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EfFect of an intense radiation field on the discrete
and continuum spectra of atomic hydrogen
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Second-order and fourth-order intensity-dependent corrections to the energy levels of the hydro-
gen atom are calculated. By comparing the results obtained for these two orders and for various
values of the principal quantum number, it is seen that, at a given intensity, the second-order
correction becomes more and more questionable as one approaches the ionization limit. It is shown
how the divergences, which appear in calculating the matrix elements of the shift operator in a
discrete basis of continuum functions, can be avoided by performing the computation in the velocity
gauge. The relevant second-order numerical results indicate serious modifications of the continuum
spectrum. Intrinsic limitations of the second-order calculations are discussed.

I. INTRODUCTION

Theories involving the resolvent operator (resonant
ionization, above-threshold ionization) require the
knowledge of matrix elements of an operator R (z) (Refs.
1—11) which must be evaluated over the complete set of
atomic states. The nondiagonal matrix elements provide
the probability amplitude for the transitions while the di-
agonal ones are related to the shift and the width of the
atomic levels. Two situations arise according to whether
the levels lie in the discrete spectrum or in the continuum
of the atom. The case of discrete levels has been dis-
cussed at length in the literature. ' ' In most cases only
the lowest-order nonvanishing term R' '(E) of the per-
turbation expansion of R (z) is taken into account. This
approximation has proved to be largely sufficien to ex-
pound experiments on resonantly enhanced multiphoton
ionization of Cs (Ref. 13) and atomic hydrogen. ' Yet it
leads to theoretical predictions in excellent agreement
with the measurements of the shift of Rydberg energy lev-
els. ' ' This agreement is due to the fact that the above-
mentioned experiments were done at moderate intensity
( ( 10' W/cm ). Recently, two experiments' '' on mul-
tiphoton ionization of Xe have been done at high intensi-
ty (10' —10' W/cm ). The fine structures observed on
the electron spectrum are interpreted within a model
where the shifts of the discrete levels play the dominant
role. In these experiments the intensity is so large that
one may ask to what extent the values of the shifts calcu-
lated from second-order perturbation theory are reliable.

In Sec. II we briefly recall the basic expressions involv-
ing R (z). In Sec. III we report numerical values concern-
ing R„' „'. The calculations have been done in the length
and in the velocity gauges for states from n =1 to 40 (n
being the principal quantum number). The comparison
between the results obtained separately in the two gauges
shows the role played by the quadratic 2 term of the in-
teraction Hamiltonian. It produces a shift of the whole
spectrum of the atom and thus cannot give rise to physi-

cal effects in processes whose behavior is governed by
energy-level differences. The values of the fourth-order
contribution to R "s(E) are presented in Sec. IV for
states from n =1 to 10 in the case of circularly polarized
light. Except for some values concerning the hydrogen
atom in the ground state, ' ' ' these results seem to be
quite new. They are very useful to test the convergence
of the perturbation expansion of R "s(E). By comparing
second-order and fourth-order terms, we show that this
series diverges rapidly when the intensity and/or the
principal quantum number increase. Next, the correc-
tions to the ground-state energy of hydrogen are dis-
cussed by investigating the effects of the first three terms
of the perturbation expansion in the case of linearly po-
larized light. Our results are compared to those obtained
from "nonperturbative" theories 21,22

The last part of the paper is devoted to problems aris-
ing from the construction of a matrix representation of
the shift operator in the continuum spectrum. The inves-
tigations of processes such as above-threshold ionization
(ATI), require the evaluation of integrals over continuum
states. This is done by numerical quadratures which are
generated by the discretization of the second-order opera-
tor R ' I(E) in a finite basis of continuum wave functions
~a, E). Although the complex matrix eigenvalues of
R' '(E) cannot be measured directly, we generalize for a
practical purpose the concept of level shifts and level
widths to continuum states.

The electrons generated in the 0.th continuum could
take any one of the p discrete energy values used to
define the basis set. From the formulation of the ATI
process given in Sec. II we shall see that the probability
density to find an electron in the ath continuum, at the
energy E, is a strongly dependent function of R' ~ z. In
Sec. V, the matrix elements of R "s(E) are written in
terms of the length operator. The divergences which do
not appear explicitly in the usual expression of the shift
are localized. They come from the energy degeneracy
occurring in the matrix element (, aE~e r~a'E'), when.
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E =E'. Such a difficulty which is typical of the multi-
photon theory does not seem to have been solved up to
now. In order to put the continuum-continuum
second-order matrix elements into a fully tractable form,
we present an original calculation scheme which allows
us to evaluate exactly the integrals encountered in the
problem. In Sec. VI, the complex values of the second-
order shift operator are given as functions of the energy
and the orbital quantum number at A=1060 nm. The in-
trinsic limitations of the lowest-order perturbation theory
are discussed in Sec. VII.

