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Some of the unsolved problems concerning the form factors of hydrogenic atoms for discrete-
discrete, discrete-continuum, and continuum-continuum transitions are solved by a new group-
theoretical method. We give exact analytic formulas for these form factors and their summation
over angular momenta and indicate analytic continuation procedures among the three cases.

I. INTRODUCTION

Inelastic transition form factors of atoms play an im-
portant role in collision theory. They are related to gen-
eralized oscillator strengths and are important in all phe-
nomena involving excited states, and more recently in
above-threshold ionization problems. Many of their
properties have been reviewed. ' Recently, Inokuti,
Shimamura, and Itikawa have drawn at tention to "our
surprisingly incomplete knowledge about form factors"
of H-like atoms from the ground state to higher discrete
and continuous states. They list a number of unsolved
problems and state that "the knowledge concerning tran-
sitions from an excited state, either discrete or continu-
um, is even less satisfactory. " These authors have
corrected some of the mistakes in the literature and list
among unsolved problems specifically the derivation of
the Bethe's sum formula for gt" „'~ A„t(K) ~, where
A„t(K) is the transition form factor from the ground
state to a discrete state (nl) given by

uation have been so far unsuccessful. The desired expres-
sion for the continuum must be related to the discrete
case through the analytic continuation over the E plane. "
This is indeed the case.

Our methodology is based on the group-theoretical
properties of the form factors derived from the, by now
much used, dynamical group SO(4,2). All the calcula-
tions can be made directly in the group space where the
wave functions and the scalar product are much simpler
and where the principal quantum number is the eigenval-
ue of a group generator instead being related, in a com-
plicated way, to energy, E„——1./n . Furthermore, ana-
lytic continuation to continuum states can be done very
naturally, so that one general formula encompasses all
cases. This shows the power of the group-theoretical ap-
proach.

The calculation of the form factors can be reduced sim-
ply to an evaluation of the matrix elements of a
symmetry-group operator element. In Sec. II we ela-
borate on how this comes about.

b„t(K)= f u„*t (r)e' 'uo(r)dr,

and state that "we have been unable to derive" Bethe's
sum formula from the general expression for F~„t(K).
Bethe derived the form factors, using the results of
Wentzel, in parabolic quantum numbers n &, n2, and car-
ried out a summation over n, —n z at fixed n.

We show in this work by an entirely independent
group-theoretical calculation of the form factors that
Bethe's final results are correct. We obtain the summa-
tion formula directly in spherical quantum numbers,
which we believe to be new. This work is a continuation
of our previous results on hydrogenic inelastic form fac-
tors, which in turn were the limiting cases of the more
general relativistic form factors and structure functions.
We shall also give a method of analytic continuation to
obtain summation formulas for discrete-continuum and
continuum-continuum transitions, this is another of the
unsolved problems listed by Inokuti et a I.: "It is
difTicult to extend the method of Massey and Mohr to
the continuum, and attempts with other methods of eval-

II. PHYSICAL BASIS OF THE
GROUP- THEORETICAL METHOD

It is well known that for H-like atoms the subspace of
bound states for a fixed energy E„spans a representation
space of dimension n of the symmetry group SO(4). For
scattering states the group is SO(3, 1), an analytic con-
tinuation of SO(4). When the atom interacts with an
external electromagnetic field, an energy-momentum is
transferred to the atom, which then can make transitions
to other energy subspaces. Thus we have to connect one
representation space of SO(4) with another. It turns out
that the totality of all states of the atom span again a rep-
resentation space of a group —this time the dynamical
group SO(4,2) containing all the SO(4) subspaces —with
correct multiplicities. Moreover, the current operator is
expressible in terms of the Lie algebra of SO(4,2), so that
one can say that the dynamical-group representation con-
tains all the information about the system and its cou-
pling to the electromagnetic field. Let us explain first in
physical terms how these symmetry and dynamical
groups arise. The dynamical variables of the electron in
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the Coulomb field r and p (spinless case), and their en-
veloping algebra, r, r X p, r,p, . . . , contain not only the
algebra of angular momentum, i.e., Lie algebra of the ro-
tation group SO(3) and the bigger Lie algebra of SO(4),
which commute with the Hamiltonian, but also a larger
algebra which we shall give in the text whose irreducible
representation contains a11 the states of the atom. Thus
we have dynamical variables connecting different energy
and angular-momentum values.

