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Harmonic behavior of the multiple quantum resonances of a two-level atom driven
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We present a detailed theoretical treatment of the response of a two-level atom to a fully-
amplitude-modulated, narrow-band optical field. Specifically, we calculate the resonance behavior
of modulated fluorescence and susceptibility components from the scalar continued-fraction solu-
tion of the optical Bloch equations. In the limit of vanishing damping the resonances are generally
doubly branched: One set of branches reproduces the resonances of the time-averaged fluorescence,
while the second set is different for each harmonic component. However, each branch is uniquely
associated with an odd multiple quantum resonance. In analogy with magnetic resonance work, we
derive analytical expressions for the generalized Bloch-Siegert shifts of the additional resonances.
We discuss also the possibility of experimental verification of the theory.

I. INTRODUCTION

One of the successful testing grounds for the theory of
matter-radiation interaction has been in the area of mag-
netic resonance. In a much studied geometry a spin- —,

'

atom is subjected to a static Zeeman field Ho and a
radio-frequency (rf) field perpendicular to Ho. The longi-
tudinal pumping configuration, in which a population
difference between the Zeeman-split levels is induced by
circularly polarized light propagating along Ho, is well
known for its multiple quantum resonances. ' For small
amplitudes of the rf field these resonances occur when the
Rabi frequency, associated with H„, equals an odd multi-
ple of the rf frequency. As the rf amplitude increases the
resonances undergo the well-known Bloch-Siegert shift
and disappear for sufficiently strong rf fields.

In 1972 Stenholm showed that the solution of the per-
tinent Bloch equations can be obtained in terms of scalar
continued fractions, valid for arbitrary rf amplitudes.
Unlike Shirley's earlier characteristic exponent method,
which is based on diagonalization of the Floquet Hamil-
tonian, and does not include relaxation effects,
Stenholm's theory not only gives the solution for the
time-averaged (dc) behavior, but for modulated interac-
tion components as well. However, expressions for the
Bloch-Siegert shifts of the multiple-quantum resonances,
derived from Stenholm's theory ' or otherwise, ' have
been calculated for the dc fluorescence and absorption
components only. This is surprising because, concurrent
with the development of the theory, experimental work
was performed in which modulated signals rather than dc
signals were measured. In their brief theoretical treat-
ment, Arimondo and Moruzzi conclude that " ... the
same Bloch-Siegert shift is displayed by both the station-
ary term and the time-dependent term (at twice the
modulation frequency) at low intensities of the rf field ...," but that " ... on the contrary, a diferent behavior is ob-
served at higher fields ... ." Thus, although it was recog-
nized that the resonance behavior of modulated interac-

tion components deviates from that of the dc behavior in
general, no detailed analysis was performed.

By now, interest in the above type of magnetic reso-
nance experiments has largely subsided. However, a
mathematically identical problem has emerged in the
field of optical resonance, namely, the interaction of a
fully-amplitude-modulated (FAM), narrow-band laser
with an optical two-level atom. Here the detuning and
the electric dipole coupling replace the roles of the Zee-
man splitting and the magnetic dipole coupling, respec-
tively. Again the system is easily shown to possess multi-
ple quantum resonances (Fig. 1). In 1976 Feneuille et al.
solved the problem for strong, resonant excitation. At
about the same time Thomann performed both theoreti-
cal and experimental work for a not-fully-amplitude-
modulated laser. Then in 1984 Hillman et al. showed
that the theory of a FAM interaction successfully de-
scribes the bichromatic operation of a homogeneously
broadened laser. ' However, not until 1988 did Chak-
makjian et al. report experimental results for a FAM in-
teraction in which multiple quantum resonances were
directly observed, " namely, as subharmonic resonances
in the dc fluorescence signal from a beam of sodium
atoms. "

Conceivably, an experiment like that of Chakmakjian
et al. could be performed, in which not the dc fluores-
cence but the modulated components of the fluorescence
would be detected. In fact, measurement of the fluores-
cence at the beat frequency of a modulated driving field
forms the basis for many fluorometric techniques, and ac-
counts for our interest in the subject. ' Thus we investi-
gate the influence of multiple quantum resonances on the
harmonic behavior of a two-level system, driven by a
FAM field. In the following we assume an optical reso-
nance experiment —the treatment for a longitudinally
pumped magnetic rf experiment would be identical.