II. SHIFT OPERATOR

16(z)=
z —H —V

'
p

(2.1)

The matrix elements of the operator R (z) mentioned in
the Introduction are usually computed over a few partic-
ular states of H„, the free Hamiltonian of the system
atom plus field. In the subspace e spanned by these par-
ticular states, the expression of the resolvent operator for
the total Hamiltonian Hp+ V ( V represents the interac-
tion), which reads

The operators P and Q are the projectors onto and out-
side the subspace e, respectively. From Eq. (2.2) G(z) is
the resolvent operator of the Hamiltonian

H(z)=H„+R(z) . (2.5)

+ V 6 (z)V+G (z)](z Hp)—,

R' (z) —
I V —G (z)[V 6 (z)]' +'

(2.6a)

+ V G "(z)[V ' G (z)] 'I(z Hp), —

(2.6b)

respectively. In Eq. (2.6b), the upper (lower) sign is to be
taken for the net absorption (emission) of N photons,
while G "(z) and G —(z) are continued fractions of
V -' =g V —

( V+ and V are the photon emission and the
photon absorption operators, respectively). One has

As a result of the resummation of the series given by
Eq. (2.4), one finds that the diagonal and the nondiagonal
parts of R (z) are

R' '(z)=[V 6 (z)V G (z)

transforms into
G —(z) =

z Ho —V ——'G+(z) V ' (2.7a)

6(z) =
z —Hp —R (z)

(2.2) G (z)=
z Ho —V+—G +(z) V —V G (z) V

where

6(z) =PG (z)P,

R (z) =PR (z)P .

(2.3a)

(2.3b)

R (z)= V+ V V+ V V —V+
z Hp z Hp z Hp

(2.4)

The shift operator R (z) can be expanded in powers of V
as

(2.7b)

As an example, let the subspace e be a two-dimensional
space spanned by the ground state ~0) and the continu-
um aE ). We recall that the transition amplitude corre-
sponding to the transition ~0) ~ aE ), which involves
the absorption of N+S photons of energy to (i.e. , above-
threshold ionization with absorption of S extra photons
in the continuum), is given by

U F o(t) = e "'G F o(z)dz,
1

(2.8)
2'iTl

where

R F „(z)
G Eo(z)=

[z —E +(N +S)co—RaF aF(z) l[z Eo Ro,o(z)] ——RaF, o(z)RO, aF(z)
(2.9)

Equation (2.9) shows that the diagonal matrix elements of
R (z) are not exactly the level shifts. The true level shifts
are obtained from the poles of the expression displayed
on the right-hand side of this equation, i.e., the two
values z —of z for which the denominator vanishes. In
this calculation scheme, the states contributing to the
shift are mixed through matrix algebra so that the com-
putation involves complicated couplings among atomic
states which make necessary a numerical analysis.

The transition amplitude derived from Eqs. (2.8) and
(2.9) becomes

—i Im[R F F(E —(N+S)co)],

z —Ep + Re[Rp o(Ep )]—i Im[Rp p(Ep )]

(2.11a)

(2. 11b)

Finally, the probability of finding an electron at time t
in the ath continuum is

P.(t)= f lU.,„(t)l'dE .
p

(2.12)

By neglecting the term (R zoRo z) in Eq. (2.9), one
finds that the approximate expressions for z and z are

z+ =E —(N +S)co+Re[R F F(E —(N +S)to)]

U F o(t)= —[R„Fo(z )ez+ —z

(2 ~ 10)

This probability is calculated in a finite basis of discrete
and continuum eigenfunctions of the Hamiltonian Hp. In
Eq. (2. 12) the integral over the ath-continuum spectrum
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is evaluated by performing the quadrature generated by
the discretization of the operator R (E) in a finite set of
p continuum wave functions

l
ctE ). The basis functions

provide a matrix representation of R (E) whose the diag-
onal elements may be interpreted as the shift and the
width associated with the continuum state laE). Equa-
tions (2.10) and (2.11) outline the central role played by
the diagonal matrix elements of R (z) when the time
dependence and the magnitude of the transition probabil-
ities are investigated.

(b)

III. SECOND-ORDER ENERGY SHIFT
IN THE DISCRETE SPECTRUM

In the length gauge the total Hamiltonian operator is

p2H= ———r E
2 7'

(3.1)
Jt~ $L

The second-order energy shift in atomic units is given by

RI2~ I +, n, g g, n

Io E„—E +co

where

D, D-„
E —E —con j

(3.2)
FIG. 1. Diagrams representing (a) the second-order and (bj

the fourth-order corrections to the energy of any discrete
( nlm ) ) or continuum state ( Elm ) ).

D„=& nil. rip &, (3.3)

R (2)
n, n

I D,* D-,
Io, E„E,+co-

+ dE nuE aEnD* D

o E, —E+a

DnjDj n

E —E —cun j
Dn, +ED aE, n+
E.-E--

(3.4)

where only the third term on the right-hand side of the
equation contains a pole around E =E„+co. The corre-
sponding integral can be calculated in the usual way by
using the well-known identity

and Io = 1.4038 X 10' W/cm . The prime on the summa-
tion indicates that the sum runs over the complete
(discrete plus continuum) spectrum of H„.

Strictly speaking, the true level shifts of discrete states
are obtained by averaging R,', „', as given by Eq. (3.2), over
the degenerate states. Nevertheless, recent works show
that this average provides corrections less than 2%. '

Thus R,' „' will be considered as being the level shift
throughout this paper.