When the atom is at rest the group representation gives
us the states ~nlm ). But when the atom is moving we
have also to label the states by the momentum p of the
state ~nlm;p) as well. The moving states form a repre-
sentation of the Galilei group (or, in the relativistic case,
of the Poincare group). In group-theoretical language we
induce a representation of the Galilei (or Poincare) group
by going from the rest-frame states to the moving states.
This can be done by a so-called "boost" operator M

~nlm; p & =e '" ~nlm; p, & .

The boost operator M is also contained in the Lie algebra
of the dynamical group. Therefore the transition form
factors are essentially the scalar products between initial
and final states:

( nlm;pf ~nlm;p; ) = (nlm ~e' ~nlm ),
where K =pf —p, is the momentum transfer. For the
nonrelativistic case, the boost operator M is simply pro-
portional to I, the position operator, and we get, for
p; =0, the form factor 8„((K) given above, or more gen-
erally, the Fz(K) given further in Sec. IV, Eq. (4.1).

The expression for 6'„((K) admits three different inter-
pretations: (i) Fourier transform of the charge and
current distributions, (ii) the transition matrix element of
an external electromagnetic plane wave e' ", and (iii) the
transition between the atom in the rest frame and the
moving atom with a momentum transfer K. Accordingly
one may express the physics in different ways, but their
equivalence gives us some more insight into the meaning
and calculation of form factors.

Although we deal here with the simplest form factors,
more general form factors involving spin and inelastic
electric and magnetic transitions can also be calculated
by our method. ' We begin with the group properties of
states, then express the form factors as matrix elements of
group generators in appropriate bases, evaluate these ma-
trix elements and the summation formulas for all three
kinds of transitions, and give the prescription for analytic
continuation.

papers. ' These representations can be obtained by alge-
braically restricting the Lie algebra of SO(4,2) to the rep-
resentation relation

Lap~ L ~
I 2(l 0 1)g$, a, /3, y = 1,2, . . . , 6 (3.1)

g = ( —1, —1, —1, —1; + 1, + 1 ) . (3.2}

The canonical discrete basis Iy„'( I of the most degen-
erate unitary irreducible representations of SO(4,2) is ob-
tained from the reduction

SO(4, 2) &SO(4, 1)DSO(4) &SO(3)&SO(2),

and the basis functions satisfy
I0 0I ]2fn(m nvn(m~ m = —l~. . . , +l

(0 (0
,'L; L'J(p„'( —=l(l+ 1)y„'(

l= I101, . . . , n —1;i,j =1,2, 3, (3.3}

lo lo
L56+ ( =np ( n = I+ llpl

Under the restriction (3.1), the invariant products of
SO(4,2) and SO(4, 1) are expressed in terms of la and those
of SO(4) in terms of l0 and n

A canonical continuous basis [p ( I can be obtained
from the reduction

SO(4, 2) &SO(4, 1)&SO(3, 1)&SO(3)&SO(2)

and the corresponding continuous basis functions satisfy,
I I0 0

L&20~(~ ™V~(~, m = —I, . . . ,

'0 l0
,'L(,L "m'(m —=l(l +I)(/.'(m

(0 (0
L46%'vlm vr(('vim r

1= 10~, . . . , ~, i,j =1,2, 3

(3.4)

