first two diffusion coefficients in the phase space
were considered). Spitzer’s relaxation time 75, for the
energy-exchange (through collisions between the beam
electrons and the plasma electrons) was defined as

2

Ee

e ((Ag,)?)
where Ag, is the change of the energy of the beam elec-
trons during their passage through the plasma. Although
this time is not totally clear physically, it is a useful esti-
mate of the order of magnitude of the time needed for the
beam electrons to change significantly their energy distri-
bution. One may add that it would be quite inconvenient
to define the relaxation time 75, as {Ae, )= —¢, /7>, [s0
that (Ae,)=—elexp(—t/7m5,)], because the incident
electrons are being slowed down (i.e., lose energy) in the
forward direction and accelerated (i.e., gain energy) in the
perpendicular direction.

To evaluate the relaxation times 75, and 75, Spitzer
used his general formula'?

(26)

_ (v))?
% 44,G(sy) ’

Using the approximation (32) one obtains from Eq. (27)

(Zm(,)l/zSé (ES )3/2

75 ()= , (33)
Y 8mZlelnA n,
and
el m;
=—, (34)
T§-e me,
with
0
€p
5= . (35)
kTp

However, at s, >>1 the Fokker-Planck approximation
loses its reliability and the expression (27) cannot be used
when Ap and G (s,) are given by relationships (28) and
(29). In such a case, one can use the partial correction
proposed by Chandrasekhar,'? that makes the following
replacement in the expression (27):

G (snA=——t (36)
2(1+mp/m,,)

This replacement leads to the following relaxation times
for the energy exchange:
(2me )1/2 (ES )3/2

C (0 —
Tol€)=——F—F—— (37)
¢ 27rZPZe4 n,

and
C
Tei
C
e

m:

1

, (38)
r

2m,

if the plasma is electrically neutral. [It should be noted
that even though the relationship (38) seems to be quanti-
tatively inaccurate, the relaxation times 7<, and 7§ are
independent, similarly to our equilibration times (17) and
(18), of the plasma temperature 7,.]

Assuming that the requirements (24) are met, the ratios
of the Spitzer relaxation times 75, [Eq. (33)] and ¢, [Eq.
(37)] to the equilibrium time 7,_, [Eq. (17)] of the present
work are
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TS i TS, i Te e =3msg:12mInA: 1 . (39)

One should keep in mind several facts when comparing
the equilibration times of this work with the relaxation
times of Spitzer. First, that the Spitzer energy-exchange
relaxation time was formulated as a measure of the time
required for relaxation to Maxwellian distribution with
temperature close to T,. In this work we deal with
beams that are not required to be approximated by a re-
laxation process (that is why the term ‘“‘equilibration” is
used throughout this paper). Secondly, as discussed in
Ref. 12, Spitzer’s formula (33) is not reliable at high
values of the ratio €} /kT, considered in this work. This
is because this formula was evaluated within the frame of
the Fokker-Planck approximation neglecting diffusion
coefficients of higher orders; these coefficients become im-
portant at high values of the ratio &) /kT,. Spitzer also
pointed out that the Chandrasekhar correction given in
Eq. (36) does not take into account all important terms
contributing to ((Ag,)?). Even though this correction
leads to a qualitatively acceptable result (lack of the
dependence on the plasma temperature), it seems to be
quantitatively inaccurate because it leads to a rather in-
correct relationship (38). In addition, the formulas (37)
and (33) give relaxation times (in the sense used by
Spitzer'?) not the equilibration time (in the sense used in
this paper). Evaluation of our equilibration time 7,_, does
not use the Fokker-Planck approximation; instead, it is
based on straightforward integration of a well-defined
rate [Eq. (3)] for the energy loss. In summary, one can
say that the times 7, and 7,; [Egs. (17) and (18), respec-
tively] seem to be reliable, and more appropriate than the
Spitzer relaxation times, measures of efficiency of the en-
ergy loss during collisional interaction of a fast, “weak”
electron beam with plasma electrons and ions having
Maxwellian energy distributions.

