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Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics
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For optical homodyning, the matrix representation of a lossless beam splitter belongs to the SU(2)
group of unimodular second-order unitary matrices. The connection between this group and the ro-
tation group in three dimensions permits the field density operators at the input and output ports of
the beam splitter to be related by means of well-known angular-momentum transformations. This,
in turn, provides the joint output photon-number distribution„which may be written as a Fourier
series in the relative phase shift imparted by the beam splitter, for a general joint state at its inputs.
The series collapses to a single term if one of the input fields is diagonal in the number-state repre-
sentation. If the inputs to both ports are further restricted to be pure number states, the joint, as
well as the marginal photon-number distributions, turn out to be directly proportional to the square
of Jacobi polynomials in the beam-splitter transmittance. These photon-number probabilities are
invariant to a set of physical and time-reversal symmetries. When one of the input photon-number
states is the vacuum, the beam splitter simply deletes photons from the other port in Bernoulli
fashion, as if they were classical particles. The output photon number is then described by the bino-
mial distribution. If the inputs at the two ports are different number states, neither of which is the
vacuum, the photon-number distribution is expressible in terms of summed and weighted products
of the results for photomixing with the vacuum. If the inputs at the two ports are identical number

states, and a beam splitter of transmittance ~= —,
' is used, the photon-number distribution assumes a

simple but interesting form. It vanishes for odd photon numbers, indicating that the photons as-

semble in pairs at each output port. Finally, it is shown that homodyning quantum fluctuations can
be reduced by using a balanced photomixer for arbitrary input states.

I. INTRODUCTION

The synthesis of various nonclassical states of light in
recent years' has rekindled interest in the lossless beam
splitter, not only because of the important role it plays in
their coherent detection, but also because the device
offers us an opportunity to probe the quantum nature of
light by means of simple yet subtle experiments.

A number of authors have considered the behavior of
the quantum-mechanical beam splitter in the past few
years. ' We provide a comprehensive approach that
treats the photon statistics arising from the homodyne
photomixing of (not necessarily independent) light beams
of arbitrary statistical composition. It turns out that im-
portant mathematical tools can be borrowed directly
from a different, but fully equivalent, physical model: the
quantization of angular momentum. In 1952, by employ-
ing a two-dimensional boson-operator algebra, and build-
ing on a method first used by Jordan, ' Schwinger refor-
mulated the theory of angular momentum in his now
celebrated treatise on the subject. ' The technique,

viewed in reverse, is ideally suited to the beam splitter,
which, after all, governs the interaction of two harmonic
oscillators. Schwinger's formalism was recently con-
sidered by Yurke et al. , who showed that interferometry
with beam split ters may be viewed geometrically as
abstract rotations of angular momenta on a sphere.

In this paper we elaborate on this theme, carrying over
to quantum optics many of the well-established
mathematical methods and results from the theory of an-
gular momentum. In Sec. II we address the connection
between SU(2) beam-splitter matrices and the rotation
group in three dimensions. The beam-splitter unitary
operator is readily generated from the standard Euler-
angle parametrization of that group. In Sec. III we de-
velop an interference field operator and delineate its con-
tribution to the output photon-number fluctuations. In-
terference in the photon-number domain is the focus of
Sec. IV, where we derive a general formalism for the
homodyning of arbitrary states into the beam-splitter in-
put ports and explore the various forms of photon-
number interference in the joint photon-number distribu-
tion at the beam-splitter output ports. Number-state
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homodyning, which forms the backbone of the general
theory, is discussed in detail and a number of examples
are presented. Section V highlights the general balanced
photomixer.

II. THE LOSSLESS BEAM SPLITTER

A. Beam-splitter matrix transformation

As a stepping stone to a more abstract, but useful, for-
malism of the beam splitter, we first derive the general
matrix representation of the device from fundamental
principles. We limit our discussion to optical homodyn-
ing to capture the essential features of beam-splitter pho-
tomixing. The terms homodyne detection, photomixing,
and coherent detection are used interchangeably in this
paper.

For simplicity, we ignore the eA'ects of polarization
mismatch and imperfect beam collimation, since these
can be incorporated into the theory a posteriori without
difficulty. The input and output boson-annihilation
operators, at some chosen angular frequency co (see Fig.
1), are related by

b) B)i B)2 a)

b2 B~, B22 a

[b;, b,"]= b; tp, —b, b; =6;i,
leads to the conditions

IB I'+IB, '=1

IB I'+IB, '=1

(3)

(4a)

(4b)

B ) ) B2I +B(2B q2.
=0 . (4c)

The superposition criteria at the output ports, Eqs. (4a)
and (4b), are not independent; indeed, they are coupled
via Eq. (4c). This can be seen from the decomposition of
the latter into separate conditions on magnitude and
phase:

where the boson-annihilation operators at the input and
output are represented by a and b, respectively. All
Hilbert-space operators are denoted by the caret. The
subscripts number the input and output ports. The trans-
formation matrix B has elements B;,which are in general
complex to allow for field phase shifts at the device, i.e. ,

B~=~B)~e ", i,j =1,2.ip .

The preservation of boson commutation relations at
the output of the beam splitter, according to

(4d)

0i i
—

4i2 —0zi
—422+~ (4e)

Combining Eq. (4d) with Eqs. (4a) and (4b), and reex-
pressing the results in terms of the beam-splitter
transmittance r and its associated reflectance p=(1 —r),
leads to

[B» i

= 822['=r—:cos'0,

/B&2
= B2, f

=p=sin 0 .