In Sec. II we review Stenholm's continued-fraction
solution and the Bessel-function solution for zero detun-
ing. To illustrate the resonance behavior of harmonic
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place the damping rates 1/T„1/T2, and 1/Ti in Eqs.
(2. 1) by I „,I, , and T, , respectively. Also, we choose al-
ternative definitions for the components of the Bloch vec-
tor, for ease of'notation below: lh

u =---U, (2.3)

N=3
5=+30

FIG. 1. Illustration of multiple quantum resonances in a
two-level atom. co and co denote up- and down-shifted pho-
tons of the fully-amplitude-modulated (bichromatic) field. In
the weak-field limit resonances occur when the detuning
equals an odd multiple A of the modulation frequency kl.

ti+f „u =iAv,

i& + I,, v =--i Lu +2ig LL) cosH t,
LL) + I „,u~ =—2igv cosset + I „. .

(2.4a)

(2.4b)

(~ 4c)

I'hus v correspond» to the diAerence between (rather than
the imaginary part of) the rotating-frame off-diagonal
density-matrix elements, and an inverted system i»

characterized by values Lv &0. Finally, because the solu-
tion of Eqs. (2.1) scales linearly with W„„we assume—
without loss of generality —that W,,„=—1. The Bloch
equations from Eqs. (2. 1) now become

components we compute results for the dc fluorescence
and the lowest Auorescence harmonic, and show that the
corresponding multiple quantum resonance» are singly
and doubly branched, respectively. ' In Sec. III we take
the vanishing damping limit of the continued-fraction
solution and generalize the Bessel-function result from
Sec. II. In passing we show that, in the vanishing damp-
ing limit, a dc population inversion of the two-level sys-
tem is impossible. Using the solution from Sec. III we
derive in Sec. IV the doubly branched structure of the
multiple quantum resonances explicitly, and calculate ex-
pressions for the generalized Bloch-Siegert shifts of a1/

harmonics. Finally, in Sec. V we conclude with a discu»-
sion on practical implications and possible experimental
verification of the theory.

j
z(t)= g &zexp(ikAt), z = u, U, ~o

l- =- —~
(2.S)

Substitution of Eq. (2.5) into Eqs. (2.4) yields a set ot re-
currence relations between the Floquet coefIicients, As
was first shown by Stenholm these recurrence relations
can be solved in terms of' scalar continued fractions. ''
Specifically, because even terms v&. and odd terms Le&

vanish, and because the u&. 's follow simply from the v&.
's

bv

u~ =iAv~ /(I „+ik&l),
it su%ces to solve for the combined coefFicients

(2,6)

vg, k —odd

By the Floquet theorem the steady-state solution of
Eqs. (2.4) can be written as

te&, k =even {2.7)

II. GENERAL SOLUTION

Following the notation of Allen and Eberly" we write
the optical Bloch equations for a two-level atom interact-
ing with an electric field of amplitude F~ (t) /as

Thus Eqs. (2.4) can be reduced to a single, three-term re-
currence relation

a& Q~&.
—i& ( g&, + tt't, +, )

= I „,61;,o

U= —U/T2 —5 V,
V =6 U —V / Tz +~(~ ( t ) lV

W'= —
( lV —W'„)/T, —~Pi(t) V,

(2.1a)

(2. 1b)

{2.1c)

where 6 is the detuning, K is the dipole-coupling con-
stant Weq is the equilibrium inversion, and T, and T,
are the longitudinal and transverse relaxation times. As-
suming that the field is fully amplitude modulated at fre-
quency 0,, we write the time-dependent Rabi frequency as

g2I,, + ik 0+- -, k =oddI, +ikA '

I „, +iA. A, k =even (2.8)

From this recurrence relation the quantities x&, defined
as x& =g&. /g&, , can be obtained as continued fractions
by backward iteration of

KG( t ) —2g cosset (2.2) x& =(at /ig —x&+i), k ~ 1 .
—

1 (2.9)

Below we refer to the constant g simply as "the Rabi fre-
quency. " To allow for unequal damping rates for the sus-
ceptibility components U and V (as is generally the case
in the equivalent magnetic resonance geometr&) we re-

For accurate results the backward iteration should be
started at a value of k no smaller than (6-+4g )' . For
A. ~0 it can be shown that x&

'= —x*, &. Thus the solu-
tion for the dc component becomes
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ito=[1+2g Im(x, )/I „,] (2.10) 0.15 =-

Once the x~ 's and go have been determined, the harmon-
ic components are obtained by forward recursion: 0.10

=xi Pa, , k 1 .