Electron—neutral-particle collisions

The rate of the electron-beam energy equilibration by
electron-neutral-particle elastic collisions is much
lower'* (that is, the corresponding equilibration time Teon
is relatively much longer) than the rate of equilibration
by electron-electron collisions and electron-neutral inelas-
tic collisions (see below), if the plasma ionization degree
is higher than about 10"®—10>. Thus the contribution
of the electron-neutral elastic collisions to the process of
equilibration of the beam electrons can be neglected in
most plasma applications.

COLLISIONLESS EQUILIBRATION

The system shown in Fig. 1 is subject to the beam-
plasma instability if the plasma is highly ionized. During
the first stage of the beam-plasma interaction the beam
electrons are pretty much monoenergetic and the insta-
bility exciting plasma waves can be described by the hy-
drodynamic theory.!> The duration. of this period, here-
after called the growth time 7, for the hydrodynamic in-
stability, can be estimated as

T~Yh ', (40)
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where the growth rate ¢, for this instability is
3 1/2

7/;,=W(w,2,wp)1/3=4X104nbl/3np”6, 41)
where
172
41e’n
wpp= || =5.64X10%,7 42)
e

are plasma frequencies (in sec " !) of the beam and plasma,
respectively, and n, and n, (in cm ) are, as before, the
electron densities in the beam and plasma, respectively.
One should note that the growth rate y, can be very
large and it is time independent, so that the hydrodynam-
ic instability cannot be stabilized during its development.
However, the energy loss of the beam during the hydro-
dynamic stage is, in most cases, not large. During the
time 7,, part of the beam energy,

AEb 1/3
8,,:—72 s (43)
€p

ng

2np

is transferred into the plasma oscillation energy and a
smaller part of the energy,
2/3

b , (44)

8, =2 | —
h 2np

is spent on heating of the beam.

The heating of the beam during the hydrodynamic
stage causes a spread of the beam electron velocities, and
after the time 7, the instability acquires a kinetic charac-
ter. The growth time 7, for the kinetic instability can be
estimated, using the quasilinear approximation,’ as

p
T~ Ty (45)
ny
so that the collisionless equilibration of the beam during
the kinetic stage is usually much slower than during the
hydrodynamic stage (however, some additional collision-
less effects; for example, those associated with the pres-
ence of ions, can occur in some plasmas during the
growth of the kinetic instability). The beam relative ener-
gy loss during the time 7 is
1/3
8, ~

2 (46)
n

p

Taking the above into account and introducing the densi-
ty ratio,

a=—, (47)

one can say that the collisionless equilibration can be fas-
ter than the collisional e-e equilibration if two following
conditions are met: (1) the relative loss of the beam ener-
gy during the hydrodynamic stage is large (at least a half
of the beam initial energy), and (2) the growth time for
the hydrodynamic instability is much shorter than the
collisional equilibration time 7,,. In other words, the
collisionless equilibration can be faster than the ~ollision-
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-al equilibration if

az+, thend, =1, (48)
and

Th

—<<1. (49)

To

e-e

Using relationships (17) and (40) the requirement (49) can
be rewritten as

n, <<10%a?"(€§)*, (50)

where €} is in eV and n, in cm *. One may note that the
condition (50) is easy to fulfill in most beam-plasma sys-
tems with large values of a. Thus in these systems the
collisionless equilibration of the beam can be faster than,
or comparable with, the collisional equilibration through
Coulomb collisions. In quantitative analyses one should
remember, however, that (1) the condition (50) was ob-
tained using the time 7,., evaluated under the assumption
that a is much less than 1, and (2) it may be necessary,
when a is large, to consider additional instabilities, espe-
cially during the kinetic stage.

