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Operation and theory of a driven single-mode electron cyclotron maser
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A study is made of the operation of the electron cyclotron resonance maser (ECRM), when sub-

jected to an external rf signal. The signal is introduced both via direct injection through a coupling
hole in the oscillator and by modulating the electron beam in separate cavities, upstream of the os-
cillator. Experiments using both one and two "prebunching" cavities are reported. It is experimen-
tally found that the gyromonotron, a specific embodiment of the ECRM, can be phase locked by
premodulating the electron beam at drive power levels more than two orders of magnitude below
that predicted by Adler's widely applicable theory for single-cavity oscillators. A perturbation
theory is used to predict the phase-locking frequency band for a gyromonotron with any number of
prebunching cavities. The predictions of this theory agree with the experimental results for two-
and three-cavity phase locking. An investigation is made into the general amplitude and frequency
response of the ECRM to an applied external signal. Experimentally, three distinct regions of quali-
tatively diA'erent ECRM behavior are noted: soft excitation, which is free, self-excited oscillation;
hard excitation, where the oscillation requires an external impulse for startup; and amplifier, in

which the output power level and frequency are linearly related to the drive in the small-signal re-
gime.

I. INTRODUCTION

The electron cyclotron resonance maser (ECRM) is a
microwave device capable of oscillation or amplification
in different regimes of its parameter space. The ECRM
interaction consists of a coupling of the fast right-hand
circularly polarized cyclotron electron beam wave with a
superluminous electromagnetic wave. In its oscillator
variant, the ECRM has proven to be an efficient, power-
ful source of coherent radiation at centimeter to millime-
ter wavelengths. One practical embodiment of the
ECRM utilizing a magnetron injection gun (MIG) (gen-
erating an annular gyrating electron beam) with a cavity
oscillator (with cross section near the waveguide cutoff) is
called the gyromonotron. ' Since no intricate slow-wave
structure is required to couple the electromagnetic wave
to the beam wave the gyromonotron avoids electrical
breakdown problems and alleviates thermal-wall loading
at high frequencies and powers. Gyromonotrons have
produced microsecond pulse powers over 600 kW at fre-
quencies well over 100 GHz, ' and cw powers of 200 kW
at 140 GHz. 4

For applications where the requirement on phase
coherence is strict, such as is the case with high-energy
linear accelerators, an amplifier such as the gyroklystron'
would be appropriate. Gyroamplifiers, however, have
not yet demonstrated the high efficiencies and power out-
put of the oscillators; hence a method of obtaining phase
control over the oscillator is of interest.

This paper builds on a previous work in which phase
control was achieved by two methods, phase locking and
priming. Both of these methods involve injection of a

stable external rf signal into the gyromonotron. The sig-
nal is coupled into the gyromonotron in one of two ways;
direct injection into the oscillator or coupling to the elec-
tron beam in a prebunching cavity. ' The prebunching
method differs from that of the complex cavity tech-
nique' " in that the design of the prebunching cavity
prevents self-excited oscillation and an external signal is
used. The experimental apparatus and diagnostics are
described in Sec. II. A perturbation theory' gives the
phase-locking frequency bandwidth in the limit of small-
frequency difference between the drive signal and free os-
cillation ( ~coo

—
cod

~
/co„&&I ) and small drive-to-oscillator

power ratio (Pd/P, « I). This theory is combined with
a single-particle, linear analysis of the beam—
electromagnetic field interaction in the prebunching cavi-
ties' to yield a multicavity phase-locking theory. The
theory is valid for any number of prebunching cavities
and any transverse electric mode. This development is
given in Sec. III. The experimental phase-locking results
are compared with the small-signal theory in Secs. IV A
and IV B.

A variety of oscillator issues are addressed in this pa-
per. The unifying thread is that it is the effects of the
external signal which are emphasized when studying each
phenomenon. A complete examination of each topic
would require far more space than is available. Therefore
the following phenomena are described in a more qualita-
tive way and references are given to the more detailed
studies.

A brief overview of phase control of the gyromonotron
by injection of an external signal during the buildup of
oscillation is given in Sec. IVC. A more complete ex-
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planation of the phenomenon as well as experimental
priming results using the previously described direct in-
jection and prebunching methods are given in Ref. 14.

There have been predictions that the highest efficiency
regime of operation for the gyromonotron is below the
start oscillation current in the "hard-excitation" re-
gime. ' The characteristic of this regime is that the gyro-
monotron requires an initial cavity field amplitude, well
above the noise level, in order to oscillate. One of the
proposed means of accessing this regime is by adjusting
the magnetic field once the oscillation has started. Our
experiments show that it is possible to operate in the
hard-excitation regime by applying an external signal.
These observations and other qualitatively diA'erent re-
gimes of ECRM response to external excitation are de-
tailed in Sec. IV D.

Finally, free running, pulsed oscillators tend to be
noisy. There is a fair amount of randomness in the start-
up time in the pulsed oscillator since the fields build up
from rf noise generated by beam-current density fluctua-
tions. Also there is pulse-to-pulse jitter in the oscillation
frequency and amplitude due to slight variations in the
beam conditions. These noise problems can be somewhat
alleviated by injection of a stable external signal. An in-
vestigation of noise suppression in the gyromonotron is
given elsewhere. ' '

however, by appropriately profiling the magnetic field
along the axis of the device and increasing the perpendic-
ular to parallel velocity ratio a of the beam. Waveguide
couples out radiation from each of the cavities in Fig. 1

so that the fields in each cavity can be monitored. The
first two cavities are identical in construction (0.9A. in
length, QI =650, Q, =1100, undercoupled), while the
third cavity is somewhat longer (1.1A. and QL =300,
Q, =375, overcoupled). Here A, is the free-space wave-
length and QL and Q, are the loaded (cold cavity), and
external quality factors, respectively.

Since the cavity fields interact with the beam at the
fundamental relativistic electron cyclotron frequency an
axial magnetostatic field of 1.6 kG is required. The ex-
periment utilizes an electron beam with a 60 Hz repeti-
tion rate of 4.0 psec pulses. The beam voltage is near 30
kV and the beam currents are 5 to 6 A. The beam a is in
the range 1.0—152 for two- and three-cavity operation but
is somewhat higher when an oscillation is excited in cavi-
ty no. 1 ( —1.3 —1.5). These values for a are determined
from measurements of radiation frequency and beam en-

ergy together with the uncoupled dispersion diagrams of
the cavity-beam system as well as from theoretically pre-
dicted gyroklystron gain in the multicavity situation.

B. Diagnostics

II. EXPERIMENTAL APPARATUS

A. Multicavity setup

The experiments are carried out using the Naval
Research Lab (NRL) 4.5 CrHz, three-cavity gyroklyst-
ron' configuration which is shown in Fig. 1. A MIG
produces a thin annular electron beam which then in-
teracts with the cavity electromagnetic fields. The drift
sections between the cavities are cutofI to the 4.5 GHz ra-
diation and provide —30 dB of intercavity isolation. All
three cavities are rectangular and operate in the TE&~&

mode. Each cavity is tunable via a movable diaphragm in
one of the side walls. In normal gyroklystron amplifier
operation the beam conditions are such that all three cav-
ities are below the start oscillation threshold. It is possi-
ble to excite an ECRM oscillation in any of the cavities,

The phase-locking experiments consist of injecting an
external rf signal, produced by a stable sweep oscillator
and amplifier, into the gyroklystron configuration. Low-
pass filters are used on the input and output to prevent
harmonic gyromonotron emission from reaching the
external apparatus. Isolators on the input of the gyro-
klystron configuration prevent the fundamental harmonic
gyromonotron output from disrupting the drive source.
These reduce feedback gyromonotron oscillator power by
about a factor of 10 .