Again the condition (3.1) implies that the invariant prod-
ucts of SO(3, 1) can be expressed in terms of v and l0. In
the discussions that follow for the hydrogen atom we use
the spin-zero representations of SO(4,2) for which 10=0.
The continuous basis states can be expanded in terms of
discrete states as

where the parameter 10=0,+—,', +1, . . . , fixes the spin of
the representation, and L I3= —L& are the Lie genera-
tors of SO(4,2) satisfying the Lie product

[L p, Lrs]=i(g sLp +g(3 L s g—rLps g(3sL
—),

III. CANONICAL DISCRETE AND
CONTINUOUS BASES OF SO(4,2)

V„'+ ' (i vr /2 )(l(„(
n=1

(3.5)

The most degenerate unitary irreducible representa-
tions of SO(4,2) have been discussed in detail in several

where the V functions are SO(2, 1) representation func-
tions '' given by

Vk (g)

exp i—(i v 1)—
2

1/2
k —1+n k —1+i v
—k+n —k+iv&2&sin [sr( i v) ]

X2F, (k —iv, k —n;2k; —[sinh(8/2)] ) .

[tanh( 8/2) ]' +"[sinh( 0/2) ]

(3.6)
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IV. DISCRETE-DISCRETE TRANSITIONS 1(x)=—exp( i—O„L ~ )&p„& (x),
N

(4.3)

In an earlier publication we computed the charge
form factor function I„"&™(q)=F(q) from

F&(q) =jg„*,&, ,(x)exp i
me

~k0nimd X

(4.1)

where p is the reduced mass, m, is the mass of the elec-
tron, q is the momentum transfer, and the current opera-
tor Jis given by

where O„=ln(aN); N =n IZ is obtained by fixing the
charge of the physical state to be Z (initial) and Z' (final).
The physical state is boosted from rest to acquire a
momentum q by the Lie operator (

—m la)(L, 5 L,~)—;
m being the mass of proton. By boosting the final state
in the z direction we obtain from (4.1) the charge form
factor function in spinor notation as

„&
™= I, ( n '1'm '

I
G ( L ~6 L46 —

) I
n 1m ),

q
2me

1 1 q;—(L 6 L4 ); — L, + (L L—)
—. ,46 ~ 16 2 56 46

me me

G =exp( —i O„.„L4, )exp[ —iKN(L» L34 )],—

O„.„=ln(N/N'), N'=, , N=, K =q3m
n' n

The action of L,6 and L46 on
I
nlm ) is given by

(4.4)

i =1,2, 3 . (4.2)

Here a is an arbitrary scale parameter, g„& ~ and t/i„&

are final and initial physical states, respectively. The
physical states are defined in terms of discrete basis states
as

L,6 I
nlm ) = n lnlm ),

L46lnlm ) =
—,'[(n —l)(n +1+1)]' I(n +1)lm )

+ —,'[(n +1)(n —1 —1)]' I(n —1)lm ) .

Therefore (4.4) becomes

I„"&' =, [n (n'1'm'IGlnlm ) —
—,'[(n —l)(n +1+1)]' (n'1'm'IGI(n +1)lm )

—
—,'[(n +l)(n —1 —1)]' (n'1'm'IGI(n —l)lm ) ] (4.5)

The matrix elements of G in (4.5) can be computed ' explicitly by using Euler rotations in SO(2, 1) and using SO(4) and
SO(2, 1) representation functions. ' ' " We obtain

I", ' =, n g D(," ' (a)V„'„(P)D(" ' )(y) —
—,'[(n l)(n +1—+1)]' gD(," ' (a)V„,„(P)D(" )(y)

0 0
0 0

—
—,'[(n +l)(n —1 —1)]' gD&(,"

&

' l(a)V„.„&(P)D&"
&

' )() ), 1 O=0, 1,2, . . . , mi n[(n' —1), (n —1)]
0

0

(4.6)

I

sinh(P/2)= — [(N' N) +K (N') N ]'~—, N= —,N'=

cosh(P/2)= — [(N'+N) +K (N') N ]'1 1

2 v'NN'

sinhP sina = —KN,

sinhPcosa=, [(N') —N +K (N') N ],1

2NN'

sinh/3 siny =KN', (4.7)

sinhP cosy= —,[N —(N') +K (N') N ],1

2NN'