(Sa)

(5b)

Thus all of the magnitudes are governed by the single an-
gular parameter

0=are so(
'r~ ), 0~0~~/2 . (5c)

Combining Fq. (4e) with the convenient phase
redefinitions

0,=!(Wi i
—Pz2»

0,—:—,
' (& i2

—&» + ~»
4o =—!(4ii+4»»

(6a)

(6b)

(6c)

FIG. l. (a) Beam-splitter geometry and (b) its diagrammatic
representation as an optical element with two input ports and
two output ports. The transformation is governed by a unitary
operator B, which is equivalent to the standard Euler-angle pa-
rarnetrization of the rotation group. The boson-annihilation
operators at the input and output ports are represented by 0 and
b, respectively. The subscripts number the input and output
ports.

i/0B=e
ip

cosOe
—ig—sinOe

i$
single

—i$
cosOe

Its determinant is

i 2,$0det(B ) =e

allows us to write the most general beam-splitter matrix
as



40 QUANTUM-MECHANICAL LOSSLESS BEAM SPLITTER: 1373

so that the transformation is unitary, as one would expect
from the preservation of boson commutation rules. The
number of photons (and hence the energy) is conserved
according to the operator equation

L) = —
2( a j a2+a pa) ),

L2 =—(a, az —a 2a, ),
1

(12a)

(12b)

X, +X =n, +n (9a)
L](w tP. & tw)

3 ~
a

&
a, (12c)

where the output and input number operators are defined
as

(9b)

O=0 . (10)

This restricts the transformation to the unimodular (i.e.,
unit determinant) subgroup SU(2), as noted by Yurke
et a/. The simplest nontrivial representation of the sub-
group results when the beam splitter imparts no phase
shifts onto the input fields,

(1 la)

This reveals the fundamental rotary action of the device,

cosO sinO

respectively. The beam splitter is thus properly
represented as a lossless optical element.

It is clear that energy conservation alone is not
su%cient to determine a standard beam-splitter transfor-
mation, as the three independent phases in Eq. (6), as well
as the transmittance parameter in Eq. (5), must be
specified. It is not surprising, therefore, that a diversity
of beam-splitter transformations has appeared in the
literature; however, they all belong to the U(2) group of
second-order unitary matrices.

On the other hand, by recognizing that the interference
effects we seek to describe depend on the relative phases
between the two input fields, we may discard, without
loss of generality, the global phase factor $0 of Eq. (6c) by
imposing the additional constraint

The Levi-Civita tensor e; I, is equal to +1 and —1 for
even and odd permutations of its indices, respectively,
and zero otherwise.

The square, and projection, of the angular momentum
are related to the boson number operators via

3L:—g L =l(1+1), L3 ——m
j= 1

l—:—,
'

( 6, + n 2 ), m—:—,
'

( n, —
&2 ) .

(14a)

(14b)
~

~

Since the expectation of t' in a general state measures the
mean total number of photons at the input ports, the
confinement of the angular momentum to a sphere in the
Schwinger paradigm is equivalent to the conservation of
average energy in the system. The mean photon-number
difference, on the other hand, represents the average in-

put projection of angular momentum. For number states
at the input ports, the standard inequality —I ~ m ~ l as-
sures a degeneracy of 2l +1 input configurations when
the system contains 2l =n, +nz photons. This is shown
in Fig. 2(a) for l = 1.

Let us consider a transformation of the Schwinger an-
gular momenta via a unitary operator B(N, B,+ ) accord-
ing to the similarity operation,

L '=B(N, B,+)L B (C&, B,+), j =1,2, 3 . (15a)

This causes the vector to rotate on the angular-
momentum sphere to a new position that depends on the
three angular parameters (4,B,%'). The primed angular
momenta can be written in the form of Eq. (12),

As can be verified, these satisfy the standard commutator
algebra

(13)

—sinO cosO (1 lb) L ', = —,'(b, b~+b ~b, ), (15b)

B. Connection with angular momenta

L 2= (b, b, b, b,—).,
—

I

L 3= —,'(b, b, b2b, ), —
(15c)

(15d)

Although the central results of beam-splitter inter-
ferometry can be obtained directly from its governing
two-dimensional unitary matrix, as described above, a
complementary understanding of the process can be
achieved by viewing it in three dimensions. The reduc-
tion of the beam-splitter transformation to a matrix with
three degrees of freedom is the crucial connection, since
the same number of free parameters is required to de-
scribe the orientation of a classical solid body in space. '

The first step in realizing this correspondence quantum
mechanically is to use Schwinger's relations to cast the
two-dimensional harmonic oscillator in terms of an
angular-momentum system normalized to fi, '

provided that the new annihilation operators are ob-
tained in a similar fashion from

(b, ) '

(N!)'i (17)

b, =B(4,8, %)a,B (&P, B,V), j =1,2 . (16)

The unitarity of B(N, O, +) preserves the commutator
algebra of Eq. (13), thereby ensuring a canonical transfor-
mation of the annihilation operators. The b-field opera-
tors, which have been discussed by Titulaer and
Glauber, ' therefore generate their own set of number
states from the vacuum:
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i2,0) standard representation of the rotation [SO(3), or special
orthogonal] group in three dimensions, '

(18)

i0,2)

i2,0)

where the parameters (4,6, %) are quantum-mechanical
counterparts to the classical Euler angles. Each exponen-
tiated angular-momentum operator generates a new spa-
tial orientation by implementing rotations about the axis
corresponding to its label. For example, '

(a)

i0, 2

L]
e ' L2 e

L3

cosO 0 —sinO

0 1 0
sine 0 cose

L2 (19a)

FIG. 2. Two equivalent geometric views of the unitary
beam-splitter transformation when n, and n2 photons are in-

cident on the device. (a) An angular-momentum vector is
represented quantum mechanically by a cone, as its projection
along the polar axis is well specified, but the remaining two or-
thogonal components are uncertain. For fixed energy
I =

—,'(nl+n, ), there are (2l+1) possible values of the polar

component m = —'(n
~

—nz) of angular momentum, indicated in

the diagram by three possible values of m for I =1. The beam-
splitter operator rotates any input cone on the Bloch sphere of
radius [l(l + I)]' . (b) In the complementary view, the same
operator rotates the unit-magnitude state vector in a (21+1)-
dimensional Hilbert space. For l =1, this is just the unit sphere,
as shown.

