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Limits of ultrashort pulse generation in cw mode-locked dye lasers
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Essential mechanisms limiting the achievable pulse duration in synchronously pumped, hybrid-
mode-locked, and passively mode-locked cw subpicosecond dye lasers are analyzed. The action of
spontaneously emitted light is shown to be the detrimental factor in synchronous mode locking.
The influence of this factor can be suppressed by a saturable absorber in the hybrid-mode-locked
lasers. In this case as well as in the case of passive mode locking the combined action of group-
velocity dispersion and Kerr-effect-type nonlinearity, though serving as an additional shortening
mechanism, causes fluctuations of the pulse parameters and determines the limit of the steady-state
regime.

I. INTRODUCTION

Because of their large amplification, bandwidth dye
lasers can advantageously be used to generate light pulses
of subpicosecond duration. ' For the study of very fast
phenomena, the periodic trains of pulses generated by cw
lasers are very attractive since powerful signal averaging
and processing techniques are available. Various
methods for pulse generation have been developed to
satisfy different requirements for the pulse parameters.
Synchronous mode locking provides tunable pulses of pi-
cosecond duration, but requires a mode-locked pump
source [Ar or second-harmonic neodymium-doped yt-
trium aluminum garnet (Nd:YAG) laser]. Passive mode
locking is relatively simpler to realize since it requires
only a cw pumping. For a long time the shortest pulses
directly generated in lasers (27 fs) have been achieved by
this method. The wavelength tunability, however, is
lost. A technique which combines some of the advan-
tages of the above two, i.e. , femtosecond pulses and
higher-output energies, is hybrid mode locking. The
synchronism bet ween the pump laser and the fern-
tosecond pulse train is advantageous here with respect to
subsequent synchronous amplification. Recent1y, hybrid
mode locking was shown to be able to produce pulses
shorter than 30 fs also. ' The considerable progress in all
these techniques during the last decade is mainly due to
improvements of the cavity design and all cavity ele-
ments. The continuous reduction of the pulse duration
revealed that a great number of effects are responsible for
the maximum shortening that can be achieved, as well as
for the steady-state regime established in such lasers.
The latter cannot be regarded simply as a result of the
combined action of an active medium and a mode locker.
Analytical treatment previously developed " is at
present unable to account for the complexity of these sys-
tems. Recently, numerical models based on ring schemes
of the resonators were used to describe synchronous'
as well as passive mode locking. ' ''' These models re-
quire no preliminary assumptions concerning the shape
of the steady-state solution and allov one, in addition, to

study transient evolution, as well as the influence of spon-
taneous emission or pump laser fluctuations on the
mode-locking regime. We present here an analysis of the
limitations of all three types of cw dye lasers. The basic
features of the approaches' ' are preserved, while hy-
brid mode locking is regarded as an extension of synchro-
nous mode locking by a saturable absorber. This ap-
proach enables the investigation of the influence of the
cavity mismatch, which, however, is not so well pro-
nounced as in the synchronous mode locking. Some of
the results concerning passive mode locking can also be
interpreted for hybrid mode locking under optimum
synchronization conditions.

II. ROUND TRIP MODEL
AND BASIC EQUATIONS

E(z, t) = ,'E(z, t)exp[i (cot t ——k~z)]+c.c. ,

where kL =ioz /c is the wave number defined at ~1. The
equation for one cavity transit can be written in coordi-
nates moving v ith the pulse g=z, ~~=t —z/v,

E'(tt }=0 j F(q) I, (2a)

where v is the pulse velocity and 0 is the operator which

A general scheme including all possible resonator ele-
ments is presented in Fig. 1. This ring model, as previous
studies have shown, ' '' can provide a realistic picture of
the process engaged, though the effects of colliding pulse
mode locking in ring cavities, as well as double passage
through some elements in linear cavities, are not taken
into account. A steady state for this system can be
searched in the sense of a slow1y varying complex ampli-
tude of the electric field of the intracavity pulse
E =—~E exp(i $) which reproduces itself after one cavity
round trip. Thus a basic approximation in the model is
the representation of the electric field as a slowly varying
envelope and a fast oscillating phase factor. Assuming
further a linearly polarized electric field propagating
along the z coordinate, we have
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FIG. 2. Four-level scheme modeling a dye molecule.

FIG. 1. Schematic of the resonator model.

describes the action of all cavity elements on the slowly
varying complex amplitude of the laser pulse. The prime
denotes the envelope after one cavity round trip.