The diagrams contributing to second-order processes
are illustrated in Fig. 1(a) in the energy scale. The pho-
ton energy and the atomic levels have been chosen in
such a way that the intermediate virtual states lie above
the ionization limit. The energy E„+co is thus positive
and the shift is complex. This can be seen by writing ex-
plicitly the summations running over the discrete spec-
trum and the continuum. Equation (3.2) reads as

f Dn, uE uE, ndE ' ' ~P dE n, aE aE, n

0 E„—E+co o E, —E+cu

n, aF aE, n E =E +(u ~

P 1 0.'0= —-——aA-P+ A
2 I' 2

n being the fine-structure constant.
In this case the expression of R, , becomes

(e* P)„,(e P),„
E„—E +co

L

(e.P)„,(e* P),„+ E —E —con j

(3.6)

(3.7)

Obviously Eqs. (3.4) and (3.7) are completely
equivalent. In addition, one can easily find the connec-
tion between the two gauges. By using the formula
(c, P); =iE; (e.r)," together with the commutation rela-
tion c, v&5& =i [(P.e, ), (r.e&)]&, , one obtains

(3.5)

where P means the Cauchy principal value of the in-
tegral. The imaginary term in Eq. (3.5) provides the
width of the level (nlm), while the real part together with
the remaining (real) terms in Eq. (3.4) are the contribu-
tions to the shift of the level.

The matrix elements of the second-order shift operator
can also be expressed within the velocity gauge where the
Hamiltonian reads

(e*.r)„,(e r),„1 (e*.P)„,(e P),„ + (E)„+cu)(e* r)„,(r. .r),„E„+co ~ En + co
(3.8a)
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(3.8b)

for the absorption and the emission terms, respectively.
In Eqs. (3.8) the quantities g E, ~E r~," and gz ~e. r~;i,
(E, =E, E—) can be easily calculated by using well-

known sum rules. These relations are very useful for
checking the connection between absorption-emission
(emission-absorption) terms in the two gauges.

Computations have been done in the two gauges by
resorting to two different methods. For Eq. (3.4) we have
used the technique of differential equations, while the
expression of Eq. (3.7) has been calculated from direct
summation and quadrature. By this method we have
tested the accuracy of our calculations as well as the
equivalence of the results concerning the absorption
(emission) term [Eq. (3.8)] obtained in the two gauges.

The results shown in Tables I and II concern calcula-
tions done for linearly polarized light at 1060 and 530
nm, respectively. The values of the "absorption-
emission" and "emission-absorption" terms are given ex-
plicitly for the magnetic quantum number m =0. They
are expressed in atomic units and are divided by the in-
tensity in W/cm . The values of the widths are reported

in the sixth column. The shifts are obtained in the length
gauge by summing the absorption-emission L, and the
emission-absorption L, contributions. Within the veloci-
ty gauge V, and V, represent the same quantities, respec-
tively, but one must add V, + V, to the contribution of
the quadratic part of the Hamiltonian 1/Io~, which is
equal to 3 815 X 10 ' cm /W at 1060 nrn and
9.682 X 10 ' cm /W at A. =530 nm. The results present-
ed in column 9 of the Tables I and II are the contribu-
tions from the A.P term of the Hamiltonian of Eq. (3.6).
One sees that they become smaller and smaller as one ap-
proaches the theoretical continuum limit. Accordingly,
the contribution of the A term [(a /2)3 ~I/ID' in
a.u.], which is nearly compensated for by that coming
from the A.P term for the ground state, prevails for
highly excited states. It is responsible for a contribution
to the level shift which is the same for all the levels of the
spectrum (discrete and continuum). In contrast to the

term, the A-P term provides complex values for the
shift operator which can be calculated up to an arbitrary

TABLE I. Comparison between the contributions to second-order matrix elements of the rate (6"'—iI "
) =I 5„&—i 1"„i)/I com-

puted in the length and in the velocity gauge. L, is the contribution of the absorption-emission term and L, is that of the emission-
absorption term in the length gauge. V, and V, represent the same quantities expressed in the velocity gauge, respectively. Notice
that 6 —i I =(1/IDES@ + V, + V,, ). All the values are given in a.u. cm /W up to a factor of 10 ' . The calculations have been done for
atomic levels with quantum numbers n, l, m =0 and for a linearly polarized light at 1060 nm. Only the L, ( V, ) terms contribute to
the widths.

6
7
8

9
10
20
30
40

Limit

0
0
1

0
1

2
0
1

2
3
0
1

2
3
4
0
0
0
0
0

0
0

L,
—0.179

4.73
4.22

157.38
249.38
204.76
385.25
635.48
483.66
355.41
895.72

1524.71
1207.93
990.83
730.23

1823.33
3351,08
5694.00
9100.49

L,,
—0.144

—17.66
—19.74

—102.82
—149.13
—62.15

—347.63
—594.97
—411,17
—328.75
—858.46

—1492.47
—1177.72
—966.78
—692.72

—1789.96
—3310.62
—5654.82
—9061.63

—0.324
—12.93
—23.96

54.55
100.24
142.61
37.62
40.51
42.49
26.66
37.26
32.24
30.21
24.05
37.51
33.50
40.46
39.18
38.86
38.7310
38.5308
38.5177
38.5148
38.5128

p(2)

0
0
0
0
0
0

12.456
16.184
12.021
4.77
6.617
8.221
5.746
2.616
0.53
3.904
2.487
1.678
1.184
0.866
0.109
0.0325
0.0137
0

V,

—21.09
—37.70
—53.29

23.86
51.27
76.21

8.22
19.87
27.06
31.35
6.87

14.72
17.38
19.16
18.86
5.28
4.23
3.43
2.82
2.36
0.6671
0.3069
0.1749

—17.75
—13.74
—9.17
—7.81

10.46
27.89

—9.11
—17.92
—23.13
—43.22
—8.13

—21.01
—25 ~ 70
—33.63
—19.86
—10.43
—2.28
—2.76
—2.47
—2.14
—0.6492
—0.3021
—0.1729

V, +V,
—38.84
—51.44
—62.46

16.05
61.73

104.10
—0.89

1.95
3.93

—11.87
—1.26
—6.29
—8 ~ 31

—14.47
—1.00
—5 ~ 15

1.94
0.66
0.35
0.22
0.0179
0.0048
0.002
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TABLE II. Same as Table I except that the radiation wavelength is 530 nm.