The transformation operator B(4,6,4) is thus
sufticient to characterize the beam splitter. According to
the theory of angular momentum, this operator is just the

L]
i4L3 n

L, e

L3

i+L3
cos4 sin+
—sinN cos4

0 0

0 L

0 Lq

L,
(19b)

In accordance with Schwinger's formalism, this implies
that L2 and L3 transform the input boson operators a,
and a2 according to

i OL2 iOL7
e

ap

cos(6/2) stn(6/2) ~11
—sin(6/2) cos(6/2)

(20a}

—i+L
e 3

a&

e
ap

i+L3
i (W/2) 0 a,

—i (4/2)e a2
(20b)

so that the combined phase-shift and rotation effects of
B(%,6, ql ) result in the SU(2) matrix

I (4/2)

0
0

e
—i(+/2)

cos(6/2) sin(6/2) e'
—sin(6/2) cos(6/2) 0

0
e

—i (N/2)

cos(6/2)e' '+++' sin(6/2)e' '+

sin(6/2)e —~l(+ ~')r'&) cos(6/2)e —(((4'++)~2) (21)

0= —,'6, $ =
—,'((ll+@), (t) =

—,'('P —+) . (22)

With the help of Eqs. (Sc) and (18), we readily obtain
the general SU(2) beam-splitter operator

Comparison with the desired solution represented in Eqs.
(7) and (10), provides the association of Euler angles to
beam-splitter parameters:

L+=L, iLz (a )a a za) ) (24a)

L !l,m ) =[1(l+1)—m (m+I)]' !l,m+I ), (24b}

we can then rewrite Eq. (23) with Eqs. (19b) and (24a) as

so named because they raise and lower the projection m
of angular momentum by one unit for states with well-
defined projections,

—( ( $ —$ )L )
—2a(r oso( r )L, —( ( 4,+ d, ) L

&B(r, „)=e ' ' 'e e

(23)
B(r,g„g )=D "(g)e

where

(25a}

If we now consider the raising and lowering angular-
momentum operators D(g):—e

—i (tt) —g )g=arcos(r'~ )e (25b}
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Equation (25b) is the two-mode mixing operator of
Schumaker, ' which was obtained in the context of the
beam splitter by Prasad et al.

As an alternative approach to the beam-splitter trans-
formation outlined so far we consider the effect of the
beam splitter operator on the joint input state, as opposed
to its effect on the explicit field operators themselves:

A. Mean

The intensity at the output ports is proportional to

(N, ) = r(n, )+(1—r)(nz) +2[r(1—r)]' (I), (30a)

(N2 ) =(1—r)(n
&

) +r(n2 ) —2[r(1 —r)]' (I ) . (30b)

For example, if coherent states with parameters
(26a}

a, = la, le ', j =1,2 (31a)

p,„,=B (r, $„P )p;„B(r,g„) ) . (26b)

III. PHOTON-NUMBER MEAN AND VARIANCE

Before examining the full photon-number distribution,
it is useful to calculate the photon-number mean and
variance at the beam-splitter output ports. The superpo-
sition annihilation operators at the beam-splitter output
ports are, from Eqs. (5), (7), and (10),

b, =r' e 'a +(1—r)' e a2, (27a)

(27b)

The output density operator p,„,= ~'Il, „,) (4,„,~

for pure
states. For such states, in place of rotating the "vector"
associated with the angular-momentum operators, we in-
stead rotate the "coordinate system" associated with the
Hilbert space, as illustrated in Fig. 2(b). This result will
prove useful in Sec. IV, where we consider how the beam
splitter alters the photon statistics of the input fields.

are presented at the input ports,

&a~, a2II la~, ap &
= la~ I laqlcos(P, P2+—P, P),— (31b)

(n&, n2~I 'tn&, n2) =0, all k . (32)

More generally, states whose density operator is diagonal
in the number-state representation will also lack first-
order interference.

B. Variance

The variance of the output photon number may be ob-
tained by using an operator identity for arbitrary X and
Y,

var(X+ Y) =((X+Y) ) —((X+1'})

so that the classical first-order interference pattern is
recovered. First-order interference is not present in the
number states, on the other hand, since all odd mo-
ments of the interference operator vanish,

From Eq. (9b), the output number operators are therefore =var(X)+ var( 1')+:"(X,Y) .

N, =rn, +(1—r)nz+2[r(1 —r)]' I,
N~ =(1—r)n

&
+an, —2[v(1 —r)]'~2 I,

(28a)
Here =(X, Y) contains the quantum covariances,

where I is an interference operator defined in accordance
with Eq. (24a) by

:"(X,Y) =cov(X, Y)+cov( 1',X),

which are defined as in classical statistics

(34a)

=L~cos($,—P )+Lysin(P, —P ) . (29) cov(X, Y)=&X Y) —&X&& Y& . (34b)

The latter expression is in the form of a field whose quad-
ratures are the first two Schwinger angular momenta.

Straightforward repeated applications of Eq. (33) to
Eq. (28), together with Eq. (34), readily provide

var(N& )=[r var(n, )+(1—r) var(n2)+2r(1 —
)rc vo(n, , n2)]

+[4r(1—
) rrv(aI)+2r (1 —r)' ':"(n, , I)+2(1—r) r' =(nz, I)],

var(N2)=[(1 —r) var(6& )+7 v r(naz)+2 (1r— )corv(n&, nz)]

+[4r(1 —r)var(I) —2(1 —r) r'~:-(&, , I)—2'r (1 —r)':-(n2, I )] .

(35a)

(35b)

The first three terms of these equations arise from the
quantum-statistical fluctuations inherent in the fields pri-
or to photomixing.

If these input fields are independent, the overall input
density operator p;„can be factored into a product of the
density operators at each of the input ports,

A.

Pin PlP2 (36a)

so that the number-operator covariance vanishes

cov(n ],&, ) =0 . (36b)

The statistical fluctuations associated with the remaining
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three terms are attributable to the beam splitter. The
first of these represents fluctuations arising from the in-
terference operator, while the last two terms of Fqs. (35a)
and (35b) contain correlations among the number opera-
tors and the interference operator. When these correla-
tions vanish, the input number operators and the interfer-
ence operator contribute independently to the output
photon-number fluctuations.