For negative indices one finds

iraq
=( —1) it*

i, , k ~0,

(2.11)

(2. 12)

0.05

N=5

which follows also from the fact that v (t) and tv(t) are
imaginary and real, respectively. With Eqs. (2.5) —(2. 12)
the steady-state solution of Eqs. (2.4) is completely deter-
mined,

For the special case 6=0 and equal damping rates, i.e. ,
I „=I „,, Eqs. (2.4) can be solved analytically in terms of
integer-order Bessel functions. "' If the results for v (t)
and tv (t) are expanded as a Floquet series as in Eq. (2.5),
and the coefficients from Eq. (2.7) are denoted by $&, i.e.,

0.50

1 fo—
2

0.25

0.0
0

I I

4 6
~/n

one obtains

J, (2g/II)Ji, , i(2g/II )

1 —i/A, /I „,

(2.13)

(2.14)

FIG. 2. dc Auorescence (bottom) and amplitude of the
fluorescence harmonic at twice the modulation frequency (top)
as a function of the scaled detuning, for a fixed Rabi frequency
(2g/H, =4). Solid and dashed curves are for damping rates
I „/8= I, /E)= I „,/$1=10 ", 0.1, 0.25, and 0.50, respectively.
Note the singly and doubly branched structures of the N =3
and X = 5 multiple quantum resonances for the dc and modulat-
ed components, respecti vely.

In the limit of vanishing damping only one term out of
the infinite sum from Eq. (2.14) contributes, yielding the
simple result

p~ = lim pi =Jo(2g/II)J~(2g/0, ) .
r

(2. 15)

Equation (2. 15) provides an important clue about the res-
onance behavior of harmonic components of the interac-
tion. That is, for k&0, @& shares one set of zeros with
the dc term Po, namely, those of J„(2g /II), but also con-
tains an extra set of zeros, namely, those of J& (2g /SL ).

To illustrate the resonance behavior of the system we
have computed the dc Iluorescence component. (1 —itj„)/2
and the amplitude it, of the lowest Iluorescence har-
monic using the continued-fraction solution of Eqs.
(2.8)—(2.11). The results are displayed in Fig. 2 as a func-
tion of the scaled detuning 6/0, for a fixed interaction
strength, namely, I /m =4. Different curves correspond
to difterent values of the damping —it has been assumed
that I „=I",,

= I „,. The solid curves are for a vanishingly
small damping, namely, I"„,/0, =-10 '. Their limiting
values for b, =0 are correctly given by Eq. (2. 15), namely,
by [1—Jv(4)]/2=—0.421 and J„(4)J,(4)~ -0. 145 for the
dc and modulated fluorescence components, respectively.

The solid curve for the dc fluorescence component is
identical to Fig. 4 in Shirley's seminal paper, ' and
displays clearly the N =—3 and N =5 multiple quantum
resonances. For arbitrary values of 2g/0 the positions of
these resonances, whose deviations from the weak-field
values are known as the Bloch-Siegert shifts, may be ob-
tained by any of the methods of Refs. 2 —6, or from the
theory in Sec. IV of this paper. The results are displayed

as the solid curves in Fig. 3 which, in accordance with
Eq. (2.15), intersect the 2g/0, axis at zeros of the zeroth-
order Bessel function. The limiting behavior for small in-
teraction strengths, namely, 6/6 equals an odd-integer
N for the N-quantum resonance, is either explained
mathematically by the vanishing of the odd terms a&

from Eq. (2.8) in the zero-damping limit, or is explained
physically in terms of A-photon resonances (Fig. 1).

Further inspection of Fig. 2 suggests that the statement

0
0 8 10

zg/n
12

F'IG. 3. Positions of the multiple quantum resonances of the
dc fluorescence (solid curves) and the fluorescence at 2O, (solid
+ dashed curves) in the limit of vanishing damping, as a func-
tion of the scaled Rabi frequency and the scaled detuning. The
shifts of the dc resonances from the weak-field values are known
as Bloch-Siegert shifts. Intersections with the 2g/0 axis are
given by the zeros of the zeroth and second-order Bessel func-
tions.
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0.20—
O~ &u&t'

tt)

(3.1)

0.15—

0.10

0.05

0.0
0

FIG. 4. As Fig. 2 (top). Curves are for I „/8 = I, /0 = 10
but different values of the damping ratios I",, /I „,, as indicated.
Note that the values of ~~&~, , but not the positions of its zeros,
depend on the ratio I, /I „,.

following Eq. (2.15) can be generalized to the case 5%0.
That is, in the limit of vanishing damping, g2~ vanishes if
p0 does, so that the dc multiple quantum resonances are
present in the modulated component as well. However,

g2~ also has additional zeros which, so it appears, can be
labeled with the same quantum numbers. Indeed, numer-
ical calculation shows that all multiple quantum reso-
nances of the 1()2 component are doubly branched, except
the X =1 resonance. In Fig. 3 the locations of the addi-
tional branches are indicated by the dashed curves, which
intersect the 2g /0 axis at zeros of the second-order
Bessel function. For small interaction strengths the
branches have the same limiting behavior (namely, )5./II
= odd 1V), so that the two parts of any branch are associ-
ated with the same quantum number, indeed.