A qualitative comparison of collisionless and collision-
al (Coulomb) energy loss of the electron beam, with a rel-
atively large value of «, is given in Fig. 2. We show there
the time dependence of an energy beam (of initial energy

collisionless energy loss
(hydrodynamic instability)

collisionless energy loss
e (kinetic instability)

collisional energy loss

ENERGY OF THE BEAM ELECTRONS

TIME

FIG. 2. Time dependence of the energy loss of the fast
monoenergetic electron beam, with initial energy e, passing
through a uniform, fully ionized plasma when the value of
a=ny, /n, is high (n, and n, are beam and plasma particle den-
sities, respectively). In one case (denoted by a prime)
a=a'=ny/n,=0.25, while in the other case (denoted by a dou-
ble prime) a=a"' =n;'/n,=0.05. The time 7, =7, ,=7., for
collisional equilibration of the beam-plasma system is much
longer than the times 7, and 7), for the collisionless growth of
the hydrodynamic instabilities. 7 and 7} are times for the col-
lisionless growth of the kinetic instabilities; €, and € are ener-
gies of the beam after the hydrodynamic stage, and ¢; and ¢}
are energies of the beam after kinetic stage of the collisionless
instabilities. The dash-dotted curve represents the beam energy
losses resulting from Coulomb interactions with the electrons
and ions of the plasma. The solid curves represent the beam en-
ergy losses resulting from the collisionless effects.
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) passing through a fully ionized plasma of density n,
and temperature 7,. Two cases (denoted by primes and
double primes, respectively) are considered: (1)
a'=n,/n,=0.25 (then §,~0.5, &;~0.6, 7, ~47),,
e, ~0.5¢5, and e; ~0.2¢9), and (2) a"=n;'/n,=0.05
(then &;~0.3, 8,~0.4, 7,/~207), €;/~0.7¢), and
ey ~0.4¢Y), where ¢, and ¢, are beam energies after the
hydrodynamic stage and kinetic stage, respectively. The
collisional equilibration times are the same in both cases
(1, =70 .=T,.) and the beam-plasma system meets the
requirement (50) in both cases; consequently, the times 7},
and 7} are much shorter than 7,,. As can be seen from
Fig. 2, the collisionless effects become important when
az0.1 and 7, <<7,,. However, the contribution of the
collisionless equilibration of the beam decreases rapidly
with decreasing of the ratio a; at @ $0.05 this contribu-
tion becomes negligible.

EQUILIBRATION BY INELASTIC COLLISIONS

Electron-neutral inelastic collisions can play an impor-
tant role in the beam energy loss because of the relatively
large amount of energy that can be transferred during the
collisions. Determination of the equilibration time for
the electron beam interacting inelastically with plasma
neutral particles is difficult because of the large number
of possible channels and because of the uncertainties in
collision strengths for many inelastic transitions. An esti-
mate of the order of magnitude of this time can be done
by superposing the energy losses in the binary encounters
of the beam electrons with the plasma particles. The
average energy loss of an incident electron along the
direction A of its propagation can be given by

()
de,

dh

de,
dh

(51D

J
where the average energy loss of the incident electron in
collisions with the neutral particles of the jth component
of the plasma is

()

de, ’

o =—nY(h)SY(e,) , (52)

and where n' is the particle density of the jth com-
ponent of the plasma and S is the energy-loss
(stopping-power) cross section for a collision of a beam
electron with a neutral particle of the jth component.
The high-energy cross section for the energy loss in an
clectron-neutral inelastic collision can be given as'®

2+uyuimlet

1 b7
" 210)

S(j)(Eb):ﬂ'A(j)eaS;l +F(ub)} ,

(53)

where
2
u
F(ub)zl—[)’i+(ub+1)*2l 1_81’,} —(2ub+l)1n2},

(54)
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€p de, de,

ub: ’ (55) 4——:1)—[— 60

m,c? dn " ar (¢0)

By =(up+1)" uy(u,+2)1"?, (56) and the time 7, necessary for the beam of initial energy

c is the speed of light, and 4"’ and I'Y are atomic
(molecular) weight and mean excitation energy, respec-
tively, of the neutral particles of the jth component of the
plasma.