Using Eqs. (29) and (33), we can expand the variance of
the interference operator in terms of the raising and
lowering operators of Eq. (24a) as

var(I)= —,'[(rt& )+(n2)+2(n, n2) —2(L+ )(L )
—i2(tt —6 ) i2( {t —(b

+var(L+ )e ' " +var(L )e ' ' ] .

(37)

p..= X
.V], W', =0 ~'

p,„,(lVi, N, ;Ni, N', )

X ~N, , N, )(N', , N',
', . (43a)

p,„,(N, , N2;N', , N2 )

I(n], n2) (n ],n )

(+v ~. ) p;„(n ), np', n ), np )
I In2 n], n,

(43b)

Here N& and N2 characterize the basis states at output
ports 1 and 2, respectively. The matrix elements of this
density operator are given by

With coherent states at the inputs, for example,

var(I ) =-,'( la) '+ la~12), (38)

The complex B coefficients depend on the beam-splitter
parameters 7', p„and p, and are related to the beam-
splitter operator of Eq. (23) by

as only the first two terms of Eq. (37) contribute. On the
other hand, if the input fields are pure number states, 4p)

var(I ) = —,'(n, +n, +2n, n, ), (39)
(n]n2) i [y('V]n2)+y(V]n])]
X],N2

(43c)

which contains an additional product term that contrib-
utes significantly to the output photon-number fluctua-
tions.

The correlations between the number operators and
the interference operator vanish for both the coherent
and number states. Thus, from Eqs. (35), (38), and (39),
the overall fluctuations of the output number operators
for the coherent states are

i 2 arCOS(-, )L
2=(N, , N~ e '~n, , nz) . (43d)

The magnitude of these coefficients is provided by the

matrix element of the exponentiated angular-momentum

L2,

(n], n2) (n], n )

~x, , x, —=~&w, x,

var(N, )=r a, ~
+(1—-, )~a2,

var(N, )=(1—r) a, ,
+r a,

whereas for the number states

var(N, ) =var(N, ) =r(1 —r)(n, +n&+2n &n, ) .

(40a)

(40b)

(41)

It represents the output photon-number probability am-
plitude for input number states, and will subsequently be
evaluated. Conservation of energy is mandated by the
SU(2) symmetry of the beam-splitter operator for each
matrix element of Eq. (43c) in accordance with

N~+N, =n I+n2 . (43e)
IV. PHOTON-NUMBER

PROBABILITY DISTRIBUTIONS

A. General input state

Having evaluated the first two statistical moments of
the photon number at the beam-splitter output, we now
turn to the full probability distribution. We represent the
general joint input density operator in the number-state
representation as

For fixed N
~

and N2, we sum over the range
n, = (0, . . . , N, +N2 ) in Eq. (43b). A second sum over
n2 is therefore not necessary, as nz =N, +Nz —n, . The
same applies to the primed variables.

The joint probability of observing N] and Nz photons
at the first and second output ports, respectively, is given
by the diagonal elements of the output density operator
of Eq. (43a),

P.„,(N, , N, ) = & N, , N, Ip.„,IN, , N, )
p,.=

n2=O n' n =0]' 2

p;, ( )n, n', 2nI, n2)jn), n2)(nI, np~

(42)

,'V] -+ iV,2

]

.V] +,Y7
1'

Nl, %2
n] =0

where the primed variables permit the possibility of off'-

diagonal elements in this operator. Utilizing Eq. (26bj,
we write the joint density operator at the output of the
beam splitter in the form

Xp (n], n;n ), np ) (44a)

The marginal photon-number output distributions are
therefore given by
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P,„,(N, )= g P,„,(N, , N2),
A„=O

(44b)
where

(n, , n, )

~N, , N (n1 n2) RN, , N Ci ( 1 n2) (46d)

P,„,(N2)= g P,„,(N, , N2) .
Ai =0

(44c)

We can recast Eq. (44a), with the help of Eqs. (43c) and
(43e), as

If the joint input density operator is diagonal in the
number-state representation, then by Eq. (45b) the joint
output probabilities are given by the k =0 term of the
Fourier series. They then can be recast in the appealing
form

P,„,(N, , N2) =
2V

l
+A'2 —ik (p —

tI5 )

yk(N1 N2)e
k = —(Ã, +-A2)

(45a)

P,„,(N, , N2) =yii(N, ,N2)

Nl +1%2

P,„,(N, ,N, fn, , n, )P;„(n, , n2),
n =0

k—= n', —n, =n2 —n2 (45b)

which is a restricted Fourier series in the relative phase
(P,—P ) imparted by the beam splitter. The index k of
this series is given by

(47a)

where the conditional and joint probabilities in the sum
are defined by

The complex expansion coefficients yk(N, , N2) in Eq.
(45a) are

out(N1&N2fn1~n2) (RN, N (47b)

Al +%2
(n]+k n2

y, (N, , N, )= & R.
,

",.,'R.
,
'., ' '

n =0

X 10( in, n2,'n 1 +k, n—
2 k) . (45c)

Pin(ni "2)=Pin(ni "2'"i "2) . (47c)

For pure number states at the input ports, the joint out-

put photon-number probabilities are given by Eq. (47b).

If the general joint input state is pure, then the density
operator is of the form B. Number-state homodyning

Iq';„) = g C;„(n, , n ) fn, , n ),
n&, n2 —o

(46a)

p;„(ni, n2, n i, n2)=C;„(n, , n2)C;*„(n i, n2) .