Before deriving the doubly branched structure of the
Bloch-Siegert shifts explicitly, we note that, even in the
limit of vanishing damping, the values of the Floquet
coefficients depend generally on the ratios of the damping
terms. This is illustrated for the Auorescence harmonic
at 2' in Fig. 4, in which the solid curve with
I"„=I, = I „=10 "0 is identical to the upper solid
curve from Fig. 2. The other two curves in Fig. 4 are for
I"„=I „=10 0, and I,,

/I"„=0.5, and I,, /I „,=2, re-
spectively. Indeed, the values of (t2~ do depend on the
damping ratio I „/I „,. However, the zeros of f2~ seem
to be independent of this ratio, a result which we show to
be generally valid in Secs. III and IV.

As indicated, the limit is taken for fixed values of the
damping ratios y„—= I „/I „and y, =—I, /I . Because
we obtain this limit from the continued-fraction solution
of Eqs. (2.8)—(2.11), we refer to it as the vanishing damp-
ing continued-fraction (VDCF) limit. As has been noted
by Stenholm one cannot simply set the damping rates in
Eq. (2.8) equal to zero, because the continued fractions x„
from Eq. (2.9) would become purely real and the ratio
Im(x, )/I in Eq. (2.10) would be undetermined. Thus
we develop the x&'s to lowest order in the damping I „:

x„=xq '+ (i I „, /g)x„" '+ 0( I „, ) . (3.2)

(0) (f (0)
)
—1 k) 1 (3.3)

with

f)„.=ak(I „=I„=I„=0)/ig

1 —(b, /kf1 ), k =odd
1 k =even (3.4)

Having obtained the x& 's, the x&"s follow by recursion
of

x„"'=(x,(.")'(g +x„"+', ), k)1 (3.5)

where

y, , +y„(b, /kII)', k =odd

1, k =even (3.6)

with y„and y„, as defined following Eq. (3.1). All quanti-
ties in Eqs. (3.3)—(3.6) are real. Thus, with Eqs. (2.10)
and (3.2), the VDCF result for the dc component be-
comes

qvDcF ( 1+2 (1)
)
—

1 (3.7)

By iteration of Eq.(3.5), x', '' can be expressed solely in
terms of the x&"'s:

(3.8)

The factor i /g has been included for notational conveni-
ence below. By substituting Eqs. (3.2) and (2.8) into Eq.
(2.9) and sorting out terms that are of the same order in
the damping, recurrence relations for the x& 's and x&''s
are obtained. Of course the x& 's are just the x&'s for
zero damping. That is,

III. VANISHING DAMPING SOLUTION

The theory from Sec. II is well known, although it has
been applied only sparingly to the study of modulated in-

teraction components. Neither has it been applied to the
study of an ideal atom, namely, one that is undamped and
interacts only with (is dressed by) the electromagnetic
field. Thus, in this section, we evaluate the Floquet
coefficients uk, U), , and u)), from Eq. (2.5) in the limit of
vanishing damping. That is, we calculate the coefficients

where
1

x (0)

1=I
(3.9)

Because the g), 's from Eq. (3.6) are non-negative, it fol-
lows from Eqs. (3.7) —(3.9) that

qvDcF )0

With Eq. (2.7), $0 is identified as the time-averaged popu-
lation difference. Thus, in the VDCF limit, a dc popula-



40 HARMONIC BEHAVIOR OF THE MULTIPLE QUANTUM. . . 1451

tion inversion of the two-level system is impossible for all
values of the interaction strength, detuning, and damping
ratios.

With Eqs. (2. 11) and (3.9) the VDCF solution for the
harmonic components becomes

qvDcF qvDcF k ) 1 (3.10)

Thus, with Eq. (2.7), all nonvanishing coefficients Uk and
are determined. The corresponding nonvanishing

coefficients u& are simply found from Eq. (2.6):

u "=(6/kO)ll k =odd . (3.11)

Equations (3.3)—(3.11) constitute the complete VDCF
solution. Because all involved quantities are real, an al-
gorithm based on Eqs. (3.3)—(3.6) requires fewer multipli-
cations to compute the Floquet coefficients than the cor-
responding algorithm from Sec. II, which would involve
complex quantities.

For the special case 6=0 all coefficients f& from Eq.
(3.4) are given by kA/g, so that the continued fractions
xk ' from Eq. (3.3) can be summed analytically

xi, (b, = 0)= Jl( 2g/0)/ Ji, ( 2g/6) .