In general, we will use an expression of the type of (2a)
to calculate the formation of the laser pulses by the
mode-locking techniques under consideration. A steady
state is reached if the slowly varying envelope reproduces
itself after one transit through the cavity:

represented by an effecti've four-level system (Fig. 2),
where ~0)~~3) is the transition interacting with the
pump radiation and ~2) ~ ~1) is the lasing transition in
the case of gain medium. In the case of a saturable ab-
sorber the intracavity pulse interacts with the ~0) ~~3)
transition. Only homogeneous broadening will be con-
sidered in this system. For the vibrational relaxation
times T, and T3, for the singlet lifetime T2 as wel1 as for
the phase (polarization) relaxation times, diff'erent ap-
proximations will be applied according to the time scale
considered.

E'(r)+h)=E(r)) . (2b) III. SYIVCHRONQUS MADE LQCKING
Strictly speaking, an additional small constant phase shift
per round trip can also be included in (2b). This phase
shift would correspond to a modified phase velocity of
the pulse. Since our numerical treatment is in the slowly
varying envelope approximation, this phase shift has no
physical meaning. The velocity u can be assumed to be
equal to the phase velocity in the absence of dispersion,
or to the group velocity if dispersion is considered, and,
accordingly, is determined by the linear optical proper-
ties of each cavity element. In any case, the small local
time shift h represents a deviation of the resonator round
trip time calculated for U from the actual transit time
determined by the velocity of the pulse envelope. The
latter is determined by the linear and nonlinear processes
involved. In synchronous or hybrid mode locking this
deviation corresponds to the mismatch of the cavity
lengths of the pump and dye lasers, whereas for passive
mode locking it results from the difference of group and
envelope velocity in each cavity element.

In general, the steady-state condition (2b) can be ap-
plied at different positions in the scheme of Fig. 1. For
synchronous as well as hybrid mode locking, this would
result in differing solutions. Without loss of generality,
however, a definite position can be assumed (e.g. , after
the outcoupling mirror) in order to study the essential
dependencies of the pulses on the parameters characteriz-
ing the resonator elements. The situation in passive
mode locking is additionally simplified, since all cavity
elements modify only slightly the complex field envelope
and, within first-order terms, all positions in Fig. 1 are in-
terchangeable.

The interaction of the propagating pulse with the
near-resonant molecules of the gain and of the absorber
media can be described by the combined system of densi-
ty matrix and wave equations. The molecules can be

In the ring model in Fig. 1 we take into account the ac-
tive dye, the nonsaturable loss, and the filter element.
The picosecond duration of the pump laser pulses justifies
here the assumption of fast thermalization in the SO and
Sl bands (T, , T3 &(T). Thus the system in Fig. 2 be-
comes effectively a three-level system for the gain medi-
um.

The bandwidth-limiting element shall be described by a
Lorentzian line-shape function XF the center of which
equals the laser frequency coL. Thus we have

LF(CO COL ) —[ 1+17 F(CO Q)l )] (3)

dg(i) )

d(rI/2rF )
=Fp(il )

—F(iI ) I exp[g (rI ) ]—1 )
—2rFg (rl) /T

In the above expression for G(r)), X„ is the line-shape

where ~F is the characteristic response time of such a
filter. The spectral width of the intracavity filter element
should be smaller than the bandwidth of the amplifying
dye in order that the rate equation approximation
(REA)—the phase relaxation time is assumed to be much
shorter than the pulse duration T—can be applied.

With these assumptions the amplification of the slowly
varying complex envelope of the electric field of the intra-
cavity pulse is given by

E'"'(g) =G' '(q)E'"(g)+E(r)),
where ~G(rj)~ is the time-dependent intensity gain and
E(g) accounts for spontaneously emitted light. The gain
G (i)) is determined by G (r)) =exp[g (i) )/X, ], where
g (7) ) satisfies the ordinary differential equation
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function for the laser transition 2 ) ~ I
1 ) and reads

X, =[1+ir, (ru c—u, )] (6)

E'+''(g+h ) =&1—y f" exp[ —(g —g')/rp]

X [G' (q')E '(q')
where ~, is the corresponding phase relaxation time and
co, is the transition frequency. In what follows, the sub-
script a is used for quantities related to the I2) ~ 1)
transition of the gain medium, Re will denote the real
part, and the asterisk the conjugate complex of a quanti-
ty. For convenience we normalize the time coordinate by
the filter response time rp and use normalized (dimen-
sionless) intensities of the laser and pump pulse in (5), i.e. ,

E(g) rprr,—kl. lEI /~poroL and Fp(rl)=rpo kp Ep /
flpocop. Ep is the slowly varying envelope of the electric
field of the pump pulse and cop is its carrier frequency,
which is assumed to be in resonance with the transition
lo)-I3).

For the pump pulse a Gaussian shape is assumed:

+E(g') ] d(g'/rp ) . (10)

To determine the complex amplitude of the dye laser
pulse, (10) is iterated starting with an input amplitude for
the first cavity transit, which is determined from spon-
taneous emission corresponding to (8) and (9). A steady
state is defined by (2b), which reads, with the present no-
tation,

E"+'
( )=E"( ) .