Equation (45c) can now be written

N, +%2

yk(N, , N2)= g I N N (ni, n2)

(46b)

X 1 N N (n, +k, n2 —k), (46c)

and the matrix elements of the input density operator are
factorizable according to

We choose now to focus on the output photon-number
probability amplitude R of Eq. (43d), which describes all
homodyning experiments with the pure number states.
The joint photon-number distribution at the output of the
beam splitter, arising from number states at the input
ports, is given simply by the square of this amplitude
function, as Eq. (47b) indicates. Since the system has a
well-defined input energy, the conservation criterion of
Eq. (43e) renders the sums in Eqs. (44b) and (44c) redun-
dant. The joint and marginal photon-number distribu-
tions are then equivalent.

Expanding the input ket in Eq. (43d) in terms of the
vacuum, and using the unitarity of the exponentiated an-
gular momentum I 2, we arrive at

'

f
rl/2 g ( I r)l/2 g t)" 1

f ( I r)1/2 Q +rl/2 a, ] 2

(n, !n2!)1 /2 0,0

n
l=g( —l) '

k=0 ni —k

n )
k( I )" I

Op ,Vi
—k n, —(A'i —k)

(1 —~)
l

1/2

(48a)

where conservation of energy provides N. =n
1 +n2 —Ni, and (k ) denotes the binomial coefficients n!/(n —k)!k!.

The corresponding expression for Eq. (48a) in the angular-momentum domain is well known, having been studied in

connection with SU(2) representation functions. '" ' '' All of its properties can therefore be used, in conjunction with
the Schwinger formalism, to provide insights into the behavior of Eq. (48a). Indeed, R can be expressed in terms of the
Jacobi polynomials P„' '~'(x), or generalized spherical functions,
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(n, , n2)
N, , N2

]cv 2. Nl ri2 ~1 nli 2(1 )
i I

n i!n2!

] /2
(Nl —n l, Nl —n~ )

P~
' - (2r —1), iV, n, , nz

2

=( —1)
] (Nl l12 ) ( Nl tl

1
)

AT

1 2(1 )
'

I

N2~n] tn2]

]/7
d

d7-
[- '(1 —r) '-] . (48b)

In the last step we have employed the standard Rodrigues
formula for the Jacobi polynomials

P '~'(x) = (1 —x) (1+x)(
—1)"
2"n !

d
dx

[(1—x)" (1+x)"+~],

a, /3) —1, —1&x &1 . (48c)

According to Eq. (47b), the photon-number probabili-
ties at the output ports are just the square of Eq. (48b),
and therefore depend on the square of the Jacobi polyno-
mials

! T !
P.„,(N, , N, ~In, , n, )=-

n ]!n2!

These are shown in Fig. 3.
The first [Fig. 3(b)] is obtained by interchanging corre-

sponding input and output states via a mirror reflection
about the physical (x,y) axes of the beam splitter, and by
invoking time reversal. The second [Fig. 3(c)] inter-
changes noncorresponding input and output states by a
reflection about the diagonal y = —x and time reversal.
The third symmetry [Fig. 3(d)] interchanges the input
and output states among themselves simply by effecting a
reflection about the diagonal y =x without time reversal.
Only two of the three symmetries are independent, for
the third can be obtained by operating with the first two
in succession. These symmetries will be useful when we

present specific beam-splitter output distributions.
Finally, from the last of the symmetries of Eq. (50d),

and with further use of Eq. (49), we find that

(Nl —n 1,N1 —
n2 )

X P~, ' ' ' ' (2~ —1)

N] n], n2 .

2

(48d)

P,„,(N, , N, nl, np)

if ~~1—~. (50e)

The auxiliary requirements N, ) n, (a ) —1 ) and
N, ) n2 (P) —1) ensure the orthogonality of the Jacobi
polynomials on the interval 0& r & 1 (

—1 x 1). Cer-
tain beam-splitter physical symmetries must therefore ex-
ist in order for there to be a complete correspondence be-
tween the photon-number output probabilities and the
Jacobi polynomials.

The marginal photon-number distribution at the
second output port can then be readily obtained from
that of the first output port by interchanging the bearn-
splitter transmittance r and refiectance (1 —r).

C. Symmetries of the output probabilities

The unitarity of the beam-splitter operator, and the
special rotation property

e' 'In, , n, & =( —1)"'~n, , n, &, 49)

are sufficient to provide the beam-splitter probability-
amplitude symmetries' '' ''

(a)

In, &

(c)

t

IN, &

INi& I

X

In, &

In, & IN, &

(Nl N~ )

R& '&. '- =( —1) ' 'R„'„' (Ni &ni, Ni n2),
2

1.~2) (N2 ~1)
RN N =R„', ' (N] n], N] n2

2

(n l, n2 ) Nl —n
1

(n2, n
l

)R~,v =( —1) R~ ~ (N, &n, , N, &n. ) .

(Soa)

(50b)
INi&

Inz& Inz& IN, &

(50d)

(50c)
With the help of Eq. (47b), these imply that, for each
beam-splitter configuration with the number states, there
exists three other configurations that yield an identical
output probability, i.e. ,

P „,(Ni, Nz ~n i, n2) =P,„,(n i, n
& ~Ni, N2 )

=P„„,(n, , n, ~N~, N, )

=P„„,(.V2, N] n„n, ) .

FIG. 3. Three physical symmetries are intrinsic to number-
state photomixing with the unitary beam splitter. The standard
beam-splitter configuration is shown in (a), where we define
reference (x,y) axes and the sense of the arrows is understood as
a time coordinate t. The standard configuration is equivalent to
(b) by mirror reflections and time reversal, ( —x, —y, —t), to (c)
by left-diagonal reflection and time reversal, (

—y, —x, —t), and
to (d) by right-diagonal reflection without time reversal, (y, x, t).
Energy conservation requires that n, + n, = N, + N, .
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D. Photomixing with the vacuum E. Interference in the photon-number domain

Consider those input states for which a vacuum field is
present at either port, i.e. ,

~n, , O&, ~O, n, & . (51)

These have maximal projection of the angular momen-
tum (m =+l), so that the action of the ladder operators
of Eq. (24b) ceases,

I". ~l, +l&=0. (52)