Several diagnostics are used to determine the onset of
the phase-locked state. First, the input and output fre-
quencies are monitored by digital frequency meters (a
pulse counter measures the output frequency). As the
gyromonotron becomes locked, the output frequency
shifts to the value of the drive frequency. The fact that
the drive frequency remains unchanged throughout the
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CAVITY ¹2
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CAVITY ¹3
QL = 300

r
eeoooweoooeoooewooeweoowwooooooiwwowowowwoiewwwoowooooowoeeowweow~e

tl5MMobwbwweebeeebwbeebeelleeMMOMOOOMMMbwMMMMOO ~ 5

CATHODE

INPUT OUTPUT

FIG. 1. Three-cavity gyroklystron configuration.
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locking process is evidence that the driver is not being
locked by the gyromonotron. Second, a spectrum
analyzer is used to monitor the frequency content of the
gyromonotron output. When the drive signal is
sufficiently close in frequency to the oscillation, a peak
corresponding to this frequency appears in the output
spectrum. As the drive power is increased, the gyro-
monotron peak merges with the peak at the drive fre-
quency. Third, the drive and output signals are mixed,
and the intermediate frequency (IF) output displayed on
an oscilloscope. The beat signal, which is present in the
unlocked state, discontinuously vanishes as the transition
to the locked state takes place. This same phenomenon
can be observed directly on a crystal diode as amplitude
modulation in the gyromonotron output due to the pres-
ence of the two frequencies. Finally a phase discrimina-
tor' provides a polar display of the change with time of
the relative phase between the driver and oscillator.
Shifting the phase of the driver and making sure that the
oscillator phase follows verifies that the gyromonotron is
locked to a constant phase angle with respect to the
drive.

III. THEORY

A. Direct-injection phase locking

Phase locking by direct injection of an external signal
has been a common method of achieving phase control
over oscillators. The first experiments were done on elec-
tron tube circuits' and later on microwave oscilla-
tors ' and lasers. ' The phase-locking phenomenon
may be observed when an external signal of power Pd and
frequency cud is applied to an oscillator of power Pp and
frequency cop if the Adler relation is satisfied. This rela-
tion has been written in a convenient form for microwave
oscillators operating into a matched load by Slater

1/2
I ~d ~p I

1'p

The frequency-locking band of a gyromonotron oscilla-
tor driven by an external signal introduced into a single
prebunching cavity has been calculated by Manheimer. '

Here we extend that result to include any number of pre-
bunching cavities and derive an equation for the phase-
locking band in the presence of competing modes. This
calculation makes the assumptions of weak nonlinearity
and small growth rate due to the interaction between the
electron beam and the field in the oscillator cavity. The
structure of the oscillator cavity mode is assumed to be
unperturbed by the presence of the electron beam. Ex-
panding the electromagnetic fields in Slater cavity
modes allows equations to be written for the time
response of each mode to the drive current. The method
of slowly varying amplitude and phase is used to separate
the fast-oscillation time scale (rf frequency) from that of
the phase-locking process. The steady-state solution to
the equation for slowly varying phase gives the locking
bandwidth of a given mode in a simple form when the as-
sumption is made that the oscillator power and frequency
are close to their free-running values.

I. Determination of the phase lockin-g banduridth

The following expansion is used for the TE mode rf
cavity fields:

E= ga„(t)e„,H= gb„(t)h„,

where n represents a particular combination of m, I, and
q, the three eigenvalues in the three-dimensional cavity
and E and H are real quantities (m and q can be nega-
tive). Here the eigenfunctions are

e„=VX[f(z)g &(r~)z], h„= VXe„,1

n

where P I satisfies the two-dimensional Helmholtz equa-
tion:

Cdp Pd (V +k, )g, (r )=0
where Q„is the external quality factor of the oscillator
cavity. The meaning of Eq. (I) is that at a given frequen-
cy separation between the drive signal and the oscillator,
the drive-to-oscillator power ratio must exceed a thresh-
old level for phase locking to take place. When the oscil-
lator is phase locked, the oscillation proceeds at the drive
frequency and has a constant phase shift from the drive
signal.

B. Phase locking by premodulation of the electron beam

and the normal derivative of tt &
vanishes at the conduct-

ing portions of the cavity walls. The eigenfunctions are
normalized so the coe%cients a, (t) and b„(t)may be ex-
pressed

a (t)=f d rEe,*, b (t)=f d rHh, *,

where the integrals are taken over the cavity volume V.
The vacuum wave equation describing the evolution in
time of the nth mode can be shown to be '

An alternative means of coupling the drive signal into
the oscillator is via modulation in the gain medium. In a
microv ave oscillator this means current density modula-
tion in the electron beam. This modulation can be
achieved by passing the beam through a separate cavity
to which the drive signal is applied. Previous theoretical
analysis of this method in a gyromonotron ' has pre-
dicted that a smaller drive power would be required to
phase lock the free oscillation at a given frequency
difference

I cod —
cop for electron beam premodulation

than for the direct-injection case.

1 d +k„a„(t)c2 dt2

= —
pp f d r J.e* f d r(n X H).e„*d

dt. v

—k„f d r(n X E).h„*,
S

where n is the outward normal to the cavity surface. J (a
real quantity) consists of the electronic current inside of
the cavity volume. The surfaces S' and S represent insu-
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lating and conducting portions of the cavity walls, re-
spectively.

We use the method of slowly varying amplitude and
phase to study the transition from a free-running, mul-
timode steady state to a phase-locked oscillation. The
time dependence of the electric field is

i [4'„(f)+~„r]a„(t)=—,
' A„(t)e " " +c.c.

=a„(t)+c.c. ,

where A„and 0'„are slowly varying in time and co„is
the free-running frequency of the nth mode (including the
mode interactions). The instantaneous frequency of the
oscillation is ~„+4„.

The ac beam current is written as a sum of the modula-
tion due to the gyromonotron cavity fields J0 and that
due to the premodulation J=J„,+JpM ~ It is assumed
that the premodulated current is a first-order quantity
(hence small-signal theory can be used in the prebunching
section). The expansions for the current are

and

J 1

Qo' QoQ,
'

din(A) 1 dO 1
an

co Q dt toQ

have been neglected. Using these relations in the wave
equation (and dropping complex conjugates) the follow-
ing multimode equation is obtained:

+c k„a„(t)
dt2

(1+i)k„+CO~ +, a„.(t)
k gnn g'nn'

a„.(t)
E CO

n'

respectively. Here Qo is the quality factor due to Ohmic
wall losses and Q, is again the external quality factor.
Terms proportional to the small quantities

J„,(r, t)= —,
' g [J„(t)e " " +c.c. ] =-p '" d' J +J

dt v
(4)

X e„(r)=J„,+c.c.

JPM(r, t)= —,'Jp(r)e " +c.c. =Jl, +c.c. ,

where co& is the driving frequency and J„varies on the
same time scale as 3„.

The surface integrals of the wave equation can be writ-
ten in terms of the cavity quality factors. Assuming that
a good conductor comprises surface S and a single
waveguide mode propagates into a matched load through
the cavity output, the integrals over S and S' may be
written (dropping the complex conjugates),

( 1+i )to„ a„(t)c&k,g«

The mode coupling takes place through the cavity losses
and the beam current. Substituting Eqs. (2) and (3) into
(4) yields an equation whose real and imaginary parts give
the frequency and amplitude evolution. The frequency
determining equation is

1 1'Il„+—co„— Re( L )—
dt " 2

02

+ Re(y„, )
Q7~ 2

~n
Re(yp ),

2 n
(5)

where g„,and gp are the electronic susceptibilities of
n n

the gyromonotron oscillation and prebunching interac-
tions respectively,

+OSC
l , (I l J(t)

d r g e„"e„*e " " " " to„.J„.(t)= —i

3 g I [( y )1 P ]
p 2

d I Jpce Mg
CO„E'0A

„

and

n'

(1+i)k„+, 1 roan CO~

g nn' g nn'

i [(Cu, —m )t+~il, —+ ]ll n tl ll

1 i f(cu —cu„)t++ —+ ]gA e " "a„
~n ~n

+gggA A A e ""0
o v p

We have dropped the terms J„andV„J„in arriving at
Eq. (5). The cold cavity resonant frequency is designated
to„.Equation (5) is a sequence of equations which deter-
mine the effect of the drive signal on each of the elec-
tromagnetic modes. y„,may be expanded, in the ap-

n

proximations of quasilinear mode-coupling theory, ' to
second order in the field amplitudes:

+ ~ ~ ~

where

@,, „=(co—co +co —to„)t+ql —4 +ql

Here the a, are growth rates and the 0 „aresatura-
tion coefficients, which depend on the mode structure and
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the gyromonotron operating parameters. Upon substi-
tution of Eq. (7) into Eq. (5) it is seen that the mode cou-
pling occurs through both the mode phases and ampli-
tudes. If the intermodal frequency separation is on the
order of the separation between the drive signal and the
driven mode, one might expect a complicated behavior
which could be chaotic for a large enough drive signal or
low enough cavity quality factors Qo. We will focus at-
tention on the simpler case of

2~
Cdg CO ~n ~n'

Here we have two distinct time scales, one the fast beat-
ing between the drive signal and modes other than the
nth, and the other the slow beating between the drive sig-
nal and the nth mode. In the case where the frequency
separation between the modes is much larger than the
cavity-mode linewidth, Eq. (5) may be averaged over the
fast intermodal phase beating time scale. Assuming
furthermore that the difference in mode spacing is greater
than the cavity linewidth of the nth mode
(2ro„—co„+,—co„,)co„/Qo ) the phase equation be-

comes independent of the other mode phases,

1+, +—co, +
fl 2 fl

n

+ —,
' Re a„„+A„g„„„,+2 g A„O„„„,„,

n'Wn

Re(yp ) . (8)

Now the amplitude of the nth mode in the phase-.
,
locked state is assumed to be only slightly perturbed from
its free-running value: 3, = 3„,+63, . Because co, is

n

the free-running steady-state frequency and the non-
linearity is weak (53„0„is second order), it is clear that
the second two terms on the left-hand side of Eq. (8) can-
cel to first order. The gyromonotron is phase locked
when the driven oscillation frequency equals that of the
drive signal co&=co, ++„,where for small premodula-
tions the phase varies linearly, O„(t)=6 cot +g. Using
these conditions and Eqs. (6) and (8) the locking band-
width, maximized with respect to phase angle|„is

CO

El

! 2w/co

dt d'rJ~Mrt e„*re
2& 0 v

e0 d3r E.,„.r .e,*, r
v

where E„„.(r) is the spacially dependent part of the free-
running oscillator electric field. The electronic suscepti-
bility gp is determined from the solution to the single-

n

particle equations of motion.

2. Calculation of the premodulated current density

are Ro, go). No radial spread in guiding center is con-
sidered. This beam geometry is close to that generated
by a MIG gun. The relativistic electron cyclotron fre-
quency is given by A. The cavity wall radius is r„„and
the transverse cavity coordinates are r and 0. The parti-

The experiments to be modeled employ prebunching
configurations with two or three TE,0, mode rectangular
cavities separated by drift sections cutoff to the radiation
(see Fig. 1 for a schematic). The theory, however, will be
valid for any number of prebunching cavities of circular
cross section. The results for the rectangular TE10 sys-
tem are related to those of the TE» cylindrical case in a
simple way. The cavity interaction can be approximat-13

ed by considering the coupling of thin annular electron
beam with the cavity mode at the fundamental cyclotron
harmonic. The calculation of the prebunched current
density makes use of a gyroklystron theory" which has
been modified to allow for small linear tapers in the axial
static-magnetic-field profile (see Appendix). These tapers
are necessary in the theory since magnetic-field detuning
was used to prevent multiple-cavity oscillation in the ex-
periment. Since the bandwidth of the prebunching sec-
tion is increased with magnetic tapers it is expected that
the locking width also increases. Theoretical predictions
of locking bandwidth are compared with experiment for
cases with one and two prebunching cavities.

The electron beam geometry is shown in Fig. 2. The
electron guiding centers are uniformly dispersed about
the large circle of radius R„(guiding center coordinates

center
g

=Q(t-t )+ y

FIG. 2. Geometry of electron beam in cavity with guiding
center Ro and Larmor radius rL. 60„and AP„are the incre-
ments used in calculation of the transverse current density. The
cavity radial dimension is r„,.
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dp]

dt
F—sin(cot —A)+F cos(cot —A), (loa)

cle dynamics are represented in the slow-time-scale for-
mulation (variations in electron motion from the zeroth-
order pure cyclotron motion are calculated) and the fields
in cavities between the input cavity and the oscillator are
calculated using a Green's function approach. ' The
electron equations of motion in a cavity supporting a TE
mode are

E=Re C i k iJ' (k ir)O
L

+ J (k r)r F(z)e" (13)

which has right-handed circular polarization. Here
m =m& and l =I& in the kth cavity. The transverse wave
number k I is defined by

dA
pi — M

&.yo pi+F cos(art —A)

&mr
k, I=

re

5B,+F sin(cot —A) —epi-'ym,

dpz e
pi 5B„[sin(cut —A ) sinO

dt ym,

+cos(cut —A) cosO],

(10b)

(10c)

where the slowly varying phase A=cot —Sl, (t —to) —P,
c~ is the rf field frequency, to is the entrance time of the
electron into the cavity, y is the relativistic factor, and F
and F, are defined by

6B,F = —e(E„cosO—Fe sinO)+ep, sinO,'ym,
68„F = —e (E& cosO+ E„sinO)—ep, cosO .
ym,

d +i (co —fl, )—
dt

e6B, 5B,U,+i
Z~B. ~(z —z,„)ym

—i [(,rn —1)00]
,'ek iC,„&J—,(k ~RO)F(z)e

(14)

where x
&

is the lth zero of J' (x). The normalization
constant is

1

[ir(x I
—m )]' J (x &)

Expanding the electric field about the electron guiding
center and retaining only the slowly varying components
at the fundamental cyclotron harmonic (and assuming
k &rL &&1, where rL is the electron Larmor radius) the
equations of motion inside a cavity can be compactly
written (see Appendix)

Here Ez and E„arecomponents of the rf electric field.
The electron rest mass and charge are given by m, and
—e, respectively. The equations of motion have been
written to include the eAect of small linear tapers in the
static magnetic field. The magnetic field remains curl
free and is written,

B=B,+68,

where the complex momentum is defined, p =p ~ e
From these equations of motion the electron momenta
are found as a function of the initial coordinates
(PO, Oo, to, vo) and the time t For reasonable e.lectron den-
sities ( —10 cm in our case), the current density can be
found by integrating over the electron initial conditions,

where

5B,=(z —z,„)dB
dz z=z

X6(r —r„,„b;,) dt(iiidO„dto d vo ."""'
y

(15)

and

r dB
2 dz

Here r,„b;, is the electron trajectory, Io is the dc beam
current, and the quantities r,„b;„p~,and y are functions
of the variables r, $„,Oo, to, and vo.

3. Multiple-caUity phase-locking results

and the subscript a indicates that the average value of the
z component of the magnetic field (in a given cavity or
drift section) is to be used in the subscripted quantity.
The position z„.is that at which B,=B,. The subscript 0
in Eqs. (10) indicates the initial value (at the entrance to
first cavity) and p, and pi are the axial and perpendicular
momenta, respectively. The slow-time-scale variables are
related to the original momenta by

I [Sl (~ —fo)-+p]
p +ip, =ipse

Equation (15) is the proper expression for the trans-
verse current in the gyromonotron to be used in Eq. (9).
The potential, from which the circular TE I mode cavity
eigenfunctiuns in Eq. (9) are calculated, is

i =C,„,J (k,„,r)e

The integration over the cavity cross section in Eq. (9) is
done first, then the time-dependent unit vector P is intro-
duced into the electron momentum,

For a TE I circular mode, the cavity electric field is
i [0,, [r —fo)+$]

p, =piP=p, Re[e "" ' (ix+y)] . I 16)
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The slow-time-scale formalism is introduced as the elec-
tric field is expanded about the electron orbits (all time
scales more rapid than co —0„,. are averaged away).
Again the subscript osc denotes the value in the oscillator
cavity. It has been shown that the limits on the integra-

tions over t and to may be interchanged. The integra-
tion over time now merely replaces the variable t with a
function of z because of the 6 function from the electron
density. The final result for the phase-locking frequency
band is

o i &
—i( i o) L p( No o o "o) e""

15'�/ = J (z)dz
2pl 3 osc EO y(z, yo, eo, r, , v, ) o,

os(

where the average has been denoted

is the free-running gyromonotron amplitude (mks
units of Vm' ) and p, the complex momentum of Eq.
(14), has again been used. All quantities depending on
the eigenvalues I, I, and q are evaluated using the mode
in the oscillator cavity. The solution for the particle dy-
narnics through any number of prebunching cavities
separated by drift regions in a uniform magnetic field is
given in Ref. 13. Thus our nomenclature and method of
solution are consistent with that source. An initial
momentum of p~ =yomv~ is used. The electric field in

0 0

all prebunching cavities but the first is found by a self-
consistent solution to the coupled momentum and wave
equations. The electric field in the first cavity is generat-
ed solely by the external rf drive signal.