The expression (53) is valid under the assumption of a
“continuous-slowing-down” approximation when the
incident-beam electron changes its energy with the rate of
energy loss which does not fluctuate along the particle
pathway. This assumption fails when the speed of the in-
cident particles becomes comparable with the mean speed
of the electrons in the neutral particles of the plasma.
Then, a linear approximation proposed by Nelms!” can
be used for the cross section S’ when g, <g,. Although
Nelms proposed value of g,=35 keV, it seems that the
value €,=10 keV (see Refs. 1 and 18) is more appropri-
ate. Assuming g,= 10 keV and neglecting small quanti-
ties, one obtains the value of the cross section at €, =¢,,

Sy'=5"Y(e,=¢)

2
€
=rAYe%, l{m T(;}]]+1~1n2}, (57)

or

S’ =adn[b/(I7)], (58)
where @ =6.51X10""% cm?eV, b=1.36X10% IV is
given in eV, and S’ is in cm? eV. The relationships (57)
and (58) can be used below if the cross section (53) is ac-
curate at 5= 10 keV (note that this cross section is inac-
curate at small energies). The results of Ref. 1 indicate
that these relationships can indeed be considered as a re-
liable measure of the energy-loss cross section at energy
go=10 keV.

Determination of the particle mean excitation energy
IV, is difficult, especially in the case when the plasma
particles are molecules and many inelastic channels are
available. In general, this energy can be calculated either
from the absorption frequencies and oscillator
strengths,'®?® or, empirically, through analysis of
stopping-power and range experiments.!® (If the neutral
species are atoms, the mean excitation energy can be tak-
en as half of the ionization potential for the atoms.)

Using Eq. (58) and the linear approximation discussed
above, one obtains the energy-loss cross section for the
incident electron having energy below 10 keV and collid-
ing inelastically with a neutral particle of the jth com-
ponent of the plasma,

S(0<g, <10 keV)=coS{’e, , (59)

where c,=10"%eV !, ¢, isin eV, and S and S}’ are in
cm? eV. (In the case where € is greater than 10 keV, the

energy-loss cross section can be obtained by using the ap-
proach of Refs. 1 and 21.)
One can write for a monoenergetic electron beam

g9 to get equilibrated by inelastic collisions with the neu-
trals of the plasma is'

1/2
My

Oy—= —
T,-,,(Eb) B

b

/
€
b _
J‘ [1/2211(]' S“'Eb) ldsb’
L

(61)

so that the equilibration time for the beam electrons col-
liding inelastically with the neutrals of one (the jth) com-
ponent of the uniform plasma is

r(e)=3.37X10"4n"'SY" )~

11
€)1 (€]

(62)

where 7'" is in seconds, 7/’ in cm 3 S "in cm? eV, and

g/ and €} in eV. It should be empha51zed that the final
energy €} of the electron beam cannot be related to
(e,)=3kT,/2 (the mean energy of the plasma particles)
because the inelastic energy exchange between the beam
and the neutrals of the plasma is practically independent
of kinetic energies of the neutrals; under the assumptions
of this work only a very small part of the plasma particles
have energy comparable to, and greater than, the energy
of the beam electrons. Therefore, e{ is just the energy of
the incident beam required at the end of the equilibration
process. Consequently, the time needed for the electron
beam to lose, as a result of inelastic interactions with
plasma neutrals, most (let’s say 80%) of its initial energy
is

T (e))=4X10"4n"SY )" Neh) 12, (63)
Relationships (62) and (63) show an interesting feature of
the collisional equilibration of the electron beams (with
) < 10 keV) by inelastic processes; the equilibration time
T, decreases with an increase of the initial beam energy
€y. This results from the fact that the cross section S/’
(0<g, <10 keV) is an increasing function of the energy
of the incident electrons.

Ending, one should add that some combinations of the
beam density n, and initial energy £) can lead to a sub-
stantial increase in plasma ionization degree in the time
interval shorter than the equilibration time 7;,,. In sucha
case, the density of plasma neutrals /) cannot be con-
sidered constant in the expression (61).

SUMMARY AND CONCLUSIONS

The main results of this work are given by the expres-
sions (17), (18), and (62). As discussed above, the equili-
bration times 7,_, and 7,; [Egs. (17) and (18), respectively]
of the present work seem to be more appropriate than
Spitzer’s relaxation times to estimate the efficiency of the
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energy loss of the fast electron beam during its interac-
tion, through Coulomb collisions, with plasma charges.