Due to the fluctuating character of spontaneous emission,

Fp(TI)=(2/')/~)EpsRe(X, )(rp/Tp)exp[ —(r)/Tp)'] . (7)

c& is the energy, normalized to the saturation energy of
the pump transition, Tp the duration of the pump pulse,
(xo3 the absorption cross section, and s =o., /o. o3 the ratio
of the cross sections in the centers of the lines.

On the right-hand side of (4) we have added a time-
dependent quantity E(q) to take into account spontane-
ous emission. Originally, one has to introduce the corre-
sponding fluctuation operator into the density matrix
equations. In the special case considered here, however,
the contribution of spontaneous emission to the laser field
is very small during one cavity round trip and a phenom-
enological treatment is justified. In addition, we can
neglect the saturation of the gain by spontaneous radia-
tion in (5) for typical experimental conditions. Following
Ref. 12 we assume the amplitude of the spontaneously.
emitted field to be Rayleigh-distributed and the phases to
be equally distributed. Then the probability density is
given by

F())

0008

0. 00 t
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{oj

I

(ooo ~/r,
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10e

1 04

102

1.00

fl«)=(~& IEI'&) 'exp( —IEI'/& IE '&), (8) F (ql

with the ensemble average

&IE(g)l')=A(4' co /r cr, k )g(q) . (9) 0.008
1.30

The numerical factor 3 describes the magnitude of spon-
taneous emission. It can be estimated from

+ 1/-, ~
des dAA, , co —co, G 0

0. 000 eghp[d gain = 1.25

with G(f1) as the angular distribution of spontaneous
emission, 3, is the total Auorescence transition probabili-
ty, and AO, is the spatial angle of interest. For our calcu-
lation we estimate 3 =10 ' . A complete cavity round
trip of the laser pulse includes transits through the active
dye, through the bandwidth li miting element, and
through an intensity outcoupler with the outcoupling
coefficient y. Moreover, we have to take into account a
shift h of the laser pulse in local time due to the different
optical lengths of pump and dye laser. The cavity transit
equation for the ith transit therefore reads

t
500

I

1 000 1500

—'I. 20

r( /~,

FICs. 3. Normalized pulse intensity for a fast [Tp/T, =3, (a)]
and slowly [Tp/T, =0.01, (b)] relaxing gain without (1) and
with (2) consideration of spontaneous emission. Parameters:
3 =10 ', TplwF=800, w, (ez —e, )=0, h/~F=O, and s =0.7.
In the case of a fast dye y =0.05 and cp =1.61, and in the case
of a slow dye ) =0.2 and Ep= 1. 18. The gain IG(r))l is also
plotted (3).
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(11) cannot be satisfied in an exact sense. In the following
we apply (11) only around the pulse maximum and define
the steady state as the reproduction of the pulse intensity
better than 0. 1%%uo.

We proceed with the analysis of the influence of the
contribution of the spontaneous emission in synchronous-
ly pumped dye lasers. In Fig. 3 the stationary normalized
pulse intensities, with and without consideration of spon-
taneous emission, are shown for slowly [T, ))Tp, Fig.
3(a)] and fast [T, (Tp, Fig. 3(b)] relaxing amplifying
dyes. In both cases spontaneous emission results in a
shift of the pulse to earlier times on the retarded-time
axis. This is caused by the reconstruction of the pulse
edges by spontaneous radiation (as discussed in Refs. 9
and 13). Since the laser is above threshold before the
pulse passes through the gain medium, spontaneously
emitted light at the leading edge is amplified from round
trip to round trip. Thus in the presence of spontaneous
emission an additional timing mismatch h, occurs. In
the steady state the total timing mismatch equal to
h +h, +hf+h, „has to vanish (h, and hf represent time
shift due to the action of the amplifier and filter, respec-
tively). Thus spontaneous emission modifies the range of
the geometrical (cavity) mismatch h in which single
pulses are generated. For the example given in Fig. 3, the
quantity h,„ is negative. It can be positive if the net gain

~
G(il)

~
at the leading edge of the pulse is less than 1 (this

means for larger negative cavity mismatch h).
As a consequence pulse shape and peak intensity essen-

tially differ with and without consideration of spontane-
ously emitted light, and it depends on the time behavior
of the gain how strong the influence is. For the fast re-
laxing dye, for example, the peak intensity with spontane-
ous emission increases, whereas for the longer living dye
the opposite behavior occurs.