.I,VDCF A (Oj + {0) (4.1)

To cast this result into the form most amenable to com-
puting the positions of multiple quantum resonances, we
define the quantities Fk ——(g /II )fk and Yk =F& +, —
—(g/Q)xI, +z. Thus, with Eq. (3.4),

k —(6/0) /k, k =odd
k, k =even (4.2)

and

(say, I,=10 II, z =u, u, to). However, using the VDCF
solution from Sec. III, the resonance behavior of both the
dc and the harmonic components is easily analyzed.
From Eqs. (3.6) —(3.8) it follows that Po "=0 only if
p&=+oc for at least some I 1. For k 1 it follows from
Eq. (3.10) that g&

"=0 if either $„=0 or pk =0.
To establish the vanishing or singularity of the pi, 's we
note from Eq. (3.3) that if fi, +, =xP+'2 for some k, then
x&+ &

=+oc, as a result of which xj', '=0, but
xI. 'x&+, = —1. From this and from Eq. (3.9) it follows
that, for k 1, p& =0 if, and only if, x&+, =+ oc, and that
pk =+cc if, and only if, x', '=+oc. Combining all the
above we conclude that for all k ~ 0:

Thus, with Eqs. (3.6) —(3.10) and the Bessel-function sum-
mation formula'

(+1) Jl, (x)=JO(x+x),
k =——cr

Y~ —F~ +
(g/0)

(g/fl)
A-. +2 F) +3—

(4.3)

the VDCF solution for 6=0 becomes

(b, =0)=H 'Jo(2g/0)JI, (2g/II), (3.12)

where YI, has been written as a continued fraction by
iteration of Eq. (3.3). The resonance condition from Eq.
(4.1) can now be expressed as

valid for all k. The factor H is given by

2H =(1+y, )+ (1 —y, )Jo(4g /II ) . (3.13)

IV. GENERALIZED BLOCH-SIEGERT SHIFTS

Practically speaking, values of the Floquet coefficients
calculated from Sec. III are hardly distinguishable from
those obtained by substituting extremely small values of
the damping rates in the general solution from Sec. II

Equations (3.12) and (3.13) are the generalization of Eq.
(2.15) for unequal damping rates I, and I (for I, =1
i.e. , y„= 1, H =1, as required). Of course the correction
term H may also be obtained by a perturbation calcula-
tion in terms of I „,

—I, using the same analytical tech-
nique that originally led to Eqs. (2.14) and (2.15).' Be-
cause Jo(4g/A) ~ 1, the factor H is positive for arbitrary
values of 4g/6 and the ratio y, . Thus the zeros of

"(6=0) depend on the argument 2g/Il of the Bessel
functions from Eq. (3.12) only and are independent of the
damping ratio y„, as was established empirically for the
zeros of

~ it & ~
at the end of Sec. II. For b, =0 and

2g /0, =4, we calculate H =0.793 for y„, =0.5 and
H=-1.414 for y„, =2, thereby correctly predicting the
values 0.182 and 0.102 at 6=0 for the dashed curves in
Fig. 4, respectively.

=0 YO=0 or Yk=0. (4.4)

This last result is a generalization of work by Swain in
which, in essence, the resonance condition Yo =0 is stat-
ed for the dc component of a longitudinally pumped mag-
netic resonance experiment. With Eqs. (4.2) —(4.4) all in-
formation about the positions of multiple quantum reso-
nances can be obtained.

Firstly, because the Fk's from Eq. (4.2) do not depend
on the damping ratios y„and y„neither do the positions
of the resonances, as has already been alluded to in Secs.
II and III.

Secondly, Eq. (4.4) implies that the dc component con-
tains only a single set of resonances, namely, those associ-
ated with zeros of Yo. Moreover, these resonances also
appear in each of the harmonic components. In turn,
each harmonic component ttk has an additional set of
resonances that are specific to that harmonic, namely,
those associated with zeros of Yk. Thus the doubly
branched resonance structure of harmonic components is
established.