Aside from a trivial phase factor, the beam-splitter
operator of Eq. (25) displaces these states of maximal pro-
jection of angular momentum via Eq. (26a) to generate
the Bloch [or SU(2) coherent] state,

g), =D(g)~l, +l) . (53)

(O, n2 )

R
n

(1—r)
1

1/2

(54a)

(54b)

The binomial probability distributions resulting from
Eq. (47b),

n1
P,„,(N„n, —N ~n, , )0=

N r '(1 —r) '

1

(54c)

(54d)

are of particular interest because they can be derived
solely from classical considerations. Each input photon,
behaving as a classical particle, independently undergoes
a Bernoulli trial (coin toss) at the beam splitter. The fiuc-
tuations in photon number given by Eq. (41) can then be
obtained simply by using the cascade variance
theorem

var(N, ) =r var(R', )+r(1 —r)(n, )

=r(l —r)n, for (, n, ,o),
var(N, ) =(1—r) var(R'~)+r(1 —r)(n2 )

=r(1 —r)n2 for ~o, n2) .

(55)

Beam-splitter experiments with the vacuum have indeed
demonstrated binomial counting statistics. For a gen-
eral joint input state with a vacuum at either port, Eq.
(44) provides the well-known binomial sampling
theorem. '

The Bloch states are completely equivalent to the gen-
eralized binomial field states ' at the beam-splitter out-
put ports, since the output photon-number probability
amplitudes then reduce to

1/2

We now move toward an interpretation of the output
photon-number probability amplitude by recasting Eq.
(48a), with the aid of Eqs. (54a) and (54b), into the form

N
1 2nl

(ni, n2)

k=0 n, —k

n
1
'0 (0, n& )xR, ' (56)

This expression provides the relationship for the output
photon-number probability amplitude, when number
states are incident on both ports, in terms of the results
for photomixing with the vacuum. Equation (56)
represents a superposition of product binomial ampli-
tudes that govern the classical selection of k out of n1
photons from the first input beam and N1 —k out of n,
photons from the second input beam, at the first output
port. The weights of this sum are themselves binomial
coefficients, rejecting excess shuNings within the set of
N, photons at the first output port (as well as of the
remaining N2=n1+n2 —N, photons at the second out-
put port). The alternating signs of the successive terms of
Eq. (56), hidden in the first binomial amplitude, govern
the effects of constructive and destructive interference in
the photon-number domain. The square of Eq. (56) pro-
vides the probability of observing N1 photons at the first
output port and N2 photons at the second output port.

We now present some specific examples of number-
state photomixing. The quantity I represents half the to-
tal number of photons at both input ports, so that l =

—,
'

implies that there is only a single photon in the system, as
shown in Fig. 4. The vacuum must therefore exist at one
or the other input port; the simple Bernoulli photon-
number distribution therefore results, in accordance with
Eqs. (54c) and (54d). Interference in the photon-number
distribution is not present for this value of I.

In Fig. 5 we present analytical expressions and graphi-
cal results for the set of (2l + 1)= 3 possible
configurations associated with l =1 (two photons in the
system), when the beam-splitter transmittance r= —,'. Re-
sults for three photons in the system (l = —) with the
same value of the transmittance are shown in Fig. 6. The
distributions that result from photomixing with the vacu-
um are simply binomials. The others, however, are mul-
timodal.

The symmetries of the beam-splitter number-state out-
put probabilities are useful for understanding these distri-
butions. The third equality in Eq. (50d), for instance,
tells us that the probability distributions expected when
the inputs are interchanged are just the reverse of each
other, as observed in Figs. 4 and 5. This allows an
economical presentation of the results for higher values
of I; the mirror-image configurations need not be shown.
The two distributions shown in Fig. 6 thus completely
characterize the family of distributions for three photons
in the system.

The first two equalities in Eq. (50d) are most interest-
ing. Together, they show that each distribution also
traces through the family the output photon-number
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1/2

i1,0& i0, 1& i2,0& [0,2&

-1/2

P(o) P(P) p2 27P

P(1) P(1) 2&V (~-p) 2&P

P(2)

0.75

050-
CL

0.25

i1,0& F = 0.?5 i0, 1& F =0.75
- 0.8

~ 0.6
0.4~ 0.2
0.0

~2,0& F = 0.?5

'6 = 1/4

)11& F=o7s ~0,2&

0
0 1 2 0 1 2 0 1 2

FIG. 4. Beam-splitter-output marginal photon-number prob-
ability distributions for I =

—,'(nl+n2}= —,', where n, and n2

denote the number of photons at the input ports of the beam
splitter (in this case there is only a single photon in the system).
Each possible input ket corresponds to a projection
m = ~(ni —n, ) of the Schwinger angular momentum. The table
displays the output marginal photon-number distribution in
terms of the beam-splitter transmittance ~ and reAectance
p=(1 —~). Distributions are shown graphically for ~= 4. The
Fano factor I', defined as the ratio of the photon-number vari-
ance to the photon-number mean, is shown in each case. The
photon-number distributions are mirror images of each other.

[3,0& i0,3&

f AXf 3 f 3 f
1(2( Jl j( ~~)(

-3l2

FICx; 5. Beam-splitter-output marginal photon-number prob-
ability distributions for a total of two photons at the input ports
[l = '(n, +—nz) =1], when the beam-splitter transmittance

14'

probability corresponding to its position in the family. In
Fig. 5, for example, the leftmost distribution maps the
evolution of the marginal probability P,„,(0) at the first
output port, which, by the mirror-image property, is also
the evolution of P,„,(2) in reverse. The center distribu-
tion maps P,„„(1)for the family I = l. The general efFect
of these symmetries is an interchange of the center and
edge binomial probabilities, as is clear from the tables
and distributions in Figs. 4—7.