The injection of spontaneous emitted light during each
cavity transit of the laser pulse results in a background
noise of the pulse. '' Dependent on the operation condi-
tions of the laser this may prevent a steady state even if it
is defined as explained above. Especially the cavity
length mismatch h has a pronounced effect on the laser
stability. In general, the envelope of the pulses generated
in synchronously pumped dye lasers is not smooth, but
exhibits a substructure. In Fig. 4 the normalized pulse
intensity is plotted for different cavity length mismatch.
Obviously, pulses with substructure are generated for
cavity mismatch h/~F= —1.25 and h/~++1. 25 caused
by the spontaneous emission. Only for h/~F & 1, smooth
single pulses reproducing themselves from round trip to
round trip can be obtained. Note at higher pump intensi-
ty and larger intracavity filter bandwidth for h =0, multi-
ple pulses are generated around zero mismatch as well. '

Neglecting spontaneous emission, an increase in the tim-
ing mismatch seems to allow the generation of short,
smooth single pulses. ' In practice, spontaneous emission
leads to a considerable pulse broadening and causes insta-
bilities in the formation process resulting in a structured
pulse shape and lack of a steady state. Especially, one
has to note that without intracavity bandwidth limitation
the steady state cannot be reached, in contrast to the pre-
dictions in Ref. 14, since the reconstruction of the pulse

F(q)
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FIG. 4. Normalized pulse intensity in the case of synchro-
nous mode locking for different cavity length mismatch (a)
h/~~= —1.25, (b) h/~+=0, and (e) h/~F=1. 25. The other pa-
rameters are 3 =10 ', y=0. 2, Tp/7F=1250 cp=0.42,
+a(~L ~a ) 0.75, and s = 1.

edges causes fluctuations which are not damped by the
system. Thus the essential limitation to the pulse dura-
tion in synchronous pumping lies in the action of spon-
taneous emission, which limits the possible pump intensi-
ty and possible intracavity filter bandwidth in order to
reach the steady state.

IV. HYBRID MODE LOCKING

In addition to the configuration discussed in the previ-
ous section, we include here a saturable absorber in the
resonator model, see Fig. 1. The saturable absorber in-
teracts only with the laser pulse and in a good approxi-
mation we have T, « T « T2. Thus the absorber mole-
cules can be modelled effectively by an ensemble of
three-level systems' (see Fig. 2), the corresponding quan-
tities of which are labelled by b. For the time-dependent
absorption K(i)), an equation analogous to (5), but with
Fp =0, holds, which can be integrated to yield'

K '(r)) =exp[mi, E, (t))]/I exp[i~ Re(/b )]—1

+exp[ mb E, (il ) ]I, (12)

where Xb is the corresponding line-shape function
defined analogous to (6),

E, (i))= I F(i)')d(i)'/2rF )

is the time-dependent energy, normalized to the satura-
tion energy of the ~2) ~~1) transition of the gain medi-
um, and mb =m& Re(X& )/Re(X, ) =qcrb Re(Lb )/
[cr, Re(X, )], with q as factor describing different focus-
ing in the absorber and gain medium. ~=oI,y&Lb is the
small signal absorption coe%cient defined as the product
of the cross section ~b, the particle number density yb,
and the thickness of the absorber jet Lb. Now the round
trip equation takes the form
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E" (rl+h)=&1 —y f exp[ —(g —g')/r& ]K. ' '(g')

x [G'~ (q')E "(t)')

+E(g')]d(r)'/rF) .

(13)

As expressed by (13), the saturable absorption leads to
the suppression of spontaneously emitted light in front of
the propagating pulse, whereas at the trailing pulse edge
this does not happen when the absorber exhibits slow
recovery. Nevertheless, due to gain saturation at the
trailing edge of the pulse, spontaneously emitted light is
also rapidly diminished. In this manner the hybrid-
mode-locked laser is much less sensitive to the action of
spontaneous emission than the synchronously pumped
laser.

For illustration we consider the cavity mismatch be-
havior of the hybrid-mode-locked laser, see Fig. 5. The
parameters are chosen in such a way that a direct com-
parison with Fig. 4 is possible. In particular, the losses
have equal magnitude, but now they consist of two equal
parts —a saturable and a nonsaturable contribution. As
can be seen from Fig. 5 and Fig. 4, hybrid mode locking
provides shorter pulse duration and increased peak inten-
sity. In addition, the region of stable steady-state solu-
tions covers a much broader cavity mismatch range.
This is a result of the stabilization of the pulse velocity by
the simultaneous action of gain and absorption. The ab-
sorber introduces an additional timing mismatch h&

which partially compensates the pulse advancing
influence of the gain and spontaneous emission. Conse-
quently, as opposed to synchronous mode locking, the
timing mismatch for single pulse generation through hy-
brid mode locking remains around h/~z & 1, even if the
pump intensity is increased.

0.12

0.04

750

FIG. 5. Normalized pulse intensity in the case of hybrid
mode locking for different cavity length mismatch ( a )

h /rF = —1.25, (b) h jrF =0, and (c) h /rF =1.25. The other pa-
rameters are 2 = 10 '", y =0.1, Tl /~I. .= 1250, c~ =0.42,
r, (~L —co, ) = —0.75, s = 1, ~=0.1, r&(~L —

m~ ) = —1, and
mp =7.68.