6
7
8
9

10
20
30
40

Limit

L,
—0.202

13.66
24.42
63.98
99.55
66.36

185.23
306.25
227. 14
160.88
440.71
752.40
592.79
483 ~ 35
353.15
905.05

1669.25
2840.98
4544.43

L,
—0.133
—9.50

—10.95
—54.87
—95.13
—68.97

—174.85
—289.60
—208.16
—151.56
—430.85
—741.25
—581.51
—473.91
—343.58
—895.28

—1659.54
—2831.29
—4534.76

—0.335
4.16

13.46
9.11
4.42

—2.61
10.38
16.65
18.98
9.32
9.85

11.15
11.27
9.43
9.57
9.75
9.71
9.69
9.67
9.65731
9.63178
9.62926
9.62865
9.62821

I (2)

0
0
0
3.275
3.602
1.620
1.422
1.447
0.665
0.132
0.737
0.729
0.335
0.085
0.009
0.429
0.271
0.182
0.128
0.094
0.0117
0.0034
0.0015
0

V,

—5.84
—2.74

4.70
2.01
5.27
6.87
1.52
3.29
3.68
3.68
1.10
2.23
2.33
2.34
2.28
0.84
0.64
0.50
0.40
0.33
0.0878
0.0397
0.0224

V,,

—4.11
—2.72
—0.86
—2.53

—10.49
—19.11
—0.78

3.74
5.66

—3.99
—0.87
—0.71
—0.69
—2 ~ 53
—2.33
—0.70
—0.55
—0.44
—0.36
—0.30
—0.0843
—0.0387
—0.0220

V, +V,,
—9.96
—5.46

3.84
—0.52
—5.22

—12.24
0.74
7.03
9.34

—0.31
0.23
1.52
1.64

—0.19
—0.05

0.14
0.087
0.057
0.040
0.03
0.0035
0.001
0.0004

order. From the true level energies, one obtains the ener-

gy of any transition as well as the ionization limit by sub-
traction.

From the results of Tables I and II one may be tempted
to consider A as being the term responsible of the shift
of the ionization limit. The confusion comes from the
fact that in hydrogen and rare gases, the second-order
A.P terms for the ground state, quasiexactly balance the
eA'ect of the A term. This may not be a general rule. It
will be shown in Sec. IV what care must be taken in pre-
dicting the behavior of the shifts of highly excited level at
high intensity, on the grounds of second-order theory, by
testing the convergence of the series (2.4).

IU. FOURTH-ORDER ENERGY SHIFTS

As a prelude to a more general calculation including all
higher-order contributions, we consider the fourth-order
corrections to the level shifts. The processes involved are
represented, in the energy scale, by the six diagrams of
Fig. 1(b). The shift of the level (n, l) calculated up to
fourth order is

(4.1)

where R„' „' is given by Eqs. (3.2) or (3.6). The expression
of R„', in the length gauge is

I
n, n I0 I, J, A &=)7

ni dij j k ji&+
(E„,+&~)(E„,+ 2')(E„q + co) (E„;+co)E„,(E„q +c&)

d)ii dij dj/' dl. n+-
(E„,+su)E„(E„q+co)

(4.2a)

with

d+—:D, (4.2b)

d =D* . (4.2c)

In Eq. (4.2a) the sum is to be taken over the upper and
the lower signs. We note that the state ~n ) is excluded
from the sums over intermediate states because of the
presence of the projector Q in the expression of the shift
operator R (z). The matrix elements are calculated by us-
ing the method of coupled diA'erential equations which
needs not be repeated here. The great interest of this
method is that high-order matrix elements are evaluated

exactly without encountering divergences, even when one
or several photons are absorbed above the ionization lim-
it. This is because the problem is solved within a fully
complex calculation scheme.

The calculations have been done for circularly polar-
ized light. The results obtained after averaging over the
magnetic quantum number are shown in Table III. The
values of 5'„&' and b, '„&' are given in atomic units (a.u. ) up
to a factor 10 I W/cm and 10 I W /cm, respec-
tively. As expected we see that the second-order shifts
are independent of the light polarization for the 5 states.
By averaging over the magnetic and the orbital quantum
numbers we define
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TABLE III. Second-order (6 ' ', I ') and fourth-order (6, I ) contributions to the average shifts and widths of levels with quan-
tum numbers n and 1. Notice that 6' —il ' =[1/(21+1)]g,'„,[(6 ' —il ')„,„, ]/I . The values are given for circularly po-
larized light at two dift'erent wavelengths (a) 530 nm for 6,—I.I, and (b) 1060 nm for 6& —iI &. The results are expressed in
a.u. cm"/W up to a factor of 10 ' and 10 for second order and fourth order, respectively.