The photon-number variance-to-mean ratio, or Pano
factor F, provides a measure of the deviation from a Pois-
son photon number, which has a Fano factor of unity.
For number-state homodyning, from Eqs. (30), (32), and
(41),

P(1)

P(2)

P(3)

0.6

0.4
K
& 0.2-

0.0

37p 3'E p

'6 = 1/4

i3,0& F =075 12,1& F=1.05

3tP P'+4~P(t-P) ~'-4W(t-P) 3X P

3g p & -«P(& P) P +4&P(& P) 3gp2

3'c p 3'Kp p

7 (1—7 )(n ] +n2+2n, n2 )F=
rn, +(1—r)n2

(57)

The Fano factor is generally greater for nonvacuum pho-
tomixing than for photomixing with the vacuum, and for
intermediate rather than small or large values of ~. The

0 1 2 3 0 1 2 3

FIG. 6. Hearn-splitter-output photon-number probability dis-
tributions for a total of three photons at the input ports (I =

2 ),
when the beam-splitter transmittance ~= —'. The photon-
number distributions for ~1,2) and ~0, 3) are mirror images of
those shown.
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N

04-
X
~ 0.2-

I3,0& F =0.5
I = 3/2

F = 1.167

FIG. 8. Comparison of beam-splitter-output photon-number
probability distributions for a total of four photons at the input
ports (1=2), when the beam-splitter transmittance ~=

4 and
~=

—,
' . The photon-number distributions for the input states not

shown are mirror images of those shown.

0.0
0 1 2 3 0 1 N

FIG. 7. Beam-splitter-output photon-number probabili. ty dis-
tributions for a total of one, two, and three photons at the input
ports (I =

—,', 1, and —,', respectively), when the beam-splitter
transmittance ~= —,'. The omitted number-state configurations
are identical to those shown. Note that P„„t(1)=0when one
photon is incident at each input port ( 1, 1 ) ).

Fano factors associated with the output photon-number
distributions are indicated in Figs. 4—10.

The output photon-number distributions can be calcu-
lated for arbitrary input photon-number states by using a
three-term recursion relation for the outpUt photon-
number probability amplitude. Using the conjugate ro-
tation of L3 via Eq. (19a) leads to

together with the initial conditions

n, +n2
r '(1 —r) '

ni

(n l, n&) (nl, n2R] „q» I p] on +n

1/2

(59d)

(59e)

0.4
~10,0&

0.3
I9, 1& F = 1.4 I8,2&

z= l/2

F =2.1

The zeroth-order result was obtained directly from Eq.
(48a). The algorithm is highly efficient; for high values of
n, and n2, Stirling's approximation can be used to gen-
erate the seed amplitude. The photon-number distribu-
tion is obtained by squaring the recursion-relation results.

I2arcos(r )L& i 2arcos(r )L&
1/2 1/2

(2r —1)L,e ' —e

I 2 arcos( r )L=[r(1 r)]' (L++L —)e (58)

0.2
CL

0.1

() () H H H ll n .() (). ()

0 1 2 3 4 5 6 7 8 910 0 1 2 3 4 5 6 7 8 910 0 1 2 3 4 5 6 7 8 910

N

which, when evaluated by means of Eq. (43d) with the
help of Eq. (24b), yields the desired recursion relation

(ni, n&) (n), n~) (nl, n&)
RN N

—PN RNl i N, + I VN RNl

0.4
I7,3&

0.3

X 0.2
CL

0.1

F=2.6 I64& F = 2.9 I5,5& F =3

VN,

2~N, (n, +n2,
(r—

—,
' )[(2N, —1)—(1+n, +nz)] —

—,'(n
&

—nz)

[r(1 r)Ni (1+n t+n& ——
N& )]'

(N, —1)[(1+n,+n~) —(N, —1)]
N, (1+n, +n~ N,)—

(59a)

(59b)

(59c)

.n n. Il 0 nit
01 2345678910 01 2345678910 01 2345678910

N

FIG. 9. Comparison of beam-splitter-output photon-number
probability distributions for a total of ten photons at the input
ports {l=5), when the beam-splitter transmittance ~= ~. The
unimodal binomial distribution for a vacuum-state input at one
port (~10,0) ) evolves into a distribution in which odd photon
numbers are absent when there are equal numbers of photons at
each port ( ~5, 5) ).
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0.00
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20,20&

'6 = 1/2

F = 10.5

This result can also be obtained directly from Eq. (48a)
with ~= —,'-, whereupon

[(~ &)' —(~, )']"
2'n!

where k represents the number of output photon pairs.
This form of the result arises from the vacuum by pair
jumps. The outcome is surprising, inasmuch as photon-
pair behavior is ordinarily associated with nonlinear
parametric interactions, which are governed by the
SU(1, 1) group of Lorentz transformations. A direct ex-
pansion of Eq. (61) provides a closed-form solution for
the output photon-number probability amplitude,

1/2

2k l2n —2k 1

k n —k
0 4 8 12 16 20 24 28 32 36 40

k —O, l, . . . , n . (62a)

FIG. 10. Pairlike behavior of photons is always observed
v hen the beam-splitter transmittance -=- —' and n, =n, (in this

particular example, nl =—n, =20). The photon-number proba-
bilities are zero at odd-count numbers. At even-count numbers,
they are nearly twice the values expected from a classical vector
model (solid curve).

F. Photon-pair behavior

p~- =—0 (~= —,', n, =n2=n), (60a)

so that the recursion relation in Eq. (59a) reduces to the
simple form

g (n, n) gp (n, )t 1

n —.'V +~V ~V —2, 2n —,'V + 2 (60b)

The probability of observing odd photon numbers at the
beam-splitter output then vanishes, as is clear from Figs.
7 —10. For ten photons in the system (1 = 5), Fig. 9
displays how the binomial distribution becomes a mul-
timodal distribution and, ultimately, evolves into a distri-
bution that exhibits only photon pairs when five photons
are incident at each input port (l5, 5) ).

Finally, we turn to the input-state configuration
n

&

=n, = n (m =0), which can be realized only when the
system contains an even number of photons (I =n = in-
teger). Under these circumstances, the Jacobi polynomi-
als are proportional to the associated Legendre polynomi-
als, and hence to the standard spherical harmonics.

