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A proposed experiment is analyzed theoretically. In the proposed experiment two coherent pump
waves fall on two identical nonlinear crystals, down-converted signal and idler beams from the two

crystals are mixed by two beam splitters, and the coincidence counting rate for photons leaving the
beam splitters is measured. We show that this counting rate depends on the phase di8'erence be-

tween the two coherent pump waves, and results from the interference of the vacuum with the
down-converted photons. The experiment could be used to look for locality violations along the
lines recently proposed by Cyrangier, Potasek, and Yurke [Phys. Rev. A 38, 3132 (1988)], but

without the need for a coherent reference beam for homodyning.

I. INTRODUCTION

In recent years there has been renewed interest in the
nonlinear process of parametric two-photon down-
conversion, which was first observed by Burnham and
Weinberg, ' and has since served as basis for the study of
several nonclassical features of light. ' ' The theory of
the process leading to correlated photon pairs has also
been treated numerous times with varying approxima-
tions. ' Some calculations apply specifically to the
spontaneous down-conversion process, while others focus
more on the parametric oscillator in which the nonlinear
medium is inside a resonant cavity. Although
superficially it might seem that the spontaneous process
would be simpler to treat, unlike the oscillator it neces-
sarily involves a continuum of modes that interact with
each other and cannot be discarded when interest is fo-
cused on the time-resolved correlation properties.

Grangier et al. ' appear to have been the first to em-
phasize that the down-converted photon pair carries
phase information about the pump field. They suggested
that this phase information might be extractable when
the signal and idler photons are mixed with coherent os-
cillator fields and a photoelectric correlation measure-
ment is made. An analysis of the experiment showed that
it might form the basis for a new test of Bell's inequality
in phase measurements. However, since the coherent
reference beams have to oscillate at the down-converted
frequency, rather than at the pump frequency, the sug-
gested experiment poses practical problems.

Herewith we propose and analyze another experiment
that also probes the phase coherence and could be used to
test Bell s inequality, but involves no homodyning with a
coherent reference beam. Instead, down-converted pho-
tons from two similar nonlinear media are mixed and one
measures the rate of coincidence detection. Other, close-
ly related, experimental possibilities have also been dis-
cussed. ' Our treatment of the problem makes it clear
that the vacuum field plays an essential role in the in-

I

terference in a way that appears not to have been appreci-
ated before.

II. QUANTUM STATE
OF THE DOWN-CONVERTED FIELD

Because the experiment we wish to analyze depends on
time-resolved photon coincidence or correlation measure-
ments, a two- or three-mode treatment is not appropriate,
even if it allows a complete time-dependent solution to be
given. With emphasis on spontaneous down-conversion,
we shall use a perturbative treatment in the interaction
picture.

We consider a nonlinear dielectric in the form of a rec-
tangular parallelopiped of sides l, , l2, l3 and volume V
centered at the origin, within which a quantum field in-
teracts parametrically with a classical pump field. We
take the pump to be in the form of a plane, mono-
chromatic wave described by

If the crystal has a nonlinear second-order susceptibility
tensor gI, , the interaction energy HI in the interaction
picture is of the general form

Ht(t)= I dr yt;, Et+'(r, t)E ', '(r, t)E,' '(r, t)
Y

+H. c. ,

in which E(r, t) is the quantum field, and all Hilbert space
operators are labeled by the caret. The integral is to be
taken over the volume V=l, l2l3 of the nonlinear dielec-
tric. In order to avoid complications associated with re-
fraction at the dielectric-air interface, we assume that the
nonlinear dielectric is embedded in a passive linear medi-
um of the same refractive index.

Because the nonlinear susceptibility may vary with fre-
quency, we shall generalize Eq. (2) somewhat by making a
mode expansion of the field vectors and writing instead

i (ko —k' —k" ) r i (cu'+ ~"—~o)tHt(t)= ) g g pter(coo, co', co")Vt(eg ) (et*, ~ )~ dre e ' a z., a z",„+H c.
L k1 I kI I I I Qf
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so that

1 ~, , 1 ldt'Ht(t ) .
& g g X((~(tppr('p' rp'') V((&(*, , );(&k"s"))

lA 0 lA L c r r c rr

m =-1
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If the initial state of the quantum field is the vacuum state, then the state after a time t is given by
r