The possibility of equilibration of the electron beam en-
ergy through collisionless effects practically does not ex-
ist under the assumption of the weak-beam approxima-
tion (n, <<n,). Such effects can become important only
when n,/n,20.1 and when the requirement (50) is met
in the beam-plasma system.

In most applications of partially ionized gases (where
T=~1—3 eV and n=10"-10® cm™3) the role of
electron-neutral elastic collisions in energy equilibration
of fast nonthermal electrons is negligible in comparison
with the role of electron-electron and electron-neutral-
particle inelastic collisions. If the plasma ionization de-
gree is small, then equilibration of the nonthermal elec-
trons can be dominated by electron-neutral-particle in-
elastic collisions. If the ionization degree of the plasma is
moderate, then the electron-electron collisions begin to
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dominate equilibration of the nonthermal electrons.

A significant advantage of the approach used in this
work is the fact that the final expressions for the equili-
bration times can be obtained in simple analytical forms.
In addition, the rate for the energy loss and the equilibra-
tion times of the present work are well defined and have
clear physical meaning. Finally, the approach of this
work can be extended in a straightforward way to equili-
bration of nonthermal particles other than electrons
(ions, neutrons, atoms, etc.), in plasmas and gases.

ACKNOWLEDGMENTS

This work was supported by the National Aeronautics
and Space Administration, Grant No. NAGW-1061, the
U.S. Air Force Office of Scientific Research, Grant No.
88-0119 and the U.S. Army Research Office, Contract
No. DAAG 29-85-K-0240.

ID. A. Erwin and J. A. Kunc, Phys. Rev. A 38, 4135 (1988).

2S. A. Self, J. Appl. Phys. 40, 5217 (1969); 40, 5232 (1969).

3V. M. Ristic, S. A. Self, and F. W. Crawford, J. Appl. Phys. 40,
5244 (1969).

4M. Gryzinski, Phys. Rev. A 138, 305 (1965).

SH. S. W. Massey and E. S. W. Burhop, Electronic and Ionic Im-
pact Phenomena (Oxford University Press, London, 1969).

SD. V. Sivukhin, in Reviews of Plasma Physics, edited by M. A.
Leontovich (Consultants Bureau, New York, 1966), p. 93.

7S. Gasiorowicz, M. Neuman, and R. J. Riddell, Jr., Phys. Rev.
101, 922 (1956).

8B. B. Kadomtsev, Zh. Eksp. Teor. Fiz. 33, 151 (1957) [Sov.
Phys.—JETP 6, 117 (1958)].

9H. C. Kranzer, Phys. Fluids 4, 214 (1961).

10T, Kihara, O. Aono, and Y. Itikawa, J. Phys. Soc. Jpn. 18,
1043 (1963).

D, Voslamber, Plasma Phys. 6, 123 (1964).

121, Spitzer, Jr., Physics of Fully Ionized Gases (Interscience,

New York, 1962).

138, Chandrasekhar, Astrophys. J. 120, 285 (1941).

14H. W. Drawin, in Reactions under Plasma Conditions, edited
by M. Venugopalan (Wiley, New York, 1971), p. 146.

I5A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze,
Principles of Plasma Electrodynamics (Springer-Verlag, New
York, 1984).

16F. Rohrlich and B. C. Carlson, Phys. Rev. 93, 38 (1953).

17A. Nelms, Energy Loss and Range of Electrons and Positrons,
Natl. Bur. Stand. (U.S.) Circ. No. 577 (U.S. GPO,
Washington, D.C., 1958).

18M. J. Berger and S. M. Seltzer, National Academy of
Sciences—National Research Council Report No. 1133, 1964.

194, Dalgarno and W. D. Davison, in Advances in Atomic and
Molecular Physics, edited by D. R. Bates and I. Estermann
(Academic, New York, 1966).

20U. Fano, Annu. Rev. Nucl. Sci. 13, 1 (1963).

213, A. Kunc, J. Phys. B 21, 3619 (1988).