10

(2)

—0.335
4.16

10.89
9.11
8.72
4.27

10.38
12.34
14.59
9.61
9.85

10.33
10.59
9.60
9.63
9.75
9.96

10.03
9.61
9.64
9.63
9.66

(2)r.
0
0
0
3.27
2.77
1.24
1.42
1.09
0.51
0.10
0.74
0.54
0.25
0.06
0.006
0.43
0.31
0.12
0.05
0.01
0.001
0.094

(4)

—0.88 X 10-'
1.893
2.099
0.217
0.147
0.080
0.616
0.543
0.377
0.301
1.469
1.394
1.248
0.925
0.669
3.026
2.923
2.723
2.419
1.874
1.260

23.16

(4)r.
0
0.023
0.018
0.0011
0.0016
0.0025
0.0032
0.0032
0.0005
0.0002
0.0025
0.0022
0.0011
0.00008
0.00004
0.0018
0.0015
0.0007
0.0006
0.0023
0.0002
0.0490

g (2)
b

—0.324
—12.93
—19.48

54.55
73.10

104.70
37.62
41.03
43.22
34.19
37.26
37.46
35.70
31.53
38.53
33.53
28.96
20.58
16.67
38.43
38.54
38.73

(2)I b

0
0
0
0
0
0

12.45
12.19
9.19
3.57
6.62
6. 1 1

4.37
1.95
0.39
3.90
3 ~ 50
2.44
1.15
0.31
0.035
0.866

(4)

—0.74 X
—0.428
—1.166
816.5
731 ~ 1

573.2
10.79
9.71
7.0
6.01

23.80
22.28
19.78
15.3
10.86
44.82
38.88
32.46
34.90
28.23
20.91

373.32

10 5

(4)I q

0
0
0
0.084
0.042
0.010
0.086
0.038
0.048
0.086
0.085
0.132
0.118
0.005
0.013
0.096
0.113
0.081
0.034
0.004
0.002
0.656

n —1 +1

, X X
n l=o m= —1

(4.3)

From these averaged values of the shifts, we determine
the intensities at which 6'„'=5'„. These threshold in-
tensities I,„(n) are shown in Table IV and are plotted in
Fig. 2. Let us consider the curve representing the thresh-
old intensity for the shift at X=530 nm. We note that
I,h(1) is very high ()3X10' W/cm ) for the ground
state. This value is of the same order of magnitude as
that calculated by other authors. ' ' This means that a
second-order calculation of the shift is relevant up to in-
tensity values of few 10' W/cm . Recently, corrections
to the ground-state energy have been calculated up to

1

2
3

5
6

10

A, =530 nm

3.8[15]
4.5[11]
5.33[12]
3.01[12]
1.01 [12]
4.8[11]
4.10[10]

I,h(n)
X=1060 nm

4.4[15]
1.82[12]
1.3[10]
5.25[11]
2.27[11]
1.05[11]
1.05[10]

X=10600 nm

5.6[11]
7.2[9]
7.0[8]
1.8[10]
1.0[9]
1.8[8]

TABLE IV. Threshold intensities Ith(n) in W/cm'- corre-
sponding to A„=A„', calculated for dift'erent values of the
principal quantum number n. The results correspond to circu-
larly polarized light whose wavelength is 530, 1060, and 10600
nm. The numbers in square brackets are powers of ten.

tenth order. These high-order contributions reinforce
the effect of the fourth-order term so that I,h(1) is re-
duced by two orders of magnitude (about 10' W/cm ).
For n =2, I,i, (2) falls down rapidly and exhibits an ac-
cidental minimum due to a near-resonant coupling, i.e.,
the energy gap between the n =2 and 4 levels approaches
the one-photon energy. For n ) 3, the threshold intensi-
ties decrease monotonically with increasing n. The
values of I,h(10) are less than 10" W/cm, a value which
is about two orders of magnitude lower than those in-
volved in ATI experiments. ' '

The same behavior is observed at 1060 and 10600 nm.
For the former wavelength the dip comes from the states
n =2 and 3 whose energies differ approximately by that
of one photon. The curves of Fig. 2 clearly show that the
values of I,h(n) decrease with the photon energy. On the
grounds of a comparison involving second-order and
fourth-order terms, it is clear that second-order theory
becomes more and more questionable for higher and
higher excited states. The values obtained for I,„(n) are
of practical interest in indicating the range of intensities
within which the lowest-order term of the perturbations
theory can represent adequately the level shifts.

We can go further in the discussion by comparing the
values of the complex shift obtained from the first three
terms of the perturbation expansion with the "nonpertur-
bative" results computed previously by Chu and Coop-
er ' and later by Shakeshaft and Tang. The calculation
of the widths and the shifts of the ground-state energy of
hydrogen is done for large photon energies (0.2 ~ cu ~0.6
a.u. ) in the case of linearly polarized light. Following the
notation of Chu and Cooper, F is the rms field strength
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TABLE V. Values of the complex shift 6—iI in a.u. in the ground-state energy of hydrogen for various energies co and field am-
plitude F (F=I/7. 019X 10', where F is in a.u. and I in W/cm ). The results at the second, fourth, and sixth order of the perturba-
tion theory are given in columns 2, 4, and 6, respectively. Estimates of the disagreement between the values of Chu and Cooper (Ref.
21) and our present results are reported in columns 3, 5, and 7 (rate percent %%uo). Numbers in square brackets are powers of 10.

z +a")—r'-"
0

Disagreement
with Ref. 21

(%%uo)

Eo+(6' +6 ')
—i. {r'"+r'))

Disagreement Disagreement
with Ref. 21 Eo+(6' '+5' '+6' ) with Ref. 21

(p(2)+ p( )+ p(6)) (%)

0.01 (
—0.500 297, i0)

0.025 (
—0.501 857, iO)

0.05 (
—0.507 427, i 0)

0.075 (
—0.516 711,iO)

0.01 ( —0.529 708, i0)