Ig(t)) =exp f dt'H, (t') vac) .
iA 0

(4)

If first-order processes dominate, so that we need to keep only the first two terms in the expansion of the exponential,
we can write

Ig(t) ) = lvac), lvac), + . 3 g g g(~(rpp, tp', co")V((e(*, , );(ek«,. ~ )1
1 1

«L

m =1

sin[ —,
' (kp —k' —k"

) 1 ]
—'(k —k' —k" )

, („,+ „„(,q~ sin[ —,'(cp'+co" rpp)t]—
Xe

" "',' „k',s'), lk",s" ), .
2(cp +cp Q)p)

In Eq. (5) it has been assumed that the modes associated
with signal and idler photons are distinct and that the
corresponding Hilbert spaces do not overlap. We denote
the set of signal modes by [k', s'], and the set of idler
modes by [k",srr ], .

We shall now simplify this relation in several respects,
by supposing that only one polarization is present and
that the directions of the down-converted signal and idler
photons are well defined by the measurement apparatus.
We then treat s', s" and the directions of k', k" as fixed,
and write in place of Eq. (5) the simpler relation

p(t)) =Mlvac), lvac),

Somewhat similar expansions to represent two-photon
states have been introduced before to describe the field in
down-conversion' and in the cascade-decay process. ' '

Here 5(p is the mode spacing and (t((cu', co") is a function
that is symmetric in co', co", is peaked at u'= —,'v@0=co",

and is normalized so that

1=2~orp g (t(co, happ
—co) ~2~ f dcuI(tr(tp, rpp co)—

0

sin[ —,
' (co'+ cp" —cop) t]

—,( Cr3 + CO Q)p )

i( r7+rcrf upj /r2I ()
I )

+ r) V 5cp g g (()( cp', rp" )
I rr

(6)
I

As the quantization volume becomes infinitely long,
6co~0 and sums over frequency cu can be replaced by fre-
quency integrals. If the pump intensity VI is expressed
in units of photons per second, then the parameter g in
Eq. (6) is dimensionless. When 5cp~0, normalization of
Ig(t)) requires that

sin[ —,((cp'+ cp" —cop)t]
I = IMI'+ Invl' f d~' f d~" IP(~', ~")I'

0 0
2

( cp + cp cop )

Hence M cannot be strictly unity, but M is very close to unity when the down-conversion amplitude is very small.
Let us examine the second term on the right-hand side of Eq. (8) (denoted 'Tz) when t is long. On putting

co"+co' —~0=0 we see that

& =lgVI'f "d~' f "d~" y(~', ~") '
0 0

sin[ —,
' (rp'+rp" —cpp)t]

—,( ci) + cp cpp )

= Invl' f "d~' f ", d Alp(~', ~p —~'+A) I'
0

sin( —,
' At)
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f'dn, sinI —()f }
=- 2&l (10)

Hence Fq. (8) becomes

1==
', «(-+, gVl 2ttt -d gt(P( oc, ut—o t~&)

0

As t becomes long, the dominant contribution to the 0,
integral comes from small fI. If, g(cu', co„—tu'+f1)

~
does

not vary too rapidly with 0, we cari make the approxima-
tion of' replacing it by 6( u', u„—u' ) l, and since
l4Icu', c~&&

—cu')l- is peaked near c?'==&~„/2, the 0 integral
then yields, to a good approximation,

with $, &~ and, i/i&&2 given by a simplified form of Eq. (6),

~~&i=«i~ ac&, i~vac&, t+ni i 'il~i&, i ~'i&, i

d~. &~=«2 vac&„Ivac &,2+g. V F.. I~) &,.I~) &,.
(14)

(15)

With 50:50%%ue beam splitters BS~,BSz, and with equal
paths from the crystals NL1, NL2 to BS~, BS&, the fields
at the two detectors D ~,D~ will then be of the general
form

down-converted light emerging from NL1 and NL2 to be
the direct-product state

(13)

and with the help of Eq. (7)

+ g&'I &

F g
~ 0,.]+Ias2 (16)

The small down-conversion approximation then implies
that

~igVi &(1, M~ =1 . (12)

III. PRINCIPLE OF THE PROPOSEB FXPERINIENT

From Laser

Let us consider the experiment shown in outline in Fig.
1. A coherent laser beam of frequency coo is split into two
by the beam splitter BSp, and the tv o beams are used to
pump two identical nonlinear crystals NL1 and NL2.
The two sets of down-converted signal and idler beams
sl,i 1 and s2, i2 emerging from the two crystals are mixed
by the two beam splitters BS,, and BS&, and the mixed
signals fall on tv o photodetectors D, and Dz, as shown.
The photoelectric pulses from the tv o detectors are fed
to a coincidence counter that yields the rate R ~z of
"simultaneous" photodetections. I.et us first show that
for monochroniatic light beams R, ~ depends on the
phase difference betv een the two pump beams.