The individual cavities and drift tubes are defined as
sections of the device. A stage in the device is defined as a
prebunching cavity plus the following drift tube. The
physical parameters in the problem are labeled if they are
either section or stage dependent. In general, all quanti-
ties depending on the static magnetic field are section
dependent while those dependent on the cavity rf electric
fields are stage dependent. For example, the entrance po-
sition coordinate of the kth cavity is written as a sum
over all previous stages

2k —2

L
j =1

where L is the length of the jth section, numbered con-
secutively from the electron-gun end of the device. Thus
the subscript on z indicates the kth stage while that on L
indicate the jth section. It is annotated, wherever possi-
ble, in the following whether a given parameter is sub-
scripted by stage or section. A normalization scheme is
used to keep the radiation wavelength arbitrary. '

Lengths are normalized to the radiation wavelength, ve-
locity to the speed of light and energy to the rest energy
of the electron. Other quantities are normalized con-
sistently (see Appendix).

For the general case of phase locking using N + 1 cavi-
ties (N prebunching cavities), we first calculate the trans-
verse momentum at the entrance of the final cavity. This
is done in the Appendix. The electron momentum in the
oscillator cavity [(N + 1)st cavity] is found using the cal-

culated electron energy change through the first X cavi-
ties [see Eq. (A13) for energy change expression]. This
momentum is now used to calculate the averaged quanti-
ty in Eq. (17). Using the relation 5y=p~ 5pt/yo, the

0

averaged quantity can be written (to first order in

6y/yo, 6p~/p~, and the ratio of the electron energy loss
0

per rf cycle in the input rf field to the rest energy of the
electron) as

(
p(z,v+ ) +z ) ((m —i)()o

|'0 &0 'o

=/pi 1

—2
P i 2'

exp —i gM E)
xo j=1

where

2N

X $I hJ(A)e
j=1

—iA, z0 0
' + 3 ze -"'' ), (18)

I kg ~ 2

IQ

2

0 J j
p,
2N

A.. =2j —
1

X6~

and (19)

1
2 2

Q) Pg

2
02.v+)yo

,, (g„-) ~u

R
) 2j —i

Here the relative phase change through the jth section,
due to the variable electron Larmor frequency, between
the electron beam wave and the rf field is given by
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M, = ' ', ' [(2+f, )+1 f,—(2—f,—)+1+f,]
APL, yo

3pg

~p~
2 ~J

'Vo

(p„,)„
EP2, ' f3

T RL2
P2,

(cv —$1, )L,+ ' ' (Ql+f —Ql f,—),
J

(20)
co pg

+jk 2 9k
Xo P2j —

1

ER, +
2k —

1 P2k

where the cyclotron frequency 0 and the ratio of axial
electron velocity to the speed of light in vacuum p are la-
beled by section. Here f, is proportional to the magnetic
field gradient in section j,

—2

p'o d)Bf

2(5, I) g,' J

The change in the magnitude of the perpendicular
momentum in section j due to conservation of the elec-
tron magnetic moment is

where in the jth stage

2J —2

hk if j) 1
' k=1

1 if j=1.
The bunching parameters are written in terms of the
stage-dependent quantities E, T, and R which will be
defined presently. The phase factors o k (stage depen-
dent) are

h= 1+

di5
d-Z J

B,(+""
dZ

1/2

(21)

T1 L2
o»=arg E, +R,

1 2

Jo. "=arg E +R
2j —

1 2J

for j ) 1, (23)

where Bo is the axial magnetic field at the start of the first
cavity and the detuning factor between the rf frequency
and the cyclotron frequency in the jth section is

CO
1

p) 3'0

The "bunching parameters, " representing the modulation
of the electron beam due to interactions in the jth and
kth stages are

o'
k =arg(E R ) for k ) 1 .

The normalized electric field strength in the jth cavity is
eE =—,'F

(p2 —1)v mc

zo

XC, k,J,(k, Ro),j j j j j j j
(24)

where the modal indices m and l are subscripted by stage.
The beam-generated electric field in the jth cavity is
found in terms of the electric field in previous cavities,

E- = /IJ p ZJ

f(V ) . 2 —2
i (m —1)00 J

e ' ' exp i g Mk
y k =1

—2
Pp 2j —2 j—1 j —1 i —

1

E, = p, 1 ——, IJ Q hk —,
' g g,k

'"5 +
70 k=1 s=1 k =2 k=1

E'o k
R k

P2k —
1 Pi

2J 2

n =2k —
1

2J —2

g h„
n =1

h„
(25)

where the normalized beam current is

IJ= 3, , 2 m„,nn m 1 mnRO).
2eom c (P )e j

(26)

The constants R and T have the same definitions as in Ref. 13 and are given in Eqs. (A8), (A9), (Al 1), and (A12) for
convenience. The Kronecker 5 functions (5 „)in Eq. (19) originate in the averages over the guiding center coordinate
Oo. The result is that if the azimuthal mode index in any of the prebunching cavities is not the same as in the oscillator,
then the bunching term from that cavity does not contribute. For maximum performance one therefore requires that
all the cavities have the same azimuthal mode index.

The locking width for a system with N prebunching cavities is obtained by using Eq. (18) in Eq. (17). The axial elec-
tric field eigenfunction is assumed to be sinusoidal in the oscillator cavity (start of N + 1st stage of device),
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fq (z)=
L

1/2

sin[k, (L2~, ,
—z)],

where the axial wave number k, =q~/L2y 1. The expression for the locking width is
X+ 1

IN+1 E1
p,

L2N+1~0 E N+1 & =1

&p..., &,,
0 0

( 3 iRN+, + 32PN+ i )
1'p P2N +1 V

ZQ

(27)

where A i and A2 have been defined in Eq. (19) and
L 2.7+1 0

RN+1= sin k, L2N+] —z e "' ' ' dz

is the complex conjugate of R1 with the substitutions L, ~L2N+] and k. ~k, . The definition of P is

L g0
P, = J sin[k, (L.. . —z)]ze ' ' dz,

z =-0 j

which evaluates to

P =, k, L~ c so(b, Lk„)+
2k, b, i,. sin(b, I,.LI, )

—(k, + hi,. ) sin(k, Lk )'J '
k2 —50

k, —
Aq

2k 5& [cos(hi,.Li,. )
—cos(k, L& )]

.I'

k, —
Aq

—k, L& sin(b&Li )

where the subscript k =2j —1. The normalized oscillator amplitude is given by

2E N+1 2 ~osc
L2N —

1

1/2 C, k i J,(k, Ro) .
( X -i-1 iV+1 .7+1 r'7+1 %+1 W-+1,VW 1192' 1P „,m, C

0

The average over axial velocity spread in the jth cavity can be written in terms of an average over initial axial veloci-
ty spread by using Eq. (A5) obtained from conservation of electron magnetic moment. The relation is

ds
&P&, = P,' 1+y

k=i ~ o~

1
1 ———

2ro

1 /2

a]s,'~
, , iSo dz

ZD

The average over velocity spread is done numerically. The distribution function f (vo) is assumed to be Gaussian in v,
and the beam is assumed to be monoenergetic,

f (vo)-exp
2(b, v, )' 2ro

For a system of two rectangular TE,o, mode cavities (modeling the experimental system) the general relation for the
phase-locking limits Eq. (27) reduces to

I2 E1
i 5',„.i

= p, 1—
L3COO E 2sc

—2
Pz

2ro

&p, &„&p,&„.
zD 0

1 ~i0 T1 R 1L2
X ~ +

p, p,
R,+i-
Pj„

Gpi
R, + — P2(L3)

Vo V

0

2

Q h. , (28)
j& =1
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where the relations

k„~ and C„k„~
L

1/2
2

L L

are used to transform the expressions from the TE,
&

cir-
cular mode to TE,0 rectangular. Similar results follow
for the three-cavity device.