In the above discussion we have omitted the frequency
chirp of the laser pulse, though a phase modulation, due
to the saturation of gain and absorption, is included in
the equations. This phase modulation ha» an essential
influence for laser pulses with several hundreds of fem-
toseconds pulse width. On this time scale the REA be-
comes invalid and the assumption of an additional band-
width limiting element, with a width much smaller than
the bandwidth of the saturable media, should be dropped.
The particular influence that phase-modulating processes
have on the pulse stability, is discussed in Sec. V in con-
nection with passive mode locking.

V. PASSIVE MODE LOCKII4Ci

The round-trip model includes all elements presented
in Fig. 1, except the passive frequency filter. Such filter
action in typical cavities is avoided in order to achieve ul-
timate short pulses. The only bandwidth-limiting effect
arises then from the active dye and the saturable absorber
through action of their finite transition profiles. Thus the
REA cannot be applied, but instead the corresponding
systems of density matrix equations have to be solved.
Assuming homogeneously broadened transitions, this re-
quires the consideration of a phase memory for the active
media. The short pulse duration allows one to consider
the case T « T], which means that the system in Fig. 2
is effectively a two-level system.

The great number of effects [we note that a second (iso-
mer) form of the saturable absorber should also be includ-
ed' ] considerably complicates the treatment of the
steady-state equation. Though as mentioned above, and
as it is experimentally proven, all elements shape the
pulse only slightly and the corresponding transfer opera-
tors can be considered only up to first-order terms.

The Kerr-type nonlinearity and the dispersion have a
decisive influence on the shaping of the phase of the
pulse. While, for the dispersion effect, a lot of experimen-
tal evidence exists revealing its decisive role for the pulse
shortening under 200 fs (see, e.g. , Ref. 17) the in(luence of
the nonlinearity is difficult to be measured independently
of the other effects, and only recently experimental obser-
vations have been reported. '

We proceed with the analysis of instabilities appearing
as a result of the interplay between dispersion and non-
linearity. We note that, in the presence of only saturable
gain and absorption and nonsaturable loss, no such effects
were observed in previous studies' if the laser is operated
above threshold. The inclusion of dispersion and non-
linearity can result in shortening or lengthening of the
pulse duration combined with phase modulation. The
main question to be answered is whether it is possible to
compress the pulse intracavity through the adjustment of
dispersion and nonlinearity without onset of pulse
deterioration or fluctuations of the pulse parameter».
This compression would be useful only if it is more
effective and leads to shorter pulses compared to extra-
cavity compression of a similar pulse chirped inside the
cavity.

We include the effects of group velocity dispersion and
K err-effect-type nonlinearity in the numerical model
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5,E(rl) = g, (l —e ')
—

E.
—U/'T„

2r, (1—e ' ')

X f dr)'E(rl')exp[(tl' —i))IX,r, —e, (rl')],

developed in Refs. 10 and 19. The resonant molecules are
modeled by two-level systems and the phase memory is
taken into account in the equation governing the polar-
ization. This results in a transfer operator containing
bandwidth-limiting properties which, however, are satur-
able. ' If all energy terms are normalized to the satura-
tion energy of the gain medium at the laser wavelength,
the modification of the complex pulse envelope in the
gain medium (a) is

reaction, respectively. The normalized velocity parame-
ter for the dye fiow is W = V = UIL~ ( V is the fiow ve-
locity and L is the diameter of the focal spot in the
DODCI jet).

The contribution of a nonlinear index medium (e.g. ,
intensity-dependent refractive index of the dye solvents)
and of the linear dispersion elements (e.g. , intracavity
prisms) can be considered by expansion of the corre-
sponding polarization terms in the nonresonant wave
equation. Neglecting higher-order terms (nonlinear
Schrodinger equation), we have for the pulse shaping in
the nonlinear refractive index element

5,E(rl)= in, r.—P.X.lE(i))l'E(rl),

and in the group-velocity dispersion element,
(14)

where g, =o.,y, L, is the small signal gain at the leading
edge of the pulse modified above to account for the fact
that the round trip time U can be comparable with the
energy-relaxation time of the gain T, (T2), see Ref. 20,
X, is defined from (6) for the l 2 ) ~ l

1 ) transition and r,
is the corresponding phase-relaxation time. The normal-
ized energy is

5„E(rt)=i (rr, /2)-d~E(rl)
dn'

The normalized parameters are defined by

q L kLft2

r, /3, Re(X, )n 0

and

(19)

(20)

e, ( rl ) =P, Re X, f d i&'
l
E ( i)')

l

where P, = lp l r, /h, with p as the dipole moment.
e=e, ( ~ ) denotes the total energy and s„ is the steady-
state value of e. Similarly, for the saturable absorber (b)
and its second (photoisomer) form (c), we have for the
envelope change, assuming T2 && U:

5i, ,E(i) ) =(gq, /2rq, )

X f ' d q'E(g')exp[(g' q) /J „,r&,—

—
mi, ,e, (i)')] . (16)

[mt, , =m&, RM are New's stability (saturation) param-
eters, ' where mb, =qo „,/o. , are the ratios of the corre-
sponding interaction cross sections multiplied by a focus-
ing factor q; g&

= —v(1 —p) and g,,
= cpm, Im—z, where

~ is an effective absorption coefficient, which coincides
with the total absorption if the two isomers have equal
absorption profiles, and p is the photoisomer percentage. ]
The photoisomerized part of DODCI (the most common-
ly used absorber) can be estimated using a simplified
model of DODCI dynamics, '" where the distribution of
the two species in the jet is assumed to be isotropic and
no transversal effects are considered. Neglecting the ex-
change of excited state molecules through the jet flow
during one round trip, we obtain in the steady-state re-
gime

p =N [1—exp( —m&e)]![
W'+N [1—exp( —m&e)]

++&[1—exp( —m, .e)]],
(17)

where N~ and N& are the quantum yields for isomeriza-
tion from the excited ground-state form and for the decay

4~ cL& d n0

COL T~
(21)

[n =np+ n q lE(i) ) l, is the nonlinear refractive index,
L,, & are the lengths of the nonlinear and of the dispersive
media, and the factor q, takes into account possible
focusing or colliding pulse effects in the nonlinear media].
The effect of a small linear intensity loss y (outcoupling
mirror) can be introduced in a similar manner:

5/E(rl) = —(y/2)E(i)) . (22)

As already mentioned, the relative position of each ele-
ment in Fig. 1 is of no importance, because the corre-
sponding transfer operators are expanded only to first-
order terms. Accordingly, the total modification experi-
enced in a complete round trip is the sum of the 5,-E.
Thus we have

E'(r)+h) =E(il)+ 5, E(il) .

By means of (23a) the temporal development of the pulse
starting from spontaneous emission can be studied as well
as the changes of the pulse parameters from round trip to
round trip.

For certain values of the laser parameters steady-state
solutions exist, which are characterized by

5;E=O . (23b)
i =a, b, c, d, e, f'

For details concerning the numerical treatment of (23) we
refer to Ref. 19.

Figure 6 presents the steady-state pulse parameters as
functions of the Kerr-type nonlinearity and the disper-
sion. The presence of the photoisomer provides laser fre-
quencies lying on the red arm of the ground-form absorp-
tion band, as known from experiment. ' In Fig. 6 we
have chosen laser parameters which provide counterbal-
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(aj
ance of the chirping mechanisms in the absence of disper-
sion and nonlinearity. As can be seen, the mean chirp pa-
rameter

(24)

0.1 03 n
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FIG. 6. Calculated steady-state pulse parameters vs non-

linearity n,, and dispersion r (values indicated on the curves). (a)

Steady-state pulse energy c„, (b) normalized pulse duration
T/~„(c) steady-state normalized relati ve frequency

~, {col —~, ), (d) chirp parameter 2~. Laser parameters:
g„=0.3, v=0. 6, U/T, =1, y=0.05, mt", =10, rn, . =7, wI, /z„=3,
~, /w„=2, ~„(co&—e, ) =0 and ~, (e, —co„)= —1. For modeling
the photoisomerization we used W =0.012, N~ =0.04 and

Nd =0.08, according to Ref, 15. This results in variation of p in

the range 3 —3.2 in the figure. The boundary of the stable re-

gime is indicated by a dashed line in (b).

is nearly equal to zero at r =0 and n, =0. Nevertheless,
the quasiresonant media participate in the phase shaping
when nonlinearity and dispersion are introduced. Keep-
ing the nonlinearity at the constant zero value and adding
negative dispersion results in chirping and simultaneous
lengthening ( = 10% ) of the pulse duration. The chirping
resembles, in this case, the pulse propagation in a disper-
sive medium, since the mean-chirp value at r = —0.3, for
example, corresponds nearly to the value which, if com-
pensated through extracavity propagation in a medium
exhibiting opposite (positive) dispersion, would result in
recompression of the pulse to its initial duration.

The combination of intracavity dispersion with non-
linearity of the opposite sign provides, however, an addi-
tional shortening mechanism. For increased values of r,
the shortest pulses occur at maximum possible values of
n, just before instabilities set in. As can be seen from
Fig. 6(b), the decrease of the pulse duration is saturated
at large n, . The shortest pulses are again slightly
chirped, this time with the opposite sign (positive). The
latter provides again the possibility of additional extra-
cavity compression in a linear optical element exhibiting
negative group velocity dispersion (GVD). Roughly, an
overall achievable compression factor of about 2 can be
estimated when increasing n, .