Vk (O) ( 1)
—k n+

I/2
k —1+n' k —1+n
—k+n' —k+n [tanh( 0/2) ]" "[sinh( 0/2 ) ]

X&F, [k —n', k —n;2k; —[sinh(O/2)] ], n' ~ n
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V„'„(9)= V„„.( —0),
V„'., (p) =3/n [tanh(p/2)]" '[cosh(p/2)]

V,' 2(P) = —3/n'(n' —1)[tanh(P/2))" [cosh(P/2)] —3/23/n'[tanh(P/2)]" [cosh(P/2)]

V„z(P)= —[(n' —1)n'(n'+1)]' [tanh(/3/2)]" [cosh(P/2)]v'6

D(. ', ' ' (0)= 3/(21'+1)(21 +1)
m l, m

2

m] m2

—,
'

( l + + l() ) —,
'

( l +
—lo ) l '

—,
'

( l+ + l o ) —,
'

( l+ —lo ) l

exp[ —ig(m )
—m, )],

~+ o~ ~+gD, ,
" (9)D, '&'- (

—6))=&(( &,„

l+ +I'+ l

l+ —I'

(i+o] . (21+3)
(l+ + l +2)(l+ —l)

3' —I I
. ]/2

[l ~,0]

d&
D(a'

Do(',„'](y)=1, Do(,',"](y)=cosy, D'„',"(y)=—i »ny,
jY" + l 2I 21'

—
1 ]/2 'I +IP+ 1+

(
—2i sin 9 )' 'C&' + '(. (cos9 ),

(4.8)

(4.9)

If the initial state is the ground state ~100), then Eq. (4.6) becomes the expressions derived by Massey and Mohr. For
simplicity we take the charges Z =Z = 1; and after using the following identities of the Gegenbauer polynomial

(n + m)C„, (cosa) =mC„+'(cosa) —mC„+2' (cosa), Co (cosa) = 1

( n + 2m )C„(cosa ) =2m C„+'(cosa )
—2m C„,' ( cosa ), (4.9a)

dC, (cosa) = —2m sina C„+)'
( cosa ),

dt's

we obtain

I

(a) V„' ((p) — —D&I~
' ](a)V„', (p)cosy —

D&(,", ' l(a)V„,2(p)( —i siny)
/1

n 1 ~~ it 00 ('0 )

g I I /

I "—
(
—')'22'+'( ')(+(&(2l'+1)(l +1)(100

( n '+1')!

']/2
[( r

1 )2+K 2( i)2](rr' —I' —3)/2

[( i+ 1)2+K2( i)2)(n'+('+3)lz

X I(n'+1)f(n' —1) +K'-(n') ]C„'+, , (cosa) —2n'[(n' —1) +K (n') ]' '[(n'+1) +K (n') ]' C,',
&

z(cosa)

+(n' —l )[(n'+1) +K (n') ]C„'.+', , (cosa) I, (4.10)

cosa=[(n')' —1+K'(n')']/[(n' —1) +K (n') ]' [(n'+1) +K (n') ]'~

Th form factor I,", &' '" is singular at cosh(P/2) =0. This implies that

2
I

=2(3(/8„++8„)

