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Counting statistics of partial coherent light with Lorentzian spectrum
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Analytic aspects of the photon-counting distributions in quantum optics are investigated for the
case where the underlying field includes a mixture of harmonic signal and thermal noise. A
Lorentzian spectral profile for the thermal light is used to find simple iterative relations for the fac-
torial cumulant moments. Explicit analytic expressions for the moments are then given to eighth
order. Approximate interpolation formulas, which display proper limiting behavior at small and
large correlation length, are also investigated.

I. INTRODUCTION

Recently there has been renewed interest in the quan-
tum stochastic nature of the multiplicity distribution in
production processes. ' The formulation and phenome-
nology is substantially based on earlier studies in the field
of quantum optics. ' The desire for a better under-
standing of the intrinsic nature of the multiplicity distri-
bution in quantum stochastic processes encourages a fur-
ther investigation of the photon multiplicity distribu-
tion.

Statistical properties of a harmonic signal mixing with
noise have been investigated since the 1960s.'' Glauber
and Lachs first used coherent-state representations and
the associated density matrix to obtain a simple formula-
tion of the photon probability distribution P, ,

' This
problem was later considered by Bedard, ' Jakeman and
Pike, '' Dielatis, ' and Roussecau. " Particularly, Jaiswal
and Mehta included more explicitly the spectrum profile
of the thermal field. ' '' The nature of photon correla-
tions were studied in greater detail ~ What has been avail-
able in the literature that follows the approach of Jaiswal
and Mehta are either studies of the low-order cumulant
moments, or numerical analyses of the P„distribution.
Few results are expressed in analytic form. '" It is desir-
able to extend the study of Jaiswal and Mehta in order to
further test the underlying nature of these correlations in

quantum statistics.
In this paper we report on a study of the analytic ex-

pression of the factorial cumulants for the case of a
thermal light with Lorentzian profile. This is achieved
through a set of iterative relations v ith respect to the or-
der of the strength of the chaotic spectrum profile. These
iterative relations can then be used for evaluations of the
multiplicity distribution P, , and for a base in testing ap-
proximate expressions of the distribution. Iteration for-
mulations presented here can be easily generated for the
case where the harmonic signal and the mean frequency
of the thermal light do not coincide. The structure of the
iterative relationships can also be generalized for spec-
trum profiles of other kinds.

In Sec. II we shall briefly summarize the known formu-

lation for later discussion. ' In Sec. III, we shall present
the details of the iterative relationships for the factorial
curnulants. Explicit calculation of the moments are then
carried out to eighth order. Limiting behaviors of the
moments are finally used in Sec. IV to discuss the nature
of the photon probability distributions as well as to con-
struct interpolating formulas of the moment generating
function.

II. BASIC FORMULATION OF THE DISTRIBUTION

A. Multiplicity distribution

In the formulation of Jaiswal and Mehta (JM), the
probability of n photons being registered in an interval
(t, , t2) is given by

Here o. represents the efficiency of the field of radiation to
hadronization, and is taken to be 1. 8' is the integrated
intensity over the interval in t:

W= j I(t)dt . (&)

P„=((W"/n!)e ) t (4)

through

V(t)= V, (t)+ Vr(t),
with V, a harmonic signal, and Vz a thermal field. While
V, (t) is represented by a constant magnitude Vo and a
random phase P,

P( W) is the probability density of the random variable
From here on, we shall study the plane stationary

quasimonochromatic incident wave described by a single
complex scalar random variable V(t), with the intensity
I(t ) given by

I(t) = V(t)~' .

P( W) now stands for all the stochastic characteristics of
the radiating field, i.e.,
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V, (t) = Voe

the thermal field Vr( t ) is represented by a complex
Gaussian random process with an autocorrelation func-
tion r(t ),

(7)

P„= g Q P„(N,S )5 gn —n
I n,„ I m

with

N = 1/(1+ A. ),
S,„=C A, /(I+X ),

(16)

(17)

V, (r)= pc,'„"p (r), (9)

where [P I are the orthonormal eigenfunctions of the in-

tegral equation

I t —t' t' dt'=k t
0

(10)

Let us expand the wave field VT and V, in an orthogonal
base [P„I,

VT(r )= g C P,„(r),

where P„' is the Glauber-Lachs distribution (GL) in

quantum optics,

PGL(N, S ) =e SII1+-N) (N ) I 0 S /N
(1+N)"+' 1+N

Here L„ is the generalized Laguerre polynomial of order
0. Expressing Pn alternatively in terms of the generating
function G(s ), we get

G(s ) = g (1 —s )"P„
0

=exp( —s& n, &)

The set of coefficients [C I are uncorrelated,

and possess the complex Gaussian distribution, with

1 &n, &If I's'x
X Q expI+sX„, (t2 —t, )( I+sA. )

(19)

P([C I)= Q exp
1

m m

so that

Ic I'
(12)

& n, & =(t2 —t) )Vo .