Thirdly, because, in the weak-field limit, (odd) N
quantum resonances are associated with the vanishing of
the corresponding terms F~ from Eq. (4.2) (yielding the
resonance conditions b, /A=odd N) it follows that the
term Y& —and therefore the additional branches of the
kth harmonic —contain only those N-quantum reso-
nances for which N ~ k + 1.
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2g/Q, =XkN= '

xk (N k +1 j/2, k =even (4.5)

where xkl denotes the lth zero of the kth-order Bessel
function (not counting the trivial zeros for zero argu-
ment). From the asymptotic approximation

From Eqs. (4.2) —(4.4) the positions of the multiple
quantum resonances are easily found by numerical com-
putation. A number of these generalized Bloch-Siegert
resonance curves, thusly obtained, are displayed in Fig. 5
(cf. Fig. 3). Branches of the dc component are represent-
ed by solid curves. Additional branches of even and odd
harmonics, which are associated with the atomic popula-
tion diff'erence and the atomic susceptibility, are shown in
Figs. 5(a) and 5(b), respectively. In all calculations the
continued fractions from Eq. (4.3) were truncated at no
more than 20 terms. As mentioned under the third prop-
erty above, additional branches of the kth harmonic are
missing for those N-quantum resonances with N & k+ 1.
Intersections with the 2g/0, axis are easily checked to be
given by the zeros of the appropriate Bessel functions
from Eqs. (2.15) or (3.12). That is, the intersection of the
N-quantum resonance of the kth harmonic with the
2g /A axis is given by

xk ( tv k)/2y k odd

another property of the Bloch-Siegert resonance curves
derives, namely, the following.

Fourthly, for an even harmonic the two branches be-
longing to a certain quantum number converge for large
2g /6, whereas for an odd harmonic the branches become
maximally split. Thus, for odd harmonics, the additional
resonances are located midway between the dc-like reso-
nances. Although this property is proved rigorously only
from the Bessel function solution for 6=0, we conclude
from Fig. 5 that it is qualitatively correct away from the
2g/0, axis as well.

From Fig. 5 we draw another tentative conclusion
about the Bloch-Siegert resonance curves.

Fifthly, for even harmonics branches belonging to the
same quantum number, N are mutually intersecting,
whereas the corresponding branches of odd harmonics
are nonintersecting, apart from their common origins at
2g /0 =0.

In principle, explicit analytical expressions for the gen-
eralized Bloch-Siegert shifts may be obtained from Eqs.
(4.2) —(4.4). Specifically, several authors have derived
power-series expansions for the dc resonance shifts of a
longitudinally pumped magnetic resonance experiment.
Thus we expand the position b, &z of the (odd) N-quantum
resonance of the kth harmonic as

xi, i =(k/2+1 —1/4)7r,
n—N2 1+ y t'm)

2A
(4.6)

0
0 2 4 6

(a)

8 10

2g/0
12

For an exact result an infinite number of terms n must be
included. In practice, as many terms are chosen as the
number of expansion coefficients one is willing to evalu-
ate. Rather than the argument 2g/0, , which is used else-
where in this paper, we have chosen the argument g/20,
in Eq. (4.6) because this quantity is equivalent to the
scaled Rabi frequency associated with the radio-
frequency field in magnetic resonance experiments, usual-
ly denoted as b /co or b /v. Thus the expansion
coefficients akN' may be compared directly with results
from the magnetic resonance literature. In the Ap-
pendix we present an outline for calculating the akN's. If
we introduce the notation

1, N&k
0, otherwise (4.7)

the results can be written as

0
0 4 6

(b)

8 10

zgjn
12

a ()) 4 1 ~N + Ie + e'kN N N+1 k+1 N 1
k+2 (4.8)

FIG. 5. As Fig. 3: Generalized Bloch-Siegert shifts of the
multiple quantum resonances of fluorescence {a) and susceptibil-
ity components {b), obtained from Eqs. {4.2) —{4.4). The dc reso-
nances {solid curves) appear also in each of the harmonics. In
{a) the dashed and dotted curves represent the additional reso-
nances of the components at 20, and 40, ; in {b) the dashed and
dotted curves represent the components at A and 3A. All inter-
sections with the 2g/0, axis are given by Bessel zeros, according
to Eq. {4.5).

and

(2) 4 N+2 N N —2
N (N + 1) (N —1)3

(4.9)

The relative simplicity of these last two results is mislead-
ing. Indeed, a laborious calculation shows that the next
coefficient is given by
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(3) 4 (N+2)(N +5N+8)
~kN=

N (N+1) (N+3)
N(N+2)

(N+1) (N —1)

(N —2)(N +N+2)
(N —1) (N+1)

tions for small but nonzero detuning (or rather, small but
nonzero Zeeman fields). Although similar expressions
might be derived for the additional resonances of har-
monic components, we contend that numerically solving
Eqs. (4.2) —(4.4) is sufficiently easy and efficient for all
practical purposes.

V. DISCUSSION AND CONCLUSION

(N —2)
(N —1) (N —3)

(4.10)

and expressions for higher-order terms will be increasing-
ly complex.