It can be seen that the phase-locking frequency band
given by Eq. (27) is of the same form as the Adler rela-
tion, Eq. (1). The drive and oscillator amplitudes are
given by E, and F. ~"+, instead of the powers Pd and Po.
The important difference is that in Eq. (27) the drive am-
plitude is multiplied by a gain factor given by the quanti-
ty in the absolute value. It is to be noted that this gain
factor is not identical with that of an N+1 cavity gyro-
klystron amplifier. This is because the prebunched
current does not excite the field in the final (oscillator)
cavity.

Since both sides of Eq. (27) depend on the external sig-
nal frequency, the locking band must be found using an
iterative technique. The strong frequency dependence of
the gain factor often results in a locking band which is
not symmetric about the free-running frequency of the
oscillator. This phenomenon will be seen later in the ex-
perimental results.

Ct

Mph@

FIG. 3. Phasor diagram of voltage signals during priming of
oscillation. Shaded circle indicates random-phase variation of
the noise vector. Initial oscillation phase is constrained to +A/
about that of the drive signal ~

parison, using some measurements of gyromonotron
preoscillation noise, are made in another work. ' It
should be emphasized that this priming phenomena does
not control the frequency of the oscillator. A separate
system, such as a phase-locked loop, must be used if
phase coherence is required throughout the pulse.

C. Priming of the gyromonotron

Priming, or phase initiation of a pulsed oscillator by a
cw driver, was observed experimentally and analyzed
theoretically in the early work on controlling the phase of
magnetrons. ' ' ' There has also been recent work done
on solid-state oscillators and magnetrons. ' ' The
pulsed oscillation, though self-excited, grows from an ini-
tial condition of random noise. This results in total phase
incoherence between one oscillator pulse and the next.
The introduction of a stable, cw external signal during
the oscillation build up increases the amount of interpulse
phase coherence. The amount of start-up phase jitter in
the presence of this external priming signal can be es-
timated using a lumped circuit representation of the os-
cillator. Before the oscillation starts, small variations in
electron current density excite fluctuating voltages (noise)
in the oscillator cavity. Though the noise is wideband,
the presence of the cavity filters all but a narrow band of
frequencies within a range determined by the cavity Q
factor. Thus the noise frequency is reasonably close to
that of the injected signal though its phase varies ran-
domly. The noise amplitude varies statistically about
some mean. The net voltage in the cavity is given by the
vector sum of the injected signal and the noise signal (see
Fig. 3). It is clear that the phase of the net voltage will
vary over a smaller range as the amplitude ratio between
the signal and noise becomes larger. The probability of
start up at a given phase can be determined as a function
of the rms signal-to-noise ratio once the statistical behav-
ior of the noise amplitude is known. From the half-width
of this probability distribution a root-mean-square devia-
tion in start-up phase can be found. This value can be
compared directly with experimental results. This com-

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Direct-injection phase locking

10

-1.0 -0.5 0.0 0.5 1.0

FIG. 4. Phase locking by direct injection of rf into cavity no.

It has been previously shown that a gyromonotron can
be phase locked by the direct-injection method. We
verify those results by phase locking an oscillation in cav-
ity no. 1. The plotted points in Fig. 4 show the drive
power required to lock the cavity no. 1 oscillation at a
given frequency separation between oscillator and driver.
The gyromonotron is phase locked in the entire region
between the two sets of points. The solid curves in the
same figure show the phase-locking limits predicted from
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the time-independent solution [Eq. (1)] of Adler's equa-
tion. The agreement between the experimental results
and theory is quite good for small drive power (the theory
assumes that the drive power is small compared to the os-
cillator power). The oscillation strength in cavity no. l is
on the order of 1 kW. Care is taken to assure good isola-
tion between the driver system and the output radiation
from cavity no. 1. Direct-injection locking, as a tech-
nique, is hampered by the fact that the drive radiation
must be launched through the output line of the oscilla-
tor via a circulator. There is always the danger of lock-
ing or damaging the driver if adequate isolation from the
oscillator is not present.

B. Phase locking by premodulation of the electron beam

The second cavity can be phase locked by applying the
external drive signal to the first cavity and allowing the
modulated electron beam to interact with the second cav-
ity oscillation. The 30 dB isolation between the cavities
prevents the input rf signal from leaking directly into the
second cavity oscillator. Though the first two cavities are
identical in construction it is possible to keep the input
cavity quiescent by tuning the Doppler-shifted electron
cyclotron frequency of the beam well above the cavity
resonant frequency. This is done by raising the magnetic
field in the first cavity and mechanically lowering the
cold-cavity resonant frequency. Unfortunately in this
condition the first cavity is not able to absorb radiation
very well at the frequency at which the second cavity is
oscillating. The results of this two-cavity locking system
are shown in Fig. 5. The experimental resolution in fre-
quency separation is —+0. 1 MHz. Here, once again, the
locking bandwidth is shown for diff'erent dri ve-to-
oscillator power ratios. It can be seen that the experi-
mental locking width is considerably wider than predict-
ed from the Adler relation, shown by the dashed curves.
This diff'erence can be understood as an intensification of
electron beam modulation between the input and output
cavities due to the same gain mechanism that operates in

10

the gyroklystron amplifier (regenerative amplification in
the first cavity and gain due to ballistic phase bunching of
electrons in the drift section). Thus, by using a prebunch-
ing cavity, not only are problems of driver protection cir-
cumvented but the drive signal can be enhanced in transit
to the gyromonotron. The steady-state locking angle is
found to vary approximately between +90' as would be
expected from Adler's theory.

The solid curves in Fig. 5 are the predictions of the
multicavity theory, Eq. (28), taking into account the ta-
pered magnetic-field profile and assuming an o. of 1.5 and
a velocity spread of 5%. The nominal cavity tuning is
4.472 GHz. The free-oscillation power level is 1.3 kW,
and the oscillation frequency is 4.482 GHz. The magnet-
ic field is tapered upwards from the electron gun to the
oscillator cavity, and a downward taper is used through
the rest of the tube. The average magnetic field is 1.575
kG, and the tapers are -4%. The beam voltage is 29.8
kV, beam current 4.92 A, and the electron guiding center
radius R0 is 0.9 cm. In the regime of validity of the
small-signal theory (for low drive powers) the theory
agrees quite well with the experimental results. The
asymmetry in the experimental points is partly a large-
signal eff'ect to be discussed later. The small-signal
theory does, however, predict some asymmetry because
the gain of the prebunching stage optimizes at a frequen-
cy below that of the free-running oscillation.

Figure 6 shows the further increase in locking band-
width obtained by using two cavities to premodulate the
beam. The third cavity is run as a free gyromonotron os-
cillator (20 kW output power) and the drive signal is in-
jected into the first cavity. Note that the locking width
predicted by the Adler relation in Fig. 6 is much larger
than in Fig. 5 at a given power ratio due to the fact that
Q, for the third cavity is only 375. The three-cavity sys-
tem allows locking at more than 15 dB below the Adler
limit. The two-cavity gain in the amplifier mode is 10—20
dB, which accounts for this 15 dB improvement.

The results of the multicavity phase-locking theory
(solid curves) are once again in good agreement with the
experimental points. A beam voltage of 28.0 kV, beam
current 5.74 A, an a of 1.0, and a 5% velocity spread are
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FICs. 5. Phase locking of cavity no. 2 gyromonotron by
premodulating the beam in cavity no. 1.

FIG. 6. Phase locking of cavity no. 3 gyromonotron using
two cavities to premodulate the beam.
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used in this calculation. The magnetic-field profile is of
the same shape as for the two-cavity experiment except
with an average of 1.547 kCs. Note the strong asymmetry
in the locking band at large drive-to-oscillator power ra-
tios.

The code does not include susceptive beam loading
effects on the coupling of the external signal to the cavity.
We have found that the experimentally observed frequen-
cy of maximum gyroklystron amplifier gain is —30 MHz
higher than that predicted by the code. Thus this effect is
introduced as a correction to the experimental frequen-
cies when used in the code.