Thus the JM formulation can be considered as a specific
convolution of an infinite number of GL distributions.

B. Factorial cumulant moments
WnP„= g f d Re(C )d Im(C )P( [C I ), e . (13)

With

IV= VOT+ g (IC I'+ Voe ' f,„C*+Voe' f*C ),

(14)

Because of the difficulties in manipulating overlapping
integrals of the orthornormal functions, very few analyti-
cal results are known for P„.' To avoid these difficulties,
it is traditional to start with the factorial-cumulant gen-
erating function H(s ) as given by the relation

H(s ) =lnG(1 —s )

+( (0)I2 g (
—s)"p„/k! .

k =1
(20)

after performing the integration over [C I (Refs. 6 and
14),

Substituting k of Eq. (10) into the above equation, and
integrating over the parameter space of the C we obtain

pk =(k —1)!f I ' (t, t)dt+k!&n, & f dt, f dt2e ' ' ' I' ''(t, , tz),
I f j I !

where the kth kernel of the equation I ' '(t, , t, ) satisfies

(21)

(22)

and pk can be reexpressed as

p =(k —1)!&n & B.+k!&n & '&n, &B

where

(24)
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1k=, d i
. dtky(tl —t2) y(t2 —ti)y(tk —ti»

t

(25)

1 f f t(tu, —tuT&I .

Bg: dt] ' ' '
dt's e

'
y t] t2 y tl —t .

tf —t, I

&n &=& V*V &(tf —t, ),
&n, &

= v,*v, (tf —t, ) .

(26)

We shall also assume that the I (t) is given by

r(t ) = r,e '""y(t ), (27)

p=rb, T,
A=(cu, —Qr)br .

(32)

(33)

y(t )
—e Tl (28)

and the above expression is greatly simplified. Explicit
evaluation is given in the paper of Jaiswal and Mehta.
For example, for the interval A~ =t2 —t,

81=81=1,
B~ =(e ~+2P —I )/2P

(29)

(30)

Bz=2(P +II ) [e ~(P —II )cos(A) —2PII sin(Q)

—(P 0)+P(P —+Sl')], (31)

where

where ~T is the mean frequency of the thermal com-
ponent and y(t ) is a slowly varying function of t For .the
important special case of a Lorentzian autocorrelation
function,

Explicit expressions of the higher-order terms for 8& and

8& are rather involved, and are unknown for k )5. In
the next section, we shall extend the known expressions
to B& and 88 for the case co=0.

III. EVALUATION OF FACTORIAL CUMULANT
MOMENTS

A. Evaluation of Bk+,

In this section we shall discuss an iterative procedure
for the evaluation of 8& + ] for the specific case of the
Lorentzian correlation function and ~, =coT. We first set
( t tf ) = ( 0, b 'T ) and introduce the scaled variable

x =t-/A~

so that the range of integration for all the x is between 0
and 1. 8& +1 is then given by

1 1 1

B„+,= dxk+, dxky(xk+, , xk) dx, y(xz, x, ) .
0 0 0

(34)

In order to evaluate y(x, y ) explicitly, we notice for any function f(x,y ) with 0 (y ( 1:

1 y 1

dx y y, x x,y =e ~ e~ x,y dx+e~ e ~ x,y dx .
0 0

(35)

Here the first term corresponds to the region y & x, and the second term corresponds to the region of y & x. Thus it is
useful to define, for n ~ 2, an upper and a lower component of the integral of iteration:

k+ I pxk 1 1

Lk(xk+, )= dxke " dxk iy(xk, xk, ) dx, y(x2, xi),
0 0 0

1 —/3xk 1 1

Uk(xk+, ) = dxke ' dxk, y(xk, xk, ) dx, y(x~, xi ) .
Xk~i 0 0

(36)

(37)

L& and UI,. satisfy the iterative relations

k+j 2pxk
Lk(xk+, ) = dxk [Lk, (xk )+e ' Uk, (xk )],

0
1

—2f3xkU. (x . , ) = dx . [e 'Lk, (xk )+ Uk. , (xk )] .
Xk ~ I

(3S)

(39)

In order to calculate Bk+, , we notice that the integration xk + i in Eq. (34) can also be broken up into two pieces:

1 k+ I 1

Bk +, = dxk+, . + dx, dxk, . y(xk, x. k, )
. y(x, ,x, ) .