3vhere Il = —1/2nz is the binding energy of the state ~nlm ). The expression for K given by (4. 11) is in exact agree-
ment with the results of the perturbation theory. We now square (4.6) and sum over l' and obtain
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g II„",'™I2
1'=0

n 2 y I
v 0 (p)D[n —10](y)I2

(X') 1 m1
10

——[(n l—)(n +1+1)]' g [V„'.„(P)V„'.„+,(P)]
10

X [D [n —1,0](~ )[D [n, o](~)]*+[D [n —1,0]( )]sD [n, O](

——[(n +l)(n —l —I)]'~ g [ V„o„(P)V 0 1(P)]
'0

~ ID'"-'"(~)[D'"-'"(])]*+[D["-'"(~)]*D["-'"(~)t
10ml 1,m1 10 ml 10ml

+ —,'[(n —l)(n +1 +1)]y„ I V„'„~,(P)D,[",](y)I
10

+ —,
' [(n —l)(n + l + 1)(n + l)(n —I —1)]'~

X y ( V. 0 (p) V
0+

(p) ) [
D[n 0](~ )[ D[n —2, 0]( ~ )]e +[ D[nO](+ ), ]s D[n —2, 0]( ~ ) )

1
0 0 0 0

0

+ —,'[(n +l)(n —1 —1)]g I V„'„,(P)D1["
1

' ](y)I
0

If the initial state is the ground state I 100) we obtain the simpler result

(4.12)

n' —]

I
I n

' I '0
I

2

1'=0
, , I I v.'1(p) I' —3/2[ v„'1(p) v.' 2 (p) ]c»] + -,

'
I
v„' 2(p) I'cos'] + -,

'
I v.'2(p) I'»n'y

I (4.13)

We now use (4.8) and (4.7) with the charges Z =Z' = 1 and obtain

2 [tanh(P/2)] "[sinh(P/2)cosh(P/2)]

X [[(n' —1) +(Kn') ] [(n'+1) +(Kn') ]
1

16(n')

+4n'(n' —1)[l—(n') +(Kn') ][(n' —1) +(Kn') ][(n'+1) +(Kn')2]
—2[1—(n') +(Kn') ][(n' —1) +(Kn') ] [(n'+1) +(Kn') ]

+4(n') (n' —1) [1 (n') +(Kn—') ] 4n'(n—' —1)[l (n') +(Kn') ] [(n—' —1) +(Kn') ]

+[1—(n') +(Kn') ] [(n' —1) +(Kn') ] I+ —,'[(n') —1](Kn')

The term within the braces simplifies to be equal to 16(n ') (Kn'); and using again (4.7), we obtain

g II",0'0 I
=2 K (n')

I
—' f(n') —1]+(Kn')

I

[( 8+ 1 )2+(K &)2]n +3

Equation (4.15) agrees exactly with the result obtained by Bethe for K =q/a. If we define

,(K)= g II" 10I2
1'

(4.14)

(4. 15)

then

28(n )7( n 1
)2n' —5

i+ 1
)2n'+ 5cp„(0)= {4.16)

which is essentially the intensity formula for the Layman series. Bethe's formula given by (4.15) can also be obtained
from (4.10) by using the Gegenbauer addition formula'
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n ~!n2!(2m +n
~
+nz —1)!

C„+„(cosO)=
( n, + n z )![ ( m —1 )!]

(
—4) '[(m +k —1)!](2m +k —2)!(2m +2k —1)

(sinO)
k!(2m +n, +k —1)!(2m +nz +k —1)!

XC„"'+~:(cosO)C„"' ~:(cosO), k =0, 1, . . . , min(n, , n, ) .
l '2 (4.17)

V. DISCRETE-CONTINUUM TRANSITIONS function in spinor notation is given by

1(x)= -exp( —iO,L&~)y &
(x),

X,,
(5.1)

where O,, =ln(av). Consequently, the charge-form-factor

In this case the final state in (4. 1) is given by the physi-
cal continuum states tl &

(x) which are defined in terms
of continuum basis states as

I„'&' " = (vl'm' G(L56 L«—)', nlm ),N

G =exp( —i O, ,„L4, )exp[ —iKN(L» L,4
—
) ],

O „=ln(N/v), N=n/Z, K =q, m

(5.2)

Using the action of L~6 and L«on ~nlm ) and the expan-
sion (3.5), we obtain

I„'& = [n (vl'm'~G~nlm ) —
—,'[(n —l)(n +l +1))' (vl'm'~G~!(n +1)lm )