It is found in this experiment that the cavity resonant
frequencies should be stagger tuned for most efficient
phase-locked operation. This is due to the increased fre-
quency pushing effect of the electron beam as the bunch-
ing process takes place. The frequency of maximum ab-
sorption of the first cavity is about 10 MHz higher than
the cold cavity resonance while the maximum emission
from the third cavity comes at 60 MHz above the cold
resonance. To make these frequencies equal the resonant
frequency of the third cavity is mechanically tuned down-
wards by —50 MHz. The second cavity is tuned to a
cold-resonant frequency approximately halfway between
the other two.

In summary, the results indicate that a gyromonotron
can be most effectively phase locked by introducing a
modulated electron beam into the oscillator. The advan-
tages over direct-injection locking include potential gain
of the drive signal upon traversal of the drift sections and
intermediate cavities and natural separation between the
driving components and the cavity oscillator. This sepa-
ration allows both protection of the driving components
and more effective coupling of the drive signal onto the
beam.

Another phase locking issue briefly investigated is that
of phase locking by a large drive signal. Figure 7, where
data is taken from a two-cavity experiment, shows ex-
treme asymmetry and expanded locking width compared

with the Adler prediction. The fact that the locking
width may exceed the Adler prediction at large drive
powers agrees qualitatively with gyromonotron direct-
injection measurements in a previous experiment and is
understandable since Adler's result is based on a small-
signal approximation. The asymmetry in locking width is
due to two effects. The first is the previously mentioned
dependence of the premodulation section gain on fre-
quency, and the second is the effect of asynchronous
quenching. If the frequency of maximum gyroklystron
gain through the first drift section is lower than the
second cavity oscillation frequency then the low-
frequency drive signals appear larger at the second cavi-
ty, and there is a corresponding shift in the locking band
(this effect is noted to a lesser degree in the small-signal
cases as well). Note that the total locking width in Fig. 7
is limited to —8 MHz which is the bandwidth of the first
cavity. The second reason for the asymmetry in locking
width is the presence of an entirely different phenomenon
on the lower locking edge. It is observed that the process
of unlocking is different on the upper and lower locking
edges. The upper edge exhibits the normal sudden ap-
pearance of a large beat signal in the output of the mixer
diagnostic as the oscillator unlocks. At the lower locking
edge the beat signal which is present seems to "grow"
from zero amplitude as the drive frequency is lowered.
The curve shown on the left-hand side of Fig. 7 marks the
frequencies at which this small beat signal first became
visible. This growth in amplitude of the beat signal indi-
cates that the free oscillation in the second cavity is being
suppressed rather than locked by the drive signal along
this lower "locking edge. " The area where this suppres-
sion may be occurring is indicated by the dashed contour
in Fig. 7. The transition from the phase-locking regime
to that of asynchronous quenching can be experimentally
determined from a rapid change in the steady-state rela-
tive phase between the oscillator and driver. This ex-
periment has not yet been done. Within the asynchro-
nous quenching region the drive signal initiates an oscil-
lation which competes with the self-excited oscillation in
the second cavity. The brief explanation, given previous-
ly, indicated two types of quenching, passive and active.
From the available data it is not possible to determine
which type is in evidence in Fig. 7.

By pulsing the rf drive signal it is found that the lock-
ing frequency limits are independent of the turn-on se-
quence of driver and gyromonotron (see Fig. 7). The ex-
perimental points marked "primed" are those taken when
the drive signal is introduced during the oscillation build-
up (drive pulse overlaps front edge of oscillator pulse).
The pulse-to-pulse phase coherence, however, is degraded
if the drive signal is introduced after the buildup of the
oscillation.

-8.0 -40

~ (; 'l.0

J.
0.0

I. .
4.0 8.0 C. Priming of the gyromonotron

f, —f (MHz)

FIG. 7. Phase locking with large drive signal. Drive not
present during oscillation buildup (unprimed), overlapped
(primed), and estimated region of oscillation quenching (dash),

Here we include a brief description of experimental
priming results with the aim of comparing them with
those of phase locking. The details of these experiments
appear elsewhere. ' The most fundamental difference be-
tween priming and phase locking is that the latter occurs
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oscillator parameter (which in the ECRM oscillator
could be the axial magnetic field, beam current, output
load, etc.). If the nature of the oscillator is such that the
amplitude changes continuously from zero as the param-
eter is varied then the oscillation is a case of soft excita-
tion. This behavior is seen in the ECRM as the beam
current, for example, is increased through the start oscil-
lation current. Note that this test of soft excitation can
be done in the steady state and does not examine the
time-dependent features depicted in the phase plane ex-
ample.

L

O

-I.25 -0.75

1on of autonomous oscillation

f
-0.25 0.25 0.75 1.25

fd - fo (MHz)

FICs. 9. Amplitude-frequency response for ECRM oscillator
in soft-excitation regime.

dE
dt

dE
dt

(a)

FIG. 10. Phase-space diagrams (a) soft excitation; (b) hard
excitation.

coordinate axes are some conjugate variables characteriz-
ing the oscillation (E,dE/dt) which may, for example, be
related to the electric field amplitude and its time deriva-
tive. The system starts at some point on the phase plane,
specified by the initial conditions, then proceeds along
the trajectory along which it lies. In this case there are
two equilibria, one at the origin and the other the limit
cycle represented by the dashed line. Only the latter
equilibrium is stable since trajectories wind towards the
limit cycle from both directions (regions I and II). Thus
the steady state is independent of initial conditions and
the oscillation is self-excited since the point (0,0) is unsta-
ble.

Soft excitation can be determined experimentally by
the way the oscillator system responds to a slowly varied

3. Hard-excitation regime

Hard excitation is the situation where, as in Fig. 10(b),
the origin is a stable equilibrium. There are two limit cy-
cles, one unstable and the other stable. If the initial con-
dition of the oscillator is in either in regions II or III then
the system moves to a new equilibrium. The new equilib-
rium is now a steady-state oscillation, shown by the
outermost limit cycle. It can be seen that there is an am-
plitude threshold which the initial condition must exceed
(large enough to reach region II) for the system of Fig.
10(b) to begin to oscillate. The final steady state, howev-
er, is insensitive to any other characteristics of the initial
condition. The hard-excitation regime can be identified
when a normally stable system is driven into a state of
free oscillation by an external perturbation of arbitrary
characteristics other than that it exceeds a given ampli-
tude. An external signal, present during the course of the
oscillation, can phase lock the oscillation in the hard-
excitation regime just as in the soft.

Hard excitation also can be identified by slowly varying
an otherwise static oscillator parameter. The oscillation
amplitude will be observed to change discontinuously
from a steady-state value.

Figure 11 shows the experimentally observed
phenomenon of hard excitation in the ECRM oscillator.
The oscillation is in cavity no. 3, and the drive is applied
to cavity no. 1. The drive signal is only present during
the first 1 psec of the high-voltage pulse across the elec-
tron gun [Fig. 11(c) shows the schronization]. Thus the
drive signal provides an initial condition for the oscillator
other than (E =O, dE/dt =0). There is no oscillation
present in the absence of the drive signal Fig. 11(a). For
a drive signal of 286 mW, a stable oscillation is excited
for the duration of the electron beam pulse [see Fig.
11(b)]. Unlike the bulk of the pulse, the pulse front edge
is affected by the amplitude of the drive signal. No fur-
ther change takes place in the bulk of the pulse as the
drive amplitude or frequency are varied (within the cavity
no. 1 bandwidth).