0 0 xk+ I

(40)
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FIG. 1. Values of B, (/3) are given according to formulas in
the Appendix. At any fixed p, the curves in descending order
correspond to k =2—8.

FIG. 2. Values of Bi(P) in log, „scale are given according to
formulas in the Appendix. At any fixed f3, the curves in de-
scending order correspond to k = 2 —8.

Using the transformation

x'=1 —x, j=1, . . . , n+1

the second term can be folded into the first term. We
finally obtain

1
—/3x~ +1

Bi,. +, =2 e L~(xk+, )dx„+, . (41)

Px
lLo(x, )=e (42)

Starting with L&(x ) and Uz(x ) higher order Bk can be
generated. Explicit calculation shows that we may for-
mally start at n =0 with

L, (x~) =(1/P)(e ' —1),

U, (x, )=(1/P)(e ' —e ~),

B~ =(2/P )(e ~+P—1),

(45)

(46)

(47)

which gives L2(x ) and Uz(x ) in agreement with explicit
evaluations. Further iterations can easily be carried out
to n ~3. However, the algebra of integration soon be-
comes rather complicated. Since each step of the itera-
tion involves only one variable, the formulation is very
suitable for symbolic computer integration. In the Ap-
pendix we have listed the explicit expressions up to B~.
They are also plotted in Figs. 1 and 2.

B. Evaluation of Bk
Uo(x, ) =0,
B1=1 .

This leads to

(43)

(44)
In this section we shall discuss the corresponding itera-

tive procedure for the evaluation of B&+1 for the same
case of the Lorentzian correlation function, and ~, =~T.
B&+1 is now given by

1 1 1

dxI, +, dxl y(xk+i, xi, ) dxiy(x~, x, )y(x xi,. +, i)t.
0 0 0

It differs from the expression of Bi, +, for having the additional factor of y(x, ,xk+, ). This additional complication can
be bypassed in the following fashion. We shall first break up the total expression of Eq. (48) into (n + I )! pieces so that
within each piece Ik the set of (x ) possesses a unique ordering in magnitude. For example, the first piece may satisfy
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k+] (Xk ( ' (X (x]

(49)

We then relabel the inte
be combi

e in egration variables, so that x. i

e combined to the form
at xk+, is always the largest v

'
1 .es varia le. Pieces of the intees v 1 . e integration can then

dxk + i dxk f dxk —i dx (xxiii' xk+i, xk )
' ' ' 1'(xp, xi )1 (xi, x2~ i lr k+1 (Xl~ . ~Xkk~ k+1

However, the ordering between x . and x .

unique, we need to consider the se
xk an xk &

is not

xk (xk, and x
separate cases of

xk, . This leads to t
of an upper and a lo

to the introduction
r an a ower component of the inte

to those in the preced
e integral similar

p o p gece ing section exce t f
new iterative relation hs ip is given by

(52)

Lo(x, ;x ) =e ~"
) (53)

Bk, =(k+1) fa
e 'L (x.k + i'xk + i)dxk+ i

Even though the Lk(x ) and U fun ction are defined o 1

, exp icit calculation indicates th
ony

11 t tf A:=0 '
h

L (+&(x;xk+, )= dx[L (x'(x' . = x;xk+])

+O' U (x;x„+,)] (50)

Uo(x, ;x ) =0,
B]=1 .

(54)

(55)

U', x . — x e LI+i(xixk+i) dx[e Lix . x e L (x;xk+i) This leads to

+ U (x&xk+i)]

Since there are (k+1) 'd '
o gi entical terms o

e a itional factor of

y(x, , xk „,)=e '"e
Bk+ &

iS given by

(51) L i(xz, x ) =( I /2P)(e ' —1 7 (56)

U, (x, ;x )=x —x~

B2 =( I /2/3 )(e ~+213—1) .

(57)

(58)

This iterative procedure can easil be
e ra o integration is again rath er compli-
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cated, but it is very suitable for symbolic computer in-
tegration. In the Appendix we have also listed explicit
expressions up to B8. They are also plotted in Figs. 3 and
4

IV. LIMITING CASES

the P, is a negative binomial of k =1. This is to be com-
pared with the limit of the classical processes, where the
P„ is constructed from the Poisson distribution as the
fundamental subprocess. In the limit of vanishing time
interval, the classical processes tends to a Poisson distri-
bution for P„ instead.