11

—
—,'[(n +l)(n —l —1)]' (vl'm'~G~(n —1)lm ) ) (5.3)

I„~',„'" = n g V',„+'(—in/2)(n01'm'[G[nlm ) —
—,'[(n —l)(n +l +1)]' g V',„+'(—iver/2)(n /0'm'~G~(n +1)lm )

n0 n0

—
—,'[(n +l)(n —l —1)]' g V,„+'(—in/2)(n01'm'!G~(n —1)lm ), n0=1, 2, . . . , ~

n0

(5.4)

As in the discrete case, the matrix elements of G in (5.4) can be computed by using Euler rotations in SO(2, 1) and using
SO(4) and SO(2, 1) representation functions

lit'm 1
n1m n g V,',„+'( i~/2) —gD( ', (a)V„"„(P)D("(' (y)

0
n0 l0

—
—,'[(n —l)(n +i +])]'~'g V', ,„'(—iver/2) gD& '&

' (a)V„'„+,(P)D["' &](y)
0

n0 ~0

—
—,'[(n +l)(n —l —1)]' g V,',„+'(—i7r/2) g D& "&

' (a) V„'„&(/3)Dt"
&

' (y)
0

n0 l0

o=0, 1,2 (5.5)

1
[(v—n)'+(Kvn) ]'sinh(/3/2) =—1

2 &vn

where the Euler angles are given by (for Z = 1)
n0

~ D[)1 1,0]( )VL+1(p )D[Iv 1,0](y )I mL 2 nt' 2 Lml' 2
L 0

cosh(P/2) = — [(v+ n )-+ (Kvn ) ]'1 1 2

2 &vn

sinhP sina = —Kn,
1sinhPcosa=- [v —n +(Kvn) ],2vn

(5.6)

sinhP siny =Kv,
1

sinh/3 cosy = — [n —v + (Kvn ) ] .
2vn

The summation over n0 can be performed using again
Euler rotation in SO(2, 1) and the identity

L =0, 1, . . . , n —1 (5.7)

2 cosh (P2/2) =i sinh/3cosa+ 1,
2sinh (P2/2)=i sinhPcosa —1,
sinh/32 sina~ = —i sina,

sinh/3z cosa, =i coshP cosa,

sinhP2 sinhyz = —i sinh/3 sina,

(5.8)

sinh/3z coshy2=i coshP .

The SO(2, 1) representation functions V„,,+'(/3~) are given
by (3.6). The special values we will need are the follow-
ing:
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V1 (Pz) =P(iv)&iv[tanh(Pz/2)]' '[cosh(Pz/2)]

Vz, (Pz) =P(iv) —&i v(i v —1)[tanh(Pz/2)]'" [cosh(f3z/2)] —&2&iv[tanh(Pz/2)] "[cosh(/jz/2)]
V2

(5.9)

Vz„(Pz) = —/L(iv) —[(i v 1—)(iv)(i v+ I )]'~ [tanh(f3z/2)]" [cosh(/3z/2)]v'6

/z(iv) = exp[ i —(~/2)(iv —1)]
&2&sin[~(i v ) ]

Also in (5.7) the SO(3, 1) representation functions are given by'

Df"i ' ](yz) =&(2L +1)(2l'+1)
m I, P?2

m1 m2 m]

—,' (i v 1—) —,
' (i v 1 —

) L —,
' (i v 1 )

——,' (i v 1—) l'

exp[ —i y z(m, —m z )],

(iv —t' —1~!
DQ", ,

'
( 2) =(2i)' &2/'+1/'!

(i v)(i v+ l')!
1/2

1/2

(i sinhyz)' C,'+l, (coshyz) .

D [iv —1,0]( )
(i v+1)(iv 1)—

D[rv —1,0]( )001 2
'V2

1/2—3(iv —l' —1)!= (2i)' &2/'+ l l'!
(i v+ 1 )(i v 1)(iv—)(i v+/')!