The last equality of Eq. (50d) indicates that the output
photon-number distribution is symmetrical in n, regard-
less of the value of the transmittance. This is evident for
the 1, 1) distributions in Figs. 5 and 7, the 2, 2) distri-
bution in Fig. 8, the l5, 5) distribution in Fig. 9, and the
l20, 20) distribution in Fig. 10.

A number of remarkable consequences follow if we
also consider a 50-50 beam splitter ( r= —,

' ), as indicated in

Figs. 7 —10. In this case, the recursion coeScient p,~; of
1

Eq. (59b) vanishes altogether,

With the help of Eq. (47b), the photon-number distribu-
tion then assumes the simple form

2k 2n —2k
P„„,(2k, 2n —2kln, n) = 1

2

211

(62b)

Equation (62b) is known in probability theory as the
fixed-multiplicative discrete arcsine law of order n. It
arises in the context of a one-dimensional symmetric ran-
dom walk (Bernoulli trials with equal probabilities of suc-
cess and failure), and provides the probability of a last re-
turn to the origin at the 2kth Bernoulli trial, out of a
finite sequence of 2n trials. Since an even number of tri-
als is always required to attain a return to origin, the
probability distribution must necessarily vanish for odd
numbers of trials.

Comparing the discrete arcsine distribution with the
binomial distribution, it is clear that the highest probabil-
ities occur at low- and high-count numbers in the former,
and near the mean-count number in the latter. The Fano
factor of the discrete arcsine distribution, which can be
derived from Eq. (57), has half the value associated with
the Bose-Einstein distribution with mean photon number
n, i.e.,

F= —,'(1+n), n &0 . (63)

It is always greater than that of the binomial and other
photomixing distributions with unequal numbers of pho-
tons at the two input ports (see, for example, Fig. 9).

The simplest manifestation of photon-pair behavior
occurs when there is identically one photon at each input
port, as shown in Fig. 7. The fact that P„„,( 1, 1

l 1, 1 ) van-
ishes has been theoretically predicted-'" and experimen-
tally confirmed by the coincidence measurement of pho-
tomixed signal and idler photons from a parametric
downconverter. ' A photon-number probability distribu-
tion for high n (l20, 20) ) is shown in Fig. 10. The arcsine
distribution now clearly exhibits a shape that becomes in-
creasingly well defined for larger values of n.

It is of interest to compare these results with those ob-
tained from the classical vector model. "Consider a vec-
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tor of azimuthal angle P on the equator (m =0) of the
angular-momentum sphere with radius [n(n+1)]' (a
classical version of Fig. 2). After a rotation by 90'
(r= —,

' ), the vector attains a projection

M =N, n—=[n (n +1)]' cosP . (64a)

n —[n(n+I)]'~ ~N, ~n+[n(n+I)]' (64b)

This density can be mapped into the unit interval by
effecting the transformation

1x =—1+
2

such that

N —n
1

[n (n +1)]'" (65a)

Randomizing P uniformly on the interval (O, vr) leads to
the probability density

1 1

~ [n (n +1)—(N, —n) ]'

I. 3=I, (67b)

so the output statistics are governed solely by the in-
terference operator, and will hence exhibit only its associ-
ated Iluctuations, as per Eq. (37).

Balanced photomixing has a long history of use in
homodyne as well as heterodyne optical detection with
nonunity quantum efficiencies, both for eliminating
local-oscillator classical fluctuations and quantum
Auctuations. ' We show that for an ideal measurement
this property is not predicated on the use of a coherent
local oscillator, but rather holds for arbitrary input
states. It is an intrinsic property of the beam
splitter. In essence, the balanced mixer takes advantage
of the natural anticorrelations between the interference
operators at the two output ports, which differ in phase
by n [see Eqs. (4e) and (28)]. This is mandated by energy
conservation, and therefore SU(2) symmetry, since we
must recover Eq. (9a) by summing Eqs. (28a) and (28b).

The output distribution for the balanced mixer can be
easily obtained from the considerations of Sec. IV. Since
we measure the output projection of angular momentum,

f (x)=—,, O~x ~1 .
1 1

rr [x(1—x)]'~ (65b) M—:—,'(N, N, ), — (68a)

1 kP,„,(2k, 2n 2k~n, n—) = f—(66a)

For large values of n, Eqs. (65a) and (66a) provide the ap-
proximation

P,„,(2k, 2n —2k~n, n)=2' (2k) . (66b)

The result is the Levy arcsine probability density, which
can be sampled to provide the discrete arcsine law with

good accuracy

it then follows that, in accordance with Eq. (45a), the out-

put distribution for the balanced mixer is given by

Pb„(M)= g P,„,(N, , N, —2M)
N) =0

P,„,(N2+2M, N2) .
N2 O

(68b)

For number states at the input to the beam splitter, the
result is particularly simple. According to Eq. (43e), we
can write

This is evident in Fig. 10, where Eq. (64b) is plotted as
the solid curve. The approximation fails only near the
end points of the photon-number distribution.

V. THE BALANCED PHOTOMIXER

M =N, —l, l =
—,'(n, +n2),

so the output distribution is given by

P „(M)=P,„,(M+l, l —M~n, , n ) .

(69a)

(69b)

In accordance with the discussion in Sec. III, pho-
tomixing is, in general, a noisy process. However, sub-
stantial noise reduction can be achieved by effecting a
two-port measurement of the difference in output photon
numbers, which is measured by the output angular-
momentum projection operator [see Eq. (15d) with Eq.
(9b)],

L 3= —,'(N, R~) =2[(r—
—,
' )L—3+ [r(1—r)]' I j, (67a)

where we have employed Eq. (28) in the last step. For the
50-50 beam splitter (r =

—,')

This is equivalent to the marginal photon-number distri-
bution at the first output port, except that it is shifted
and centered about the origin in probability space by half
the total number of photons in the system (the parameter
l).
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