A. Chaotic limit

In the case of a totally chaotic source [ V, (y) =0] and
with a Lorentzian spectrum for Vr(y), an analytic ex-
pression of the generating function

G(x)= g P„(1—x)"
n=0

is obtained. Here

G(x ) =e~ cosh(z )+ ——+ —sinh(x )
2 z P

where

z=[P(n r) x+(P) ]'

It is well known that in the limit of vanishing Az the
above expression takes the form

B. Total coherent limit

In the limit of vanishing chaotic component, ( nr ) =0,
each component of /1) contributes as a Poisson distribu-
tion. Since the convolution of Poisson distributions is
again a Poisson distribution, the overall distribution of
P„ is Poissonian for any given ( n, ) .

C. P=0 short time limit

When the coherent component is present, a closed ex-
pression for P„ is not known. We can, however, examine
the limiting case of very small /3. To the first order of P,
it is possible to show that

Bk =1—
,'kf3+O—(p ),

(61)

G(x ) =(1+( nr )x ) (60) B/, = 1 —
—,
'

( k —1 )//3+ 0 (P' ) .

Thus for a very short time interval, the natural limit of Substituting the above expression into Eq. (1), we obtain

(n, )+ 1+—(k —1)P(nr) 3
H(x)= g (

—x(nr) )" — 1 — k/3—
k 3

(62)

1 /3(, )G(x)= exp — (n, ) ——(nr)—1+x (nr ) 1+x (nr ) ' 3 3( I +x(n )r)

And for the limit of a short time interval, the P„distribu-
tion is very similar to a GL distribution.

D. /3= Do long correlation limit

In the case of a finite correlation length but a very long
time interval, we obtain the limit P= ~. Since the fac-
torial cumulant moments have the limiting behavior

Up to the order of P

G (x ) =exp[ —
( I /P ) ( ( n )+r( n, ) )x ]+0 (/3 )

and the corresponding P„distribution is Poissonian.

E. Interpolating expressions

(66)

1 X3XSX X(2k —3) i /,

1 X2X3X X(k —1)

2X4X6X X(2k —2) i /, 2.
1 x2x3x x(k —1) //3

(63)

(64)
M(P) = [1+(/I/Po) ] (67)

Given 'the limiting behaviors of the functions, it is pos-
sible to construct a variety of interpolation formulas for
the factorial-cumulant moments Bk and B&. To illustrate
this, we use an interpolating function of P

the corresponding generating function can be summed up
exactly as

lnG(x ) =//1[1 —(1+2x ( nz)/P)]'~-
—x ( n, ) /( 1 + 2x ( n r ) //l) .

This is one of the simplest examples, M(P) approaches 1

up to the second order of /3 at /3=0, approaches zero up
to 1/P at P= ~, and is 0.5 at P=/3o. /3o is therefore a
control parameter, that we can tune the relative impor-
tance of the two limiting behaviors at /3=0 and oo. Us-
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ing this function, we can construct an interpolating for-
mula for the functions 8/,.(/3) and 8/, (/3) as

8/,. (/3)'=8/, . (/3)M(/3)+8/, (/3)[ 1 —M(/3)],

8~(/3)'=8/ (/3)M(/3)+8/ (/3)[1 —M(/3)],

(6&)

(69)

where 8/, . (/3) has the correct threshold behavior at /3=0,
but vanishes faster than Bk(/3) at //3= ~. 8/,

" has the
correct threshold behavior at /3= ~, but vanishes faster
than 8/, (/3) at /3=0. The same applies to the 8/, func-
tions. For example, an appropriate choice with proper
limiting behavior at /3=0 and /3= ~ is given by

8 0(/3) /N i3—

(2k —3 )!!
(k —I)!(/3+1)"

8 0(/3)
—

/3( Q
—

1 I/3
A-.

8; (/3) =2/-(/3+1)'

(70)

(71)

(72)

(73)

X exp[ —s ( n„)/( 1+x. ( n)re
~

) ],
G (x )

= exp I (/3+ 1)[1—(1+2x ( n /- ) //3) '~-

(74)

(xn, )(/1+2. x( n ) //3)] I,

so that

G(x ) = G (x )M(/3)+ G "(x )[1—M(/3)] . (76)

Since the algebra tends to be complicated, we shall omit
further analysis along this direction.