Equations (4.8) and (4.9) agree with expressions for the
dc component given by Ahmad and Bullough, who have
also given the numerical values ——'„', ,",,', , and —0.001 38
for the third-order coefficients ao&', ao3 and ao5', respec-
tively. These values are easily checked with Eq. (4.10),
which identifies the decimally rounded value as .. .",, . In
addition, Ahmad and Bullough have calculated the next-
higher terms for the dc main resonance, yielding
a o~

= —
—,4 and a o&

=
384 and Swain has calculated(4) (5)

the next-higher term of the N = 3, dc resonance, yielding
9g (4) —4037 4

4096 '

To obtain the positions of the resonances accurately
across the entire range (i.e., 0~2g/I1 ~xk)v) the above
power-series expansions are of limited use, due to their
slow convergence for g/2Q) 1. Indeed, it is generally
more convenient to numerically solve for the zeros of the
continued fractions F), from Eq. (4.3). However, from
the structure of Eqs. (4.8)—(4.10), we conclude that, for
k&0,

+kN ~ 0N 1 m N —k —1 (4. 1 1)

Thus akN'WaoN only for N=k+1. That is, the same
Bloch-Siegert shift is displayed by both the dc component
and the harmonic components for weak fields, except for
the multiple quantum resonances with N =0+1. Note
that this latter exception was not made by Arimondo and
Moruzzi in their discussion of the harmonic signal at
twice the modulation frequency in a longitudinally
pumped magnetic resonance experiment (see the quota-
tion at the end of the second paragraph in Sec. I of this
paper). It is easily checked in Fig. 3 and in Fig. 5(a) that
the additional N = 3 and N = 5 resonances of the fluores-
cence harmonics at 2Q and 4A indeed deviate from the
dc-like resonances for even small values of 2g/A. More
generally it follows from Eq. (4.11) that the larger the
difference N —k, the less the additional resonances devi-
ate from the corresponding dc-like resonances. For ex-
ample, the N=3, N=5, and N=7 additional resonances
of the fluorescence harmonic at 2A, deviate from the dc-
like resonance by less than 0.01 (i.e., ~

b, z~
—b, o)v ~

/0 (0.01) for 2g/II ~ 0.40, 3.13, and 6.13, respectively.
Analytical expressions for the (dc) Bloch-Siegert shifts

in magnetic resonance experiments other than power-
series expansions have been derived, namely, expressions
in terms of rational fractions, and Bessel-function solu-

We have shown that, for sufficiently small damping,
the modulated interaction components of a two-level
atom driven by a FAM field display not only the reso-
nances that are found in the time-averaged fluorescence
signal, but also additional resonances that are specific to
the harmonic component. However, as shown in Fig. 2,
this doubly branched resonance structure is easily ob-
scured by relaxation effects. Thus, to verify this effect ex-
perimentally, one must employ a modulation frequency
that is sufficiently large to overcome the loss of coherence
due to spontaneous emission or other mechanisms.

To establish a quantitative criterion for the observabili-

ty of the doubly branched resonances, we have computed
the zeros of the real parts of the Floquet coefficients it),

and fi, which correspond to the quadrature component
of the imaginary part of the susceptibility at Q and the
in-phase fluorescence component at 20„, respectively.
The positions of the zeros of the N=1 and N=3 reso-
nances, which were calculated using the general theory of
Sec. II, are displayed in Fig. 6. Radiative damping has
been assumed (i.e., I „=I, =I „/2—:I/Tz), and the
curves are labeled with the value of (IITz) '. As can be
seen from the solid curves, the lower and upper lobes of
the N= 3 resonance of the fluorescence component at 2A
disappear for (AT&) '=0.075 and (OT~) '=0. 175, re-

spectively. By contrast, the structure of the susceptibility
component at II (dashed curves) is preserved for relative-
ly large damping rates, although, for (QTz) '=0.45, the

0
0

\

~ ~

I

FIG. 6. Zeros of Re(g, ) (dashed curves) and of Re(i(, ) (solid
curves) for T, /T& =0.5 and various values of the product
(QTzl ' [see Eqs. (2.1)]. Solid curves correspond to the in-

phase component of the fluorescence at 2Q for (QT&) '=0.00,
0.05, 0.10, and 0.15. Dashed curves correspond to the quadra-
ture component of the imaginary part of the susceptibility at 0
for (QT&) '= 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5.
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X =1 and X =3 branches merge. This means that in an
experiment like that of Chakmakjian et al. a modulation
frequency of some 100 MHz should be employed to
resolve the doubly branched structure of the X =3 reso-
nance in the modulated fluorescence signal from the sodi-
um D2 line. "

The only relevant experimental work, known to us, in
which a modulated interaction component is measured
rather than a dc signal is that of Arimondo and Moruzzi.
These authors have measured the population difference at
twice the modulation frequency in a longitudinally
pumped magnetic resonance experiment involving an op-
tically pumped ' Hg vapor. Although different reso-
nance behaviors for the modulated and dc signals are
found, evidence for a doubly branched resonance struc-
ture is precluded due to too small a modulation frequency
[i.e., too large a value of (AT2) ']. Technically speak-
ing, employing a larger modulation frequency would
perhaps have been easier in these magnetic resonance ex-
periments than it will be in the ongoing work on optical
resonance. However, it seems not to have been realized
at the time just how the resonance behavior of modulated
interaction components differs from that of the dc com-
ponent, so that no exhaustive investigation was conduct-
ed.