8[ —6]
5[ —2]
0.3
0.4
0.9

~=0.2 a.u.
(
—0.500 293, i0)

( —0.501 705, i0)
(
—0.505 005, i0)

(
—0.504 448, i0)

(
—0.490 950, i0)

5[ —6]
2.4[—2]
0.75
2.8
6

(
—0.500 293, i 0 999. 6[ —7]

( —0.501 596, i 0 244.0[ —4] )

( —0.498027, iO 156.2[ —2])
(
—0.424 965,i 0 1779.[ —1])

9[—5]
2[ —3]
2

18

0.01 ( —0.500 528, i0)
0.025 (

—0.503 301,iO)
0.05 (

—0.513204, iO)
0.075 (

—0.529 711,iO)
0.1 (

—0.552 819,iO)

2[ —3]
8[ —2]
9[ —1]
3
7

co=0. 3 a.u.
(
—0.500 515,i 0.3864[ —5] )

(
—0.502 785, i 0 1509[—.3] )

(
—0.504 953,i 0.2415[ —2] )

( —0.487 938,i 0 1223.[ —1])

( —0.420 795, i 0.3864[ —1 ] )

3[ —4]
2[ —2]
7[ —1]
5

18

(
—0.500 515,i 0.3796[—5] )

( —0.502893, iO 1342[. —3])
( —0.511 880, i0 1340.[ —2])
(
—0.566 848, i0)

2[ —4]
1[—3]

10

0.01 (
—0.499 835, iO 1252[.—3])

0.025 (
—0.498 969,i 0 7828[ —. 3] )

0.05 (
—0.495 878, i 0 3131[.—2] )

0.075 ( —0.490 725, i 0.7045[ —2] )

2[ —6]
5[ —4]
7[ —3]
3[—2]

~=0.6 a.u.

( —0.499 835,i 0 1253[—.3])
(
—0.498 962, i 0.7865[ —3] )

(
—0.495 772, i 0 3191[—2]).

(
—0.490 189,i0.7347[ —2] )

3[—5]
8[ —4]
1.4[ —2]
7[ —2]

(
—0.499 835,i 0 1253[.—3])

(
—0.498 962,i 0 7865[ —. 3] )

(
—0.495 768, i0. 3190[—2] )

(
—0.490 149,i 0.7339[—2] )

2[ —5]
1[—3]
1.5[ —2]
8[ —2]

E, 'r
Pa'E', aE r a'E', aE

(5.5)

By identifying Eqs. (3.13) and (3.15), one finds that

1(E.r)a E,aE (E, E )2
Pa E,aE (5.6)

The matrix elements of the operator p thus defined are
not divergent. They only require accurate calculations to
warrant a good stability of the results. Equation (5.6)
shows the reason why the matrix elements of c, .r diverge
when E'=E: there exists a second-order pole which does
not appear explicitly. By replacing the matrix element
(e.r),z. z as given by Eq. (5.6) into Eq. (5.1), a fourth-
order pole appears in the integral running over the ener-
gies of the continumm.

We have

I PaE,jPj, aE

Io, (E E, ) (E —E, +co—)

+ PaF. ,JPJ, aF
(5.7)

(E —E )'(E —E —co)J J

The evaluation of the integrals in Eq. (5.7) requires both
an analytical continuation of the functions p z onto the
complex plane and the calculation of the successive

I

(2) I
R aE, aE 2Ip&)

where

' ~aE,j Qj, aF..E+ E —E +co
J J

Q.z, j Q, ,.z
E —E —coJ

(5.8)

Q, =(aEe P~j),

0.„=& ~E
I

E* P
Ij & .

Owing to the relations

(E Ej )Q~F j 'P—

(E EJ )Q~~ ~
=ip~—Ej,

(5.9a)

(5.9b)

(S.loa)

(5.10b)

which are readily obtained from Eqs. (5.2) and (5.6), one
finds

derivatives of
~ p z, ~

. Such difficulties preclude any
computation of R' z z in the form displayed in Eq. (5.7).
The problem of handling high-order poles is encountered
in both length and velocity gauges, but fortunately it is
more easily solved in the latter. In the following lines a
method is presented which avoids high-order poles. To
this end we express the matrix element R '

z & in the ve-

locity gauge as

I
Ipco

PaE,jPj,aE PaF,jPJ, aE

(E E, +co)(E E, )' —(E E, ~—)(E E,)—— — (5.11)
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As a consequence of the commutation relations between the components of the momentum operator, Q and Q commute
with each other, i.e., [Q, Q] =0. Therefore we can add to the terms in the bracket of the right-hand side of Eq. (5.11),
the vanishing quantity

—'& El[Q, Q] l
E&=—y (Q...Q...- —0...Q. ..). (5.12)

Then, by replacing the matrix elements of Q and Q by those of p according to Eqs. (5.10), one obtains, after a little alge-
bra,

PaE,jPj,aE
c,*.c+-

Iocu' co,. (E E, +co—)(E E, )—

or, equivalently,

PaE,jPg, aE

(E E —co)—(E E)— (5.13)

I, 1

Io

1

E —EJ

1, 1

+ ~ E PaE,jP~, aE E —EJ J

1

E E PaE jPj aE (5.14)

The contribution coming from the sum over the
discrete spectrum g B E may be extracted from the
generalized sum g' and computed easily. The remaining
terms, which give the continuum spectrum contribution,
are evaluated from integrals involving the three simple
poles E =E, and E =E +co (throughout the paper E
will be written for the energy of the pole). Our method
leads to a considerable simplification and enables one to
put R' E E into a fully calculable form. It avoids the
difficulties coming from the fourth-order poles and the
second-order poles implicitly contained in the expressions
of Eqs. (5.7) and (5.8), respectively.