In the range between /3=0 and 10, both 8/, (/3) and 8/, . (/3)
very by five orders of magnitude. However, with an arbi-
trary choice of /3o=2, the above expression gives an accu-
racy of up to 84% for B2 and B2. The accuracy becomes
somewhat less for higher moments and may even reduce
to 40%%uo for the intermediate region of /3, where neither
limiting function gives a good approximation to the real
expressions. The approximate generating function G(x)
distribution can be expressed in closed form. We have

G (x)= 1

1+x (nr )e/"-'

short and long correlation length. We have also set up a
simple approximate interpolation formula between the
limiting expressions for /3=0 and ~. For a region of
correlation where the cumulant moments vary by five or-
ders of magnitude, the approximate formula remains sa-
tisfactory. Depending on the region of interest for the
probability I'„ the relative weighting between the
coherent strength and the chaotic strength may also be
important, and better accuracy of the approximation of
the interpolation formulation may be needed in some re-
gions.

Although we have only presented analytic expressions
for the cumulant moments for the Lorentzian type of
spectrum profile, the general iterative approach can be
generated to a wide range of other spectra. The structure
of the iterative relations remain same. As long as the in-
tegrations can be carried out, the analytic approach is
more efticient than numerical evaluations or Monte Carlo
simulations for the moments. On the other hand, the
algebra involved in this approach easily becomes rather
complicated. Symbolic programs are ideal for bookkeep-
ing of the explicit expressions. Limiting behavior of the
new coe%cients can be similarly discussed.

The work on analytic formulations presented here may
be extended to photon counting in several detectors. Nu-
merical results on the joint probability distributions have
also been discussed elsewhere separately.
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V. CONCLUSION

In this paper, we have derived very simple iterative
equations, which allow us to calculate factorial-cumulant
moments of the photon-counting distribution of partial
coherent light with Lorentzian noise spectrum. The ex-
plicit expressions display simple limiting behavior at

APPENDIX

The iterative relationships in Sec. III are particularly
suitable for symbolic analysis. We have used a
DOE —MACSYMA pr'ograrn to perform the integrals. Final
results are given below for B and B- with j ~ 8:

8 = ~ [e O+(2/3 1)]/3—
8, =

=,
' [(/3+ I )e ~+ (/3 —1 ) ]/3

84= —„'[e ~+4(4/3 +10//3+7)e ~+(20/3 29)]/3—
8, = —,[3(/3+1)e ~+4(2/3~+9/3 +15/3+9)e ~+(21/3 —39)]/3

(A1)

(A3)

(A4)
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B6=
—,', [e ~+ (48P + 108P+66)e ~+ (32P + 224P +648P +900P+495) e ~+ (252P —562)]P

B7 = „'„,[420(P+ 1)e ~+ (4480P + 16 800P + 22 680P+ 10 920)e

+(896P +8960P'+39200P +92400P + 115 500P+60060)e ~+(27720P —71400)]P

Bs
i i Ipg [90e + ( 8640P + 1 8 720P+ 1 0 800)e

+ ( 30 720P + 168 960P'+ 374 400P + 393 120P+ 163 800)e

+(2048P +27 648P +168 960P +591 360P + 1 235 520P + 1441 440P+720720)e

+ ( 308 880P —895 410)]P

Bz =2(e ~+P—1)P

B,= [ —e ~+2(P+4)e ~+(4P —7)]P

B4= ~ [e '~+( —4P —10)e ~+(2P +18P+47)e ~+(16P—38))P

Bs =
—,', [ —3e ~+(18P+36)e ~+( —24P —132P—204)e ~+(4P +60P +342P+732)e ~+(192P—561)]P

B6 =
—,', [3e 'i + (

—24P —42)e ~+ (54P +234P+ 279)e '~+ (
—32P —288P —960P—1176)e

+ (2P +44P'+408P + 1872P+ 3558)e ~+ (768P—2622) ]P

B7 = „'„[—15e "~+ ( 150P+240)e ~+ (
—480P —1800P—1830)e

+ (540P + 3780P +9630P+ 8800)e '~+ ( —160@'—2080P —11 160P —29 100P—30 945 }e

+ (4P'+ 120P + 1600P + 11 760P +47 340P+ 83 040)e ~+ ( 15 360P—59 370) ]P

Bs = „',„[45e ~+ (
—540P —810)e ~+ (2250P +7650P+ 6975 )e

+ (
—3840P —23 040P —49 680P—38 340)e ~+ (2430P +24 300P +98 820P + 192 780P+ 151 605 )e

—
( 384P +6720@'+5 1 360P '+ 213 120P +477 900P+ 461 430 )e

+ (4P + 156P'+ 2790P'+ 29 100P + 185 670P + 683 910P+ 1 131 615)e ~+ (184 320P—789 660) ]P

(A5)

(A6}

(A7)

(A8)

(A9)

(A 10)

(Al 1)

(A12)

(A13)

(A14)
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