Figure 6(c) shows that a change of the nonlinearity
and, accordingly of the induced phase modulation, also
results in a change of the mean-laser frequency. The
latter is calculated imposing the condition that the first
derivative of the slowly varying phase weighted by the
pulse intensity vanishes. This phase-modulation-19

induced frequency shift can be explained as follows. Due
to the frequency change across the pulse and the difterent
amplification and absorption of the leading pulse edge as
compared with the trailing edge, the pulse spectrum can
be shifted towards higher or lower frequencies after one
round trip. In a limited parameter range only, this fre-
quency shift can be compensated by the frequency depen-
dence of the net gain, i.e., by the tendency to pull the
pulse mid frequency to a position where the pulse experi-
ences maximum net gain. This results in steady-state
pulse parameters [23(b), cf. Fig. 6].

Outside this range, instabilities occur (dotted curves in
Fig. 6) which are characterized by fluctuations of the
pulse energy as well as of the pulse shape, duration, and
phase modulation. Near the boundary of the stability
range periodically (with the cavity round trip) oscillating
laser parameters were found. This is shown in Fig. 7 for
one set of laser parameters. The occurrence of such re-
gimes are characterized by nonlinearities n, exceeding a
certain value and by too small a (negative) GVD.

In the extreme case, the induced frequency shift cannot
be compensated and the laser is finally driven below
threshold. If one increases the amplification here, the
laser goes into a regime where both pulse edges experi-
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way the effects of cavity mismatch, we can summarize
that the main difference between passive and hybrid
mode locking is that in the first case the intracavity pulse
itself raises the amplification at the leading edge above
the threshold, whereas in the second case the net
amplification is already positive before the pulse arrives.

VI. COMPARISON WITH EXPERIMENTS
AND CONCLUSION

1400 1800 round trips

FIG. 7. Fluctuations of the laser parameters in a pulsing
steady state achieved after 1200 round trips. The parameters
are the same as in Fig. 6, and r = —0.2 and n,, =0.24. Pulse en-

ergy c. (solid line), normalized pulse duration T/~, (dashed line),
normalized relative laser frequency ~ (co, —~p) (dashed-dotted

line), and integral chirp r', co (dotted line).

ence net gain. The latter would lead to a continuous in-
crease of the pulse duration and eventually to a breakup
of the stable pulse regime. This behavior was not found
in the absence of n„' where an increase of the
amplification (and pulse energy) always ensured a nega-
tive net gain at the trailing pulse edge due to high-gain
saturation. It should also be noted that the instabilities
begin to appear at energies E„~1.4, cf. Fig. 6(a). With
the parameters chosen in our example, at such energies,
the gain depletion is not strong enough and the net gain
behind the pulse edge becomes positive. The result is a
broadening of the trailing edge and the occurrence of sa-
tellites which give rise to instabilities.

Under certain conditions, for too high an amplification
coe%cient, equally spaced multiple pulses can occur dur-
ing one round-trip period. This, however, can be de-
scribed by a decreased effective small signal gain for each
pulse and is characterized by longer pulse durations. In
this sense, the interplay of Kerr-type nonlinearity and
linear dispersion represent the essential mechanism for
the occurrence of instabilities in the passively mode-
locking laser, which finally limit the achievable pulse
duration.

Similar arguments as above are valid also for hybrid
mode locking in the cases when the pulse durations are of
the order of 100 fs and the intensities are relatively high,
so that the dispersion and the Kerr-effect type nonlineari-
ty have to be taken into account. Then, of course, the
rate equation treatment of Sec. IV is not applicable. In
the simulation of passive mode locking, the temporal
pulse position is not bound to the pump pulse and a small
shift h in the local time, which is constant in the steady
state, is performed in each cavity round trip so that the
pulse remains in the time interval considered. If this shift
is assigned to a geometrical mismatch of the opposite
sign, the results for passive mode locking can be inter-
preted also for the case of hybrid mode locking under op-
timum matching conditions. We note that the mean-
pump intensities, i.e., averaged over the round trip time
U, in both case are nearly the same. Neglecting in such a