Let V] and V2 be the complex amplitudes of the classi-
cal pump waves falling on the tw(? nonlinear crystals NL1
and NL2, respectively. W'e shall take the state ~g~& of the

rsE' ' a, , +ia, (17)

With the help of Eqs. (13)—(17) this yields

R 4g ri, V, F,, M, —q, V, F, M, ~' + 0( tI, V, ('I g, V, ') .

If we assume for simplicity that

tt, V, F, M~ =- lrt2VpF2«,
and we put

i 01
V, = V, ie

(19)

V, =[V~ e

I @1«2'g)F) = lg)F) Ie

i$,
M, t),F, = Ig,F, Ie

then up to terms of order I q, V, ~
we obtain

R,/e ~ltl) V/F) «p 1 [ 1 cos(0) 02+(5] 42)]

(21)

(22)

where a„, a,.z, a, , and a;2 are photon-annihilation opera-
tors for the four signal and idler modes. The rate R ~~ of
detecting photons in coincidence at D~ and Dz is then
proportional to

(18)

NL 1

vE

BSp

NL2

It follows that the phase difference 0] —02 between the
tv o pump waves can be determined from measurements
of the two-photon coincidence rate R „„,without the
need for any homodyning as in the scherTie of Grangier
et al." The appearance of the M, , M~ factors [see Eqs.
(14) and (15)] shows that the vacuum state plays an essen-
tial role in this interference experiment. To order g the
state g& is actually a linear superposition of vacuum and
two-photon states.

We will now treat the same experiment more realisti-
cally without assuming monochromaticity, equal path
lengt hs, or infinitesimal time resolution of the coin-
cidence counter. We start by calculating the rate of pho-
todetection.

IV. RATE OF PHOTODETECTION

FIG. l. Outline &if the proposecl experiment.

We now suppose that the signal photons fall on a pho-
todetector of quantum e%ciency o, Let us express the
field E,.+'(t) at the exit face of the nonlinear medium in
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the form

E ',
+ (t) =(5coi2~)' g a, (co)e (23)

detection R, (t) by the detector is then given by

R, (t) =~, & P(t) IE ( '(t —k)E (,"(t—g) g(t) &, (24)

where a, (co) is the photon-annihilation operator for the
signal mode at frequency ai and E ( '(t)E,' '(t) is in
units of photons per second. The rate of signal-photon

I

(t) —~ I+pl y y i(co —ro
'

&((
"—c (g

6co
' 2'

where g is the propagation time from crystal to the detec-
tor. If we inake use of Eqs. (6) and (23) we obtain

X g g g g (t'*(co(,A@2)(t'(ai3, co4)
Cd

1 Cd2 C'd
~

C'd~

sin[ —,'(aii+co, coo)t]—sin[ —,'(co3+co4 —coo)t]
X —( Cii i + Ct)p COO ) 2

( C(i3 +C94 COO )

xe' ' " "' "",&~, l, &~(I&,'(~')a, (~")I~, &, I~4&; (25)

In the limit 6co~O this reduces to

R, (t)=a, li)VI f dailF(ai;t)I
7T 0

(26)

in which

F(ci), t) = f dco P(co, Q))
0

sin[ —'(ai'+ co coo ) t—] i td'( t /2 —j)e
2

(CO + CO Cg)o)

(27)

i ((do —co)( t /2 —g)= 2rrg(coo co,co)e— (28)

so that

R, (t) =cc, lrII I
2ir f dc@ (t((aio —cu, co)l

A similar expression would of course hold for the rate of
counting idler photons.