Practically, the expression of p z .z. [Eq. (5.5)] in-
volves a complicated integral over the coordinate r which
is evaluated by resorting to generalized hypergeometric
functions. ' We note that the numerical technique
must take care of problems arising from the slow conver-
gence of the series within particular energy domains.

We are faced with the problem of calculating integrals
of the form

(E,E')
I .(EE )=f dE'

P

(5.15)

—(E —E')

+f(E E ) f dE'
p

(5.16)

where for clarity the subscripts a and 0.' have been
dropped; they will be easily restored when necessary.
The first integral on the right-hand side of Eq. (5.16) is no
longer singular and can be calculated by numerical quad-
rature. The integrand of the second integral is a simple
analytic function which can be continued onto the com-

appearing on the right-hand side of Eq. (5.14)
[f (E,E') = lp z z l ]. When E (0, I (E,E ) is ob-
tained by usual quadrature. For positive values of E,
resonance poles appear which make it necessary to resort
to the following procedure. We introduce a Gaussian
function in such a way that

—{E —E')f (E,E') f (E,Ep )e—
I(E,E )= dE'

p E —E'

plex plane. By choosing a suitable path of integration we
find that

—(E —E')
P

J(E )= f dE'
0

P

'E (E ) —ivr . —
1 p

(5.17)

I(E,E )=g(E,E ) ivrf (E,E—), (5.18)

where
I 2f (E,E') f (E,E )e-

g(E E )= dE'
P

,'f (E,E )E, (E —) . (5.19)

At this stage of our discussion we have surmounted the
major difficulties encountered in the calculation of the
second-order element of the matrix representation of the
level shift operator. However, by examining the expres-
sion of g (E,E ) in Eq. (5.19), we see that a problem still
remains concerning the exponential integral which goes
to infinity when E ~0.

This complication arises in two circumstances.
(i) When E~O and E =E, the quantity

2
pf (E,E)E,(E ) of Eq. (5.19) can be accurately computed

for E & 10 . For smaller values, some difficulties of con-
vergence affect the computation of the function f (E,E').
This region will not be explored in the present account.

(ii) When E approaches the energy of one photon
(E~co and E =E —co), the integral I(E,E ) has a
discontinuity at E =co. Over the energy range (O, co), the
integral I(E,E —co), as given by Eq. (5.15), is real and
can thus be evaluated by quadrature (Fig. 3). In contrast,
for E & co, the resonant pole E =E —co lying on the posi-
tive real axis makes the integral complex in the form
shown in Eq. (5.18). Correlatively, the function
f (E,E —co) appearing in this equation no longer exists
on the low-energy side of the discontinuity, while it takes

The principal value of J (Ez ) is now expressed in terms of
the exponential integral E&(E ). By using the result of
Eq. (5.17), we can write Eq. (5.16) in the form
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Im{E)

Re {E)

FIG. 3. Diagram indicating three diAerent positions of the
triplet pole which correspond to energies E —cu, E, and E+co
lying on the real energy axis of the complex energy plane. The
resonance poles of the integral I(E,E~ ) are marked by crosses.
When energy decreases, the two poles E —~ and E move to-
ward the origin of the energies they reach successively. For
0 & E & ~, the lowest-energy pole vanishes. It is marked on the
figure by an open circle. The vertical dashed line represents the
discontinuity.

on the well-defined value f (cu, O) in the near vicinity of co

on the high-energy side. Furthermore, when E —co~O+
the term f (E,E —co)E, ((E —co) ) goes to infinity
[E&(x)~~ when x~0]. The singularity coincides with
the lower bound of the integral I(E,E —co). Such a situ-
ation would not happen if we had calculated the contri-
bution of the resonance pole for the true complex values
of the energy. Nevertheless, we can compute the real
part of the shift operator [Eq. (5.19)] for energy values as
close as co, which is necessary for our present discussion.

VI. RESULTS AND DISCUSSION

gy region produces a switchoff of the function
f (E,E —co) and thus induces a discontinuity in the be-
havior of R '

z z at E =~. The effect of this discontinui-
ty, which is very pronounced for low orbital states, be-
comes less and less sensitive as l increases. In Fig. 4 are
the plots I',„z/I as a function of E/co (A. =1060 nm). The
energy in the continuum is expressed in units of the pho-
ton energy. For the orbital states depicted, the discon-
tinuity still exists but is "smoothed" and gives rise to a
maximum around E/co= 1. This maximum, which is ob-
served on all the curves, is more and more damped when
one goes towards higher values of l.

The other quantity we report is the real part 5 F of the
shift operator in the continuum spectra. From Eqs.
(5.14) and (5.19) we can write b. z in the form

b F= — 1+ gB F, +2g(E, O)
I 1

Io6) co

—g (E,E + co) —g (E,E —co)

which requires the calculation of the discrete spectrum
contribution in addition to the evaluation of three in-
tegrals.