Another experiment reveals the temporal connection
between the application of the drive signal and the initia-
tion of the oscillation. As the drive pulse is moved later
in the electron beam pulse it is found that the oscillation
starts correspondingly later in time with respect to the
start of the electron beam. In all cases it is found that the
oscillation continues for the remainder of the electron
beam pulse. Thus it is clear that it is the external signal
which provides the starting condition for the hard excit-
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ed oscillation.
A drive curve of the three-cavity device operating in

the hard-excitation regime is shown in Fig. 12. There is
weak amplification of the drive signal for small drive
powers (the drive signal is applied over the entire electron
beam pulse in this case). When a critical drive power is
reached, the oscillation initiates and the output power in-
creases dramatically. The phase discriminator reveals
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~~1.0
O

I I I I I I 1 I l I I! I! II 1 I I I I I!I

I I I I 1 I III I I I I I I III

P HASE- LOCKED
OSCILLATION

I I I I I I III I I ! I I I l I

10 10 2

D R I VE P OWE R {W)
10 "

(a) FIG. 12 ~ Drive curve in hard-excitation regime for same os-
cillator parameters as Fig. 13; cw drive.
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that the output of the device is phase locked to the drive
throughout the drive curve. Thus the drive power which
initiates the oscillation is enough to cause it to phase
lock. There is no reason to assume that this would gen-
erally be the case. If the drive frequency were varied
significantly from that of the oscillation, for example,
there might still be initiation of the oscillation but no
phase locking.

Figure 13 shows an example of the amplitude-
frequency response in the hard-excitation regime. This
data is again from a cavity no. 3 oscillation initiated by a

I I!P

:ig i!
l!!I!15!Llt lt

l lw!!t iuiwii

OO

(c)

CLO

0
I
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FIG. 11. Oscillographs of crystal diode traces monitoring
ECRM oscillator output rf power in hard-excitation regime. (a)
Pd =0, no external signal applied; (b) P,&

=286 mW, excitation
of 12.1 kW oscillation with drive frequency equal to oscillation
frequency; (c) synchronization of (from top) drive rf pulse,
electron-gun high-voltage pulse, and output rf oscillation.

-30.0 -20.0 -10.0 0.0 10.0

fd — fo (MHz)
20.0 30.0

FIG. 13. Amplitude-frequency response for ECRM oscillator
in hard-excitation regime.
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drive signal applied to cavity no. 1. Note that the oscilla-
tion is excited by a wide range of drive frequencies. The
oscillation frequency, however, is never affected by the
drive signal except in the narrow region about
fd fp

=0, where the ECRM oscillator becomes phase
locked. In this experiment the drive signal is on
throughout the oscillation pulse so that there is some
dependence of the oscillator power on the drive power. If
the ECRM oscillator cavity was long enough to produce
a beam-wave saturation condition, then this power
dependence probably would not be evident. If an
amplifier is designed to operate in the hard-excitation re-
gime, bandwidths cannot be expected beyond that over
which the oscillation is phase locked. Figure 13 shows
that this is a small fraction of the cavity bandwidth.

This method of accessing the hard-excitation regime
may have application for electronic efficiency enhance-
ment of gyromonotrons. Applying a drive signal has
several advantages over other proposed means of access-
ing this desired regime of operation. The method of
varying the magnetic field to tune from an initial regime
of soft excitation to one of hard excitation has the disad-
vantage that the field cannot be changed rapidly. A drive
signal, however, is well suited to starting a pulsed gyro-
monotron in the hard-excitation regime as described
above. Another method involves controlling the voltage
pulse to the electron gun to enable the gyromonotron to
first start in the soft-excitation regime then end in a
hard-excitation regime. This method does not have the
flexibility of the one we propose, but it may be satisfacto-
ry. /

4. The ECRM oscillator plane

The three regimes of qualitatively different behavior
discussed above are shown on the ECRM oscillator plane
of Fig. 14. This data is taken for a cavity no. 1 oscillation
while directly injecting an rf signal. A premodulation ex-

I
start . .

""

periment cannot be done (using our cavities) in this case
because of the stability problems inherent in the pre-
bunching cavities as the magnetic field and beam current
are varied. Two current limits are identified in the exper-
iment which delineate the different regions. The highest
beam current possible while operating in the amplifier re-
gime is termed I;„.I„„,is the measured start oscilla-
tion current of the ECRM oscillator in the absence of the
external signal. The regimes shown are similar in loca-
tion to that predicted. With our short-cavity length
(too short to produce beam-wave saturation), it is not
possible to determine whether the high-efficiency region
moves as predicted to lower beam current in the pres-
ence of an external signal.

Figure 14 also shows the operating frequency of the
ECRM in both the oscillator and amplifier modes when
driven at a constant power and at the frequency of max-
imum oscillator efficiency. It is found that the efficiency
maximizes when the drive frequency equals the oscilla-
tion frequency (this will not necessarily be the case for
larger drive power). An interesting feature of this figure
is that the curves of constant frequency are continuous
through the different regimes.

V. CONCLUSIONS

The general response of an electron cyclotron maser to
the application of an external signal, applied both by
direct injection of rf into the device and by premodula-
tion of the electron beam, has been studied. It has been
found that phase and frequency control can be achieved
over the gyromonotron via phase locking. Phase locking
the gyromonotron by premodulation of the electron beam
produced results that far surpass those of any other
locked oscillator system. This premodulation technique
allowed phase locking at input power levels 15 dB below
that predicted by Adler's theory for a single cavity. A
perturbation theory has successfully predicted the phase-
locking bandwidths for two- and three-cavity systems.

Three different regimes of ECRM behavior have been
examined experimentally and located in the oscillator
plane. It has been been shown that the regime of hard ex-
citation can be accessed by application of a small external
signal during the start up of the ECRM. Phase locking
in the hard-excitation regime has also been demonstrated.
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FIG. 14. ECRM oscillator plane showing contours of con-
stant frequency when driven by external rf with drive frequency
adjusted for maximum oscillator efficiency, Pd = 12.5 W,„,h,d, =29.2 kV, Vm, d,„,d, =20.5 kV.

APPENDIX: SMALL-SIGNAL GYROKLYSTRON
THEORY WITH A TAPERED MAGNETIC FIELD

The objective here is to modify the linear multicavity
theory presented in Ref. 13 to allow for small tapers of
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the magnetic-field profile. The basic assumption is that
the effect on the electrons of a change in magnetic field
over any single cavity or drift section be small (compara-
ble to the first-order electron interaction with the rf elec-
tric field). The change over the course of several sections,
however, may be larger than first order. In each cavity
the electron equation of motion is

pX(B, +5B)
GP = —eE,
dt m, y

(AI)

y =r sinO=Ro sin00+rL si n[A(t —to)+P],
x =r cosH=Ro cos90+rL c so[f1(t to)+P] . —(A2)

The modified versions of Eqs. (10a) and (10b) are now
averaged over all time scales faster than 2m/(co —fl, ),j
for interaction at the fundamental cyclotron harmonic, to
yield equations for the slowly varying terms. An impor-
tant point is the averaging of the magnetic variation parts
of F, and F [given in Eq. (11)]. Since the electron guid-
ing center positions vary slowly (following a line of the
slowly varying magnetic field) the variation parts of F„
and F vanish in the equation for A when averaged over
the time scale 2'/fl, , [using Eqs. (A2)]. The slow-time-

J
scale equations in a given cavity are now

Jpi
dz

k~t C~IJ ~(k~IRp )J ] (k~~rL )F(z) cos%
U

where the effects of the rf magnetic field are neglected. E
is the rf electric field, and 5B represents small variations
of the static magnetic field about its average z component
in the jth section IB, I. The complex notation

j

p +ip =ip~ exp[i [0, (t —to)+P]I
J

is now used in Eq. (Al). Here the phase angles are shown
in Fig. 2, 0, =elB, I/(myo) and (yo —1)mc is the ini-

j j
tial electron energy. The perpendicular components of
(Al) yield Eqs. (10a) and (10b) for the evolution of magni-
tude p~ and phase A of the slowly varying momentum.
The magnetic-field variations are of the form given in Eq.
(12). Expanding the electric field of Eq. (13) on the elec-
tron gyro-orbit (using Graf's addition theorem) Eqs. (10a)
and (10b) can be written in terms of sums of cyclotron
harmonics. ' The relations between the cavity and gyro-
orbit coordinates can be seen from Fig. 2,

momentum Eq. (10c) must be solved. Applying Eqs. (A2)
and again averaging over the time scale of the cyclotron
motion Eq. (10c) becomes

8pz

dt 2ym, IB, +5B,zl dz
(A4)