In the short-time limit IF(c((, t)l becomes proportional
to t and so does R, (t). However, the domain of large t is
more relevant. By using the same argument as that lead-
ing to Eq. (10) above, we find that for long times t

sin( —,
' Qt)

(~, t)= f dQ(t((coo —c~, a~), e'""
Cd Cdo

2

i ((do —Cd)(t/2 —g)Xe

and with the help of Eq. (7),

R, (t) =~, lqI'I'. (29)

It follows from Eq. (29) that Ii)I is the dimensionless
number that converts the rate of incident pump photons
into the rate of down-converted signal photons.

(30)

where, by reference to Eq. (6), we have

V. INTERFERENCE BETWEEN TWO PAIRS
OF DOWN-CONVERTED LIGHT BEAMS

We are now ready to treat the theory underlying the
experiment shown in outline in Fig. 1 in a more realistic
way. The photoelectric pulses from the two detectors are
fed to a coincidence counter that yields the rate R ~z of
"simultaneous" detections occurring within some elec-
tronic resolving time TR. We will show once again that
even in the absence of any coherent reference beam the
photon pair counting rate R~& depends on the phase
difference between the two pump beams.

Let V] and V2 be the complex amplitudes of the two
classical pump waves falling on the crystals NL1 and
NL2, respectively. Then we take the quantum state

(t) &(of the down-converted light at time t to be the
direct-product state

+,„(,&2 sin[ —,'(co(+ai'( —aio)t]
I g( & i

=M, I
vac &„I

vac &;(+ i) ( I'( fi~ g g (C) (( a~ (,~I )e
~ ( CO ( + CO ( COO )

Cd
1

(31)

, („+„),q2 sin[ —,'(ai~+ a~2
—a~o)t]

Ip~ &~=~21»c &,2I»c &, ~+ g~ V26~ g g (()~(~2,~~)e (32)
&

(CO2+CO2 Mo)
t'd2

The sets of modes labeled s1, i1, s2, and i2 are supposed to be distinct and nonoverlapping and each corresponds to a
different subsection of Hilbert space.

With the help of Eq. (23) the electromagnetic fields E '„+ '(t) and E (z+ '(t) incident on the two photodetectors D „and
Dz are then expressible in the form

E '„'(t)=(6col2vr)'~ g t„a„(co)e " ' +r„'a,~(ai)e
Cd

(33)
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E 'e '(t) =(6()/2ir)'' g tea, , ((u)e " " +r„'a, ,(co)e (34)

Here t ~, I, , t'~, and r', are the complex transmissivity and reflectivity of beam splitter BS~ from one side and from the
other side, and similarly for BS&. ),, ~, ], (,„and ~, , are propagation times from the crystals to the respective beam
splitters, v hich are similar but could diAer slightly, and ~, , (z are propagation times from BS

&
to detector D., and

from BS», to detector Dz.
'The probability amplitude P „„to.r a transition from the initial state ','g(t) & at time t to some final state g(. & at time

r -+-, via a photodetection at A at time t leading to an intermediate state y &, followed by a second photodetection at B
at later time t + ) is

P,„,=t, i, tF E e''( (+-, ) exp
——J H, (r')d(' y&(y E',"~( r) Ig(() &.

/z
(35)

If ) is very short, so that the possibility of additional down conversions occurring in the interval t to t +r can be
neglected the unitary time evolution operator on the right-hand side of Eq. (35) can be discarded. The sum over all in-
&.ermediate states g then gives the probability amplitude for the transition irrespective of the unknown intermediate
state„which is

(36)

After takiiig the square modulus, summing over all possible final states, , i, ( &, and multiplying by the two detector quan-
turn efhciencies n ~, o~, one obtains the joint probability density 't~, ~(t, t + ~) for the two photon detections

'I', e((, r +-, )=a, („(( i(t),(E ', (()E: 'e ((+r)E e' '((+-, )E ',"'(()', it(()) &

(37)

We now calculate P~s by substituting for l t~(it) & from Eqs. (30)—(32) and for E~ and Ee from Eqs. (33) and (34). We
then obtain after some manipulation

, (6(o)-' sin[ ,' ((~, + ()—I e)„}r]—
P„„(t,t +r) —a ~((e t ~t„(i),V, ) g g 6, ( ~,(, ~,()

—,( Ct) i + Ct) ) (9() )