Only in the case of synchronous mode locking can
single-shot streak camera measurements give direct infor-
mation about the temporal shape of the (picosecond)
pulses. Fluctuations of the pulse parameters appear as
bands in the low-frequency power spectrum of the laser,
and therefore can be detected by an electronic spectrum
analyzer. The observed instabilities can be explained
within the present model by the stochastic background
introduced by spontaneous emission, which leads to
severe distortions of the mode locking, especially for
large intracavity filter bandwidth 1/~F and high pump
energy. In this sense, spontaneous emission is the most
limiting factor of the pulse duration in usual synchro-
nously pumped lasers. Recent experiments have
shown that a reduction of the pump pulse width allows
for the generation of shorter laser pulses and results in an
improved laser stability. Since in the present model all
quantities are normalized by the filter response time ~F, a
shorter pump pulse corresponds to a smaller value of the
numerical quantity Tp/~F. Thus a shorter pump pulse is
equivalent to a longer filter response time and both
dependencies are included in the model. For small values
of TplrF (TplrF (100), it is known ' that the main
limit of the laser pulse width is given by the pump pulse
width and the filter bandwidth, respectively, and not by
spontaneous emission. The only problem, with respect to
the determination of the laser pulse width in dependence
on pump pulse duration and filter bandwidth, consists in
the invalidity of the REA approximation for pump pulses
in the subpicosecond range. In this region the full system
of Maxwell-Bloch equations should be solved.

By a similar method, as in Ref. 24 the instabilities in
hybrid-mode-locked and passively mode-locked' sys-
tems have been studied. The authors ascribe the large en-
ergy fluctuations in synchronous mode locking to ran-
dom pulse substructure, which, neglecting the jitter aris-
ing from the pump laser, supports the statement of Ref. 9
that only a quasi-steady-state can be achieved in these
lasers. Our analysis supports the latter, in that spontane-
ous emission is the stochastic background for the occur-
ring disturbances. Studies of the hybrid-mode-locked sys-
tem revealed only several percent energy fluctuations and
up to 50% pulse duration fluctuations for 250 fs pulses,
together with a much longer time necessary for the estab-
lishment of a steady-state.

The passively mode-locked laser exhibited = 15%%uo fluc-
tuations of the pulse duration for 50 fs pulses and energy
fluctuations as high as 80%%uo on the boundary of the stabil-
ity region. These were identified as such arising from the
phase-shaping mechanisms. Our model explains them at
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the extreme short pulse duration and high pulse intensity
by the influence of the Kerr eff'ect. The linear dispersion
alone is compatible with the other pulse shaping mecha-
nisms, such as saturable absorption and gain. This is sup-
ported by the nearly symmetric dispersion dependence of
the pulse duration for longer pulses, as discussed in Ref.
19 and experimentally measured in Ref. 11, as well as in
Ref. 31, at low intracavity pulse energies. At larger non-
linearities the pulse duration decreases with increasing
net GVD and reaches its minimum just at the boundary
of the stability range. This behavior is also in qualitative
agreement with experiments. ' For this reason, the con-
trol of higher-order dispersion terms in the presence of
the Kerr eff'ect seems to be useful to achieving even short-
er pulse durations.

Our results can offer certain explanations for the obser-
vation of pulses which are not bandwidth limited. In
Ref. 18 the 73 fs pulses were shortened to 50 fs by addi-
tion of highly nonlinear solvent in the absorber solution
and after optimizing the dispersion. This shortening was
accompanied by a much larger spectral broadening from
9.1 to 14.1 nm, which gives a (pulsewidth) X(bandwidth)
product of 0.6. According to our model, this result could
be assigned to a fluctuating pulse duration and to a fluc-
tuating mean frequency. Also, the shift to shorter wave-
lengths reported when increasing the nonlinearity is in
agreement with our results.

The onset of instabilities at certain values of the non-
linearity and GVD leads to periodic oscillations of the
pulse parameters, including energy and spectrum, and is
in agreement with experimental observations. ' " These

experimental findings"' ' were ascribed to solitonlike
pulse propagation. Such solitonlike behavior of the
pulses in femtosecond dye lasers was suggested for the
first time in Refs. 6 and 34. Some of the experimental
data were tried to be explained by the so-called nonlinear
Schrodinger equation (NLSE) alone, which describes
pulse propagation in a medium with (group velocity)
dispersion and (Kerr-type) nonlinearity. In this manner,
the essential influence of saturable absorption and gain
for passive mode locking is neglected. As opposed, our
model of passive mode locking can also be regarded as
the treatment of the NLSE modified by a nonlinear polar-
ization arising from the active media and is equivalent to
the search for stable pulse solutions. Thus our calcula-
tions explain the energy fluctuations, the asymmetrical
spectral shapes, and the shift of the whole spectrum over
nearly one half width" by the interplay of dispersion,
nonlinearity, and frequency dependent saturable absorp-
tion and gain.

Limits of our model in describing passively mode-
locked lasers rest mainly on the description of the active
media as homogeneously broadened two-level systems,
which represent the simplest model to account for satur-
able absorption, depletable, gain, and phase memory. In
principle, at the expense of computer time, the model
used can also deal with inhomogeneously broadened tran-
sitions. The latter seems to play a part in the interaction
of ultimate short pulses with organic dyes. ' From de-
tailed studies of the pulse chirping in homogeneous
broadened media' we expect, however, that the main
processes discussed above remain valid.
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