As we have argued recently, ' the doubly branched res-
onance structure of harmonic components significantly
pronounces their resonance behavior over that of the dc
component, even if the doubly branched structure itself is
obscured in the presence of damping. As a result, the
modulated components, unlike the dc component, should
retain significant resonance structure even in the case of a
strongly inhomogeneously broadened medium. ' Thus
experimental observation of this inhomogeneously
broadened resonance behavior of harmonic components
would constitute indirect support for the theory present-
ed in this paper.

Finally we remark that a similar treatment can be
given for the excitation of a two-level system by a not-
fully-amplitude-modulated field, ' ' ' a frequency-
modulated field, ' or a bichromatic field with unequal
intensities in the two modes, each of which also has
analogues in magnetic resonance. We hope to present
this work in future publications.
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APPENDIX

Substituting Eq. (4.6) into Eq. (4.2) yields a power-series
expansion for the terms F„(we reserve the indices N and
k for the Xth resonance of the kth harmonic):

Ftm) m

m=0
(A2)

where

F(o)
n

n —X /n, n =odd
n, n =even (A3a)

and, for m &0,

(X/n)a, n =odd
F(m)

0, n =even (A3b)

Subsequently we write the continued fraction Y& from
Eq. (4.3)—truncated after n divisions —as a single frac-
tion with numerator 3„. The numerators 3, satisfy the
recurrence relation

3, =F~+„+)A„)+xA„2, n ~0, (A4a)

with

~x —i +n =—X 'ln
m=0

(A5)

and substituting Eq. (A2), this leads to the following re-
currence relations, valid for n ~ k —A':

(0) (0) (O)
n iv+n+ j n —1

and, for rn & 0,

(A6a)

l=o
(A6b)

To satisfy the condition Yi, =0 from Eq. (4.4), we must
require that 3' '=0 for all m 0. This can be accom-
plished by requiring that

lim I
2„'"'I =0 for all 0 & m ~ n + 1 .

ff ~ oo
(A7)

Because, from Eq. (A3a), F& I=O, it follows from Eq.
(A6a) that 3„' '=0 for all n ~ —1. From Eq. (A6b), it
then follows that 3 ~ '=0 for all n )m —1, if one im-
poses the condition

(A8)

)=1, A„=O for n ( —1 .

Expanding the 3„'s as a power series (dropping the sub-
scripts X and k):

In this appendix we present a concise outline of the
derivation of the power-series expansions of the Bloch-
Siegert shifts as given in Eqs. (4.6)—(4.10). For conveni-
ence we introduce the variables x —= —(g /0) and
y =—(61„~ /ft) . Also, we rescale the coefficients from Eq.
(4.6) according to

Thus Eq. (A7) is satisfied indeed. As is indicated, solving
Eq. (A8) renders successively the desired coefficients a

As an illustration we calculate the first coefticient e~.
By iterating Eq. (A6b) and using Eqs. (A3) we obtain

(A9)

a—:—%ai,.~ /( —4) (Al) From Eq. (A6) it can be shown that
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p 2

q =1
(A10)

with e as defined in Eq. (4.7). Substituting Eq. (A10) into
Eq. (A9) and requiring that Ao" =0 then yields a~ and,
with Eq. (Al), the first-order term of the Bloch-Siegert
shift as given in Eq. (4.8).

Higher-order terms are obtained in a similar fashion.
In order to eliminate terms 3™with m )0, we have
used the expressions

(Al 1)

to obtain a~ and, in addition to Eq. (Al 1), the expression

to obtain a3. Equations (Al 1) and (A12) can be derived
from Eqs. (A3) and (A5).

It would seem feasible to write an algorithm based on
Eqs. (A3), (A6), (AS), and (A10) by which arbitrarily
high-order coefficients a can be computed. Although
we have given this approach some thought, we have been
unable to come up with such an algorithm, mainly be-
cause of the difficulty of generalizing the implementation
of expressions like Eqs. (Al 1) and (A12).
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