Using energy conservation, the perpendicular momentum
in (A4) may be written in terms of the axial momentum,
the initial kinetic energy Do, and the energy exchanged
with the rf field (assuming a weakly relativistic beam),

+(z —z. )
Jz

1/2

U, 6y

yo
(A5)

where LI, is the axial length of the kth section and Bo is
the magnetic field at the entrance of the first cavity. The
first part of v, (under the radical) is merely due the con-
servation of electron magnetic moment. The second term
comes from the change in electron energy due to interac-
tion with the rf electric field. This will turn out to make
a second-order (negligible) contribution to our results.
Using Eq. (A5) in Eqs. (A3) and neglecting terms involv-
ing multiplication of 5y with the small magnetic-field
change over a given section:

dlBI
IBOI I., «1,5y

dz
J

a single equation for the complex momentum p =p~e
in the jth section can be written,

d +id (z) p=-
dz

eI,C,J,(k IRO)F(z)
2U

—t (m —1)8OXe (A6)

where m and I are the mode indices in the jth section and
the detuning factor has been defined

p~ =2m, ho —p, +2(m, c) 5y,
where 5y=y(z) —yo. Here we linearize in the rf field in-
teraction and will hence keep only first-order terms. Us-
ing the above in Eq. (A4) the axial velocity in the jth sec-
tion of the device is

dA
dz

2y IB, +5B,zl dz
(A3)

A, yo+ Q)
Uz

e(z —z,„)dlBI
z z

e J,(k, r, )
k~1 C~I J~ ~( k IRo ) F (z) sin+

Pivz mjPL
h~(z) =

0, yoj
y

v, 1—
j

Av,
J

Uz
J

2 1/2

dz
J

where the prime indicates differentiation with respect to
the argument and +=A —(m —1)80. To progress fur-
ther the equation of motion for the z component of the

'
dz

+ J

2IB, (z)l
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B,(z)=B, +(z —z, )
dS
6Z

and

EV —V a0j 0

'(z —z, ) dlB
IB, I

dz

Here e is the ratio of the perpendicular-to-parallel elec-
tron velocity, and two of the Bessel functions have been
replaced by their small argument expansions (k „rL((1)

The definition for the velocity at the start of the jth sec-
tion is

1/2

v, (z)=v, 1 —
I I

g L~
p

k

and the following abbreviations have been used in both
the above equations:

in order to arrive at Eq. (A6). The solution to the ordi-
nary diff'erential equation of Eq. (A6) can be easily found
and is given in Ref. 13.

The rf fields are assumed to be generated by the exter-
nal signal in the first cavity but are solved using self-
consistent iterations in the following cavities. Using the
same normalization scheme as in the text,

m, c'
eF

2'
m, c

Uzp=—
C

Z

0

QX0 BX0eB=
c m, c

—
C petc. an initial condition of p =p ~ e ' and an electric-

field profile in the first cavity of F=F, sink, (L, —z)
(where L, and k, are the normalized length and axial

wave number) the momentum at the end of the first cavi-
ty is

dISIp(z =L, , PO) =pi 1+
, Is, l

&p, &„
P E1 —i (m1 —1)0p itI5p

e ' 'e 'R,
pz,

—i (|tiP+ M1 ) p j.p
5 co

Xe ' 'exp i
2

Re
ropi

&p, ),
P igP — —i (m1 —l)OP

e T,E, e (A7)

where E, is related to F, by the proportionality constant given in Eq. (24). R, and T, are defined

R, = Ik, [cos(k, L, )
—c s(oE,L, )]+i [h, sin(k, L, )

—k, sin(b, ,L, )]I, (A8)

T, = [(b, ,
—k, )k, L, cos(k, L, )+(b, , +k, )sin(k, L, ) —2b, , k, sin(A, L, )]

1 1 1 1

1

+
z l(b& —k, )b&L& sin(k, L&) +26& k[cos(b, L&) —cos(k, L&)]I
1

1 1
(A9)

where D, =(b, ,
—k, ). M, is given by

1

&iPiL i 7'o (co —0, )L,
M, = [(2+f, )Q 1 f, —(2 f, )Q—1+f, ]—+ (+1+f, —Q 1 f,)—

3pg 1 1

where f, is defined

—2»o dlSI
2I Bol yPP& dz

The eff'ect of the tapered magnetic field can be seen from Eq. (A7) to merely vary the magnitude of the perpendicular
momentum by conservation of the electron magnetic moment and to advance or retard the gyrophase due to the change
in cyclotron frequency. In the first drift section (of length L2) there is no rf electric field and the electrons ballistically
bunch and conserve magnetic moment in the tapered magnetic 6eld. The solution for momentum at the end of the first
cavity can be propagated forward to the end of the drift section by the relation:

dlBI L
p(z =L, +L~, PO) =p(z =L, , PO) 1+ e

Pg 6) L2
'exp i Re)'

(p, )„
P imp — —i (m

1

—1)0p
e R~Eie

where the equation of motion Eq. (A6) is again solved, this time with F(z) =0. Bz is the magnetic field at the entrance
to section two. To determine the current density of Eq. (15), the momentum must be averaged over initial conditions.
The average over initial gyrophase $0 yields
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(p(z=L, +L2)&~ =ip, e
—)(M) +M2 —5) )

j= 1

1+ "'~ (0, &„
J)(X)) )+i Jo(X)1)e

p I3)

at the end of the first drift section where the bunching parameter is defined,

-p, (P, &,

X, ,
=- -E,

1'o

Ti L2R]+
P) )t32

and where

Ti L2R i
5) =o.„=arg(E, ) + arg +

1

E= —
I,I —e

0' 0' 0' z0

with solution in the jth section'

In all subsequent cavities the electric field is calculated from the ac beam current density. The electrons are assumed
to perturb only the longitudinal structure of the electric field. The wave equation, for a single electromagnetic mode, is

—k (+pj 1+
dz2 0 L

P(zj. ) j(m —1)poI —eJ )0 )f )v0' 0' 0' z0E (z+z )= —i ' tsin[k, (z I. )]+si—n(k, L )
—sin(k, z)Ik, sin[k, (z —L, )] J J J

J

where I, is defined in Eq. (26) and k, is
J

(A 10)

k =m 1+
Qo

J QL,

—k
J J

The momentum used in evaluating Eq. (A10) is that at the start of the jth section. The electric field of Eq. (A10) is now
used in the momentum equation (A6). These new momenta could be used to generate a new electric field, etc. , but the
iteration is stopped at this point. From this point onwards the calculation proceeds as through the first two sections.
In this way the generalized formulas for electron momenta through the prebuncing sections are calculated. The linear-
ized transverse electron momenta at the entrance to the (k + 1)st cavity (after k prebunching stages) is

2K 2K
't~'~--i 1+™~l 'I~0~

p(zK+1 00 ~0 0) z ) pl exp 1 y ~j g hje
j =1 j= 1

2K

0 j j n=2j —
1

2K
~22 1 Pip

n

n =1

where h, E, and M are given in the text in Eqs. (21), (25), and (20), respectively, and

R = 1

z
J

1
tan

k,
J

i b,
k L~. j id' Lkk /+1) (

k k 1) (A 1 1)

1
TJ 2k,

J

/' k
0

ek, j).kLk tan(k, Lk. /2) ik, Lk-
J J J

a', —k,''J
02

[( jkkk +k, ) sin(hkLk /2) —26k k, cos(b &Lk /2) tan(k, Lk /2)],k2(go k2)2 ~) J
z. k z.
J J

where the subscript k =2j —1 and k, is the axial wave number in the jth stage.
The bunching phase is given by

1t), =$0 pjto —(m, —1)00, —

)t)j =$0 02tp xj 1 cos(1t)) +6j 1) (mj 1 )00

(A12)
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where 6 is

.s =kk =1

J J
5 =arctan g g X», sing»,

J J
X», cosg», for j ) 1

k=1 s —k

and

x =e
J

—i', '4
x», e " where g», . =o», +(m

~

—m» )Ho
k=l 5=k

and x», and cr», are given by Eqs. (22) and (23), respectively. A final relationship, necessary in finding the beam-
generated electric field, is the electron energy change through N prebunching cavities:

Po

&)33„,) „,
Re E R, e ' g h„ (A13)
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