-- j(.)
l

( t, --
T

&

—~
l

)
—

t (.)
l

( t /2 ——

~&
—

~,-

l
+ ~) —( ] /2 '«~&&t [

sl 11[ —;( (0 ~ + Cd ~ (c)ii }r ]

—;[C3~, + C3-& (!)O)
1

«), , t /. . . , ) t()(t/2, t) ~, , + ~) «i)()t/2

sin[ —„'(co, +coI —(uo)t] sin[ —,'(e), +~', —~o)t]
X

—( CU ] +& ] Ii)() ) —, (Mq+CO~ &o)

Xe
t() (7/2 —

g
— ) «& t/2 t(), t/2 —tc~ (t/2 —~ —&, +

xe '""'Ivac&, I(oI &„ie),&„vac &„

(6() )'+ r,i (s YJi Vi 7)g V2 g g g g (t')(Ci3 ), CO] )(5g(CU &22
21T

(i) ' ~ (.')
]

' 7

sin[ —,
' ((g

~
+ cuI

—coo)t] sin[ —,
' ((oz+ e)z bio)(]

X
—.'-(~, + c.&]

—
c~(-&) —,( CO 2 + CO ~ COO )

] 'l 8 (1 ' '
2 '

vg -s-
j(i t'/ —i((i (t/2 —& --& + ~ )

I
2

(38)
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By virtue of the weak-down-conversion assumption embodied in relation (12), the main contribution to P„ti(t, t +r)
comes from that portion of the first two terms on the right proportional to

,

'vac &, ,
'vac &„and when 6co~o, we obtain to

a good approximation

P~g(t, t +w) —a ~at)
1 sin[ —,(co+co —co())t]

d63
0 —,( co + co o)«)

«»(~,/2 --
) --i(.}'( I/2-- -, 6- T&'8

i((»T, -1 (» - 1)X [ t 4 tt) ))1 VJ M2 (t(i( co, co') e

+ i ( (» T, t- (c) T ~
l+r', r„'tt~V, M, (t)~(co, co')e '- '-'
]

X Ivac &, 'vac &, 1
Ivac &, , Ivac &...

=a„at) It 4ttiq, ViM, f, (t; —r, —z, ,
—z~ —z, i+r)

+r~rBr), V)M, f, (t; —r (
—r... —z„—r, , +-, )I- .

We have introduced the functions f defined by

sin[ —, (co co' —co())t] ((y p (
I 1( +.

f (t r, , r))= f dcof dc)P (co co)———— ——e 'e
2' 0 0 —-( Fdic+ cd ct&() )

(j ==-1,2) {40)

When t is long, Eq. (40) can be simplified. As before, we put co'+c) —co«=Q so that

ef, (t;r, , r, )=
—i (»O( t /2+ T& )

oc , ssn{ —,.~t )

dco f dA P (co, co«
—co+le)e ' '-':—e

277' 0 "-' (»() -'n
)

and we observe that for long t the dominant contributions to the 0 integral come from small 0, . This allows us to ap-
proximate ()) (co, co« —co+ fl } by 0 (co, co« co), and s—ince (t, (co, co«

—co) is peaked at co =-
—,co„, to replace the lov(er limit on

the 0, integral by —~. Provided i 2&0, the 0, integral then yields unity, and we have finally for long t

—i (»0( t /2+ T, ) ()(-1 — —
)

—t( }(f/2-+
f)(t;r, , r, ) =e ' -' dco )), ((co, co()

—co)e ' ' ==e ' '-
g (ri —z, ),

where

gj(&)= f dcop (co, co« a))e ""'—(j =-1,2)

By making use of Eq. (41) in Eq. (39), we see that, provided r ( rti +-, , and r ( ra +r;„
C

t (()(}T

P ~ 1) ( t, t +r )
=a „at) I t ~ t t) )) 1 V, M 2 g, ( r)i —r,( + r, ,

—r„—r )e

t t +!(c7() T

+rqrB)), V)M g i(z ~sr 4+r;2 r, 1 r)e (43)

The presence of the factors M, or M2 in the terms on the
right [cf. Eqs. (31) and (32)] shows that the vacuum plays
an essential role in the probability density P ~&{t, t +~).