The results of the numerical calculations are shown in
Fig. 5 (A, =1060 nm). The intensity-independent quantity
6 z/I is plotted as a function of the energy for several
values of the orbital quantum number I. We note that the
shift 6 F /I is a monotonic function over a very large en-

PV
E
LJ

l

In this section we present the results concerning the di-
agonal matrix element calculations of the shift operator
in the continuum spectrum. As we have seen in Sec. V,
R' z z is a complex function which can be conveniently
expressed in the form

(6.1)

That I z goes to zero when the energy E goes to infinity
is easily seen from Eqs. (5.14) and (5.18), which enable
one to write I ~ as

I =7r[f (E,E) f (E,E +co)]—
+v[f (E,E) f (E,E —co)], — (6.2)

where the contributions of the three poles E =E and
E =E+co appear explicitly. Since co becomes negligible
compared to E when E~ oo, all the functions of Eq. (6.2)
tend toward the same value and I z goes to zero. When
E (co, we know (Sec. V and Fig. 3) that only two poles
contribute in the calculation of R z z (E =0 and
E =E +co). We find that in this case I z decreases with
E. The disappearance of the pole E =E —c~ in this ener-

E/u

FIG. 4. Rate I =10"6 E/I in a.u. cm /W giving the width
as a function of the normalized energy E/cu for several values of
the orbital quantum number 1. (a) 1=8, (b) 1=10, (c) 1=12,
(d ) 1 = 14, and (e) 1 = 16.
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CV

E

g

3.85

FIG. 5. Rate 5= 10' A„I;/I in a.u. cm'/W representing the
shift as a function of the normalized energy E/co for several

values of the orbital quantum number 1. (a) I =2, (. b) I =3, Ic)
t =—4, (d) t =5, (e) I =8, (f) I =10, (g) l =12, and (h) I =(S.
The dashed line depicts the average quantity 1/I„u-' (I(&=1.4
X 10 'W/cm j.

ergy range. It decreases and tends towards the value
1/Ioco [average value of the 3 term of the Hamiltonian
of Eq. (3.6)] as E~ ~ . Notice also that b, E becomes
smaller and smaller with increasing l. 5 E/I remains
practically constant and equal to the average 3 energy
for I ) 10. This result, which is general for all the curves,
corroborates that obtained for highly excited discrete
states. It shows that the whole spectrum is shifted up-

siE

&X/F2PX/XPZPZZP V/PY//XX C

30

6
5

&ZlZllZA ZPZZZZZA VZZIIXi

{a) {b)

FIG. 6. Diagram representing the energy levels of atomic hy-
drogen belonging to the I channel. (a) I =0, 1,2; (b) 1=5. Each
discrete level is labeled by its principal quantum number. The
thick lines indicate the photon energy. The resonant state with
the lowest energy E,&

is shown by an arrow. The shaded part of
the energy axis is the region perturbed by the resonant discrete
states. Its length decreases when I increases.

wards by an amount of energy equal to I/Ioco, while
each state undergoes its own energy correction. On the
low-energy side, we are faced with the discontinuity that
has been encountered in the calculation I z. This diver-
gent behavior is due to a failure of the lowest-order per-
turbation theory within particular energy ranges. Its
eAect becomes unobservable for I & 10 because of the
weakness of the matrix element f (E,E —co).

In calculating 6 z, an additional diSculty arises from
the summation +,8 z, over the discrete intermediate
states included in the second-order matrix elements
R z E [Eq. (6.3)]. By varying E, the emission-
absorption term gives rise to resonances induced succes-
sively by all the discrete states lying within the "dropping
zone" (co+E„()~ E ~ ro of the emitted photon (Fig. 6).
For the l channel, E„& is defined as being the smallest res-
onant energy for which ~+E„& is both positive and
minimum. Since n ~ 1 +1, E„I increases with I and thus
with n. This energy limit moves upwards in such a way
that the resonant region becomes narrower and narrower.

As a last remark we want to emphasize the central role
played by the complex shift in ATI. The transition am-
plitude given by Eq. (2.10) shows that I F acts in the
denominator as well as in the exponentials as a damping
term which is responsible of the width and the amplitude
of the ATI peaks.

VII. CONCLUSIONS

We have presented the results of computations con-
cerning the second-order shift operator with the intent of
understanding its role in processes such as ATI. In addi-
tion to those dealing with the discrete spectrum, we have
given some results for the continuum spectrum which
were not known before. To make possible such calcula-
tions, new expressions for the continuum-continuum ma-
trix elements of the second-order shift operator have been
setup. More precisely, we have shown how the problems
arising from the fourth-order poles in R' E z [Eq. (5.7)]
could be solved.

Our calculation has put forward the drastic limitations
of the second-order approximation for R "s(E) with
respect to the intensity. For the discrete spectrum the
convergence of the R"" expansion has been studied by
comparing second-order to fourth-order terms. We have
thus defined a threshold intensity I,h beyond which the
shift is no longer correctly given by the second-order
term of the perturbation series. This intensity has been
found to decrease from 10" to 10'" W jcm when the
principal quantum number increases from 1 to 10, From
these values one can predict that the R "g series will be
quickly divergent with intensity for Rydberg states. Thus
our results confirm that it is now of outmost importance
to study how the R " (E) expansion behaves.

Concerning the computation in the continuum spec-
trum, we have been faced with two major difficulties: (i)
that coming from the resonances induced by the discrete
states within the energy range (E„&+co,co) in the calcula-
tion of 6 F, and (ii) that coming from a resonance pole
located at the origin of the real axis (E =0) which pro-P
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duces a discontinuity for both 5 ~ and I ~ at E = co. As
shown in Sec. II this difhculty could be avoided in calcu-
lations involving R"" (z) instead of R' I(E), i.e. , in an
all-order theory where the true complex energy is taken
into account self-consistently. This problem will be dis-
cussed in a forthcoming account.
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