As (t( (co, co„—co} is peaked at o) =-„'-o)«and has some
spectral width b, co, it follows from the definition (42) that

tion of r.
Equation (43) simplifies substantially if we set

~;, —~, 2=6~, ,

(45)

Ig, (r)l, (44)

where the integral is real and does not vary appreciably
with ~ over any time interval that is much smaller than
1/Aco. Hence Ig (r)I is a relatively slowly varying func-

—l (»~T/2

g,. ( r ) = e ' d co'()(), ( co„/2+ co', co(i/2 co' )e—
((/() 2 where c6~, and c6(, represent optical-path diAerences

with 6~, —6t,. l/Ace, and v e put

g, ( t ) —g. (~) =-g(~)

Then with the help of Eq. (44) we obtain

I'~a(t t+&}=a~aaIg(&a —&.~+&, i
—

.;i —r)I

x I It 4 t t) M2 r), vi I
+

I
r „rt)M, ~1~ v1 I

+2It~ tt)M2r), V, I
Ir'~ rt'3M, rl~ V, Icos[0, —0.+(t(( —((), +c)«(f)-, +Jr,. )/2] I (47)
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where we have put

V, =lv, le '-,

i/It„tBq,M~ = lt„t tt&, M, le

I I I i(g2
rq rg'/2M] = rq rg /2M] ~

e

(48)

(49)

where we have used the Plancherel theorem together
with Eq. (7). Then if

I t~ tz I

=
I
r'„rt't

I
and

i) t V, M2 I

= ill V2M, I, we obtain from Eqs. (47) and (49)

& „ti =2ct„cttt lt„tttM~&t Vi I

X I 1+cos[0, —0, +P, —/&+ coo(5r; +5~, ) /2] I .

(50)

For the special case of symmetric beam splitters, with
iI i

= i)z we have pt
—pz=n, and Eq. (50) simplifies to

~.gtt =2~gcttt tgbM2riiVt I'

X I 1 —cos[0, —02+coo(5~, +5~, )/2] ], (51)

in which the dependence on the phase diff'erence 0, —0z is
similar to that found previously in Eq. (22).

Finally, we integrate P~B(t, t +r) with respect to r
over the resolving time Tz of the coincidence detector, in
order to arrive at the expected photon-coincidence count-
ing rate P„tt. If Ttt && I /bco, which is usually the case
because of the large down-conversion bandwidth Ace, and

+r'j r ]I ++ TR /2
TR ~-'

drlg(r~ —r, +r, )
—r, t

—~)I'
R

d7 g

=2~f dcolg(co, co,—co)l'

phases 0, , 02 of the two classical pump waves shows up as
an interference term in the photon coincidence counting
rate A „it. The phase information is therefore carried by
the down-converted photons. But unlike G rangier
et al. ,

' we have treated an experiment in which there is
no homodyning against a local oscillator.

The process we have discussed could be described as
due to the interference of two two-photon probability
amplitudes for photon pairs produced from sources 1 and
2. But unlike the previously reported interference experi-
ments based on down-conversion, " in this case the
vacuum state plays an essential role, as is evident from
the appearance of the factor M in the coincidence rate
[cf. Eq. (51)]. Indeed, in a sense it is the superposition of
the vacuum state of the field and the two-photon down-
conversion state which is responsible for the predicted
eAect.

Comparison with Eq. (29) for the rate of detection R,
of signal photons shows that, apart from the transmissivi-
ty factors It~ tB and the additional detector efficiency
e~, and the fact that we have two sources instead of one,
the coincidence rate J7~& is similar in magnitude to the
single-photon counting rate R, . This conclusion is
perhaps surprising, because the experiment shown in Fig.
1 depends on the interference of two sets of down-
converted light beams, for which one might superficially
have expected a very much lower counting rate. Of
course, the result reAects the fact that the vacuum makes
the dominant contribution to the state of the field in Eq.
(6), and that the measurement depends on the detection
of just two, and not four, photons.

Finally, we note that the coincidence counting rate
A „z given by Eq. (51) depends on the phase difference
0, —0, and on the optical path differences c(5r;+Sr,. )

defined by Eq. (45). It follows that the kind of locality
violation experiments proposed by Grangier et al. '

could also be performed with the apparatus shown in Fig.
1, without the need for a coherent reference beam at the
down-converted frequency. In that case, 6~, , 6~, would
be adjustable parameters while 0, , 0z are held constant.
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