X [1'(i sinhyz)' 'coshy, C,', ,+',
, (coshy, )

—2(l'+1)(i sinhyz)' 'C, , (coshyz)] .

Equation (5.5) becomes after the summation over n„

I vl'm ~ ~ D [n —1,0]( ) VL + 1 (p )D [4 —1,0]
( )D [n —1,0](y )nliyt + ~ ~ j ~L 2 n ~ 2 Llyl/' 2 j

L I0

—L[(n —l)(n +/+1)]' ' g g D["'](az)V +' (Pz)D", "'(yz)D "'

L I
0 0

0

+/)( / 1)]lyz ~ ~ D[n —2, 0]( )VL+1 (p )D[ii 1,0](y )—D[n —2, 0](y)
L /

0 0
0

(5.10)

Now, the summation over /0 is immediate in view of the addition theorem of SO(4) representation functions given in

(4.9). Hence we obtain a simple form for charge factors as

Ivl m 'yD[n —1,0]( )V (p )D[iv —1,0](1

L

—
—,'[(n —1)(n +/+1)]' gD, "' ](az —y)V„+1',, (Pz)D "l, ' (yz)

L

i [(n +/)(n l 1)]1/2 y D[n —20](a y)VL+1 (p )D[i 1v, 0](y )
'

L
(5.12)

where L =0, 1, 2, . . . , n —1 or n or n —2, as the case may be. If the initial state is the ground state ~100), then equa-
tion (5.12) becomes

vI'0I 100
v

VI, (pz)DI1'01, ' (yz) —
& Vz„(pz)D|'0'1 ' (yz)cos(az —y) —

&
—Vz (pz)D[oi' ' (yz)[i sin(az —y)]v'2 v'p

1 . 2. l &2/'+ 1(l'+ 1)! (i v l' —1)!—
(iv+I )!

I i/"0
100

We now use (5.6), (5.8), (5.9), and (5.10) and rewrite (5.13) as
' ]/2

(i sinhyz)' [tanh(P2/2)] "[cosh(/3z/2)sinh(/3z/2)]

X I4(iv)(iv+1)[sinh(/3z/2)] C,', , l. , (coshyz)+8v [sinh(/3, /2)cosh(/3z/2)]C, ', , l z(coshyz)

+4(iv)(i v 1)[cosh(P—, /2)] C,', ,

+
l. , (coshy, ) } (5.14)
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where we have used, as in the discrete case, the identities of the Gegenbauer polynomials (4.9a) in terms of the hyper-
bolic cosine. Furthermore, we have for arbitrary n

sinh(Pzl2) = —
j (i v n—) + [K (i v) n] I

'
2 &n(iv)

cosh(/32l2)= — j(iv+n) +[K(iv)n] I'1 1

2 &n(iv)
i sinhyz=[2(iv)n](Kn)j(i v n) +—[K(iv)n] I

'' j(iv+n) +[K(iv)n] j

coshyz= j(iv) —n +[K(iv)n] I j(iv n) —+[K(iv)n] I
''~ 'j(iv+n) +[K(iv)n] ]

We now substitute (5.15) into (5.14) and using N, , =i v and the definition of/2(iv) given in (5.9) we obtain with

coshyz= j(iv) —1+[K(iv)] I j(iv 1)—+[K(iv)] I
'' 'j(iv+1) +[K(iv)] I

the final expression for the charge-form-factor function as

(5.15)

(5.16)

]/2
1'0 ~ 1'22('+3 . 1'+1~2/ + 1 i + 1 1

exp[ —i (m/2)(iv 1)]— (iv i' ——1 ). 1 j (iv 1) + [K—(iv)]
&2&si [nm(i v)] (i v+ l')!

j (1'v+ 1)2+[K (i v)]2 Ii' +1+31~2

X (iv+1)[(iv —1) +(K(iv)) ]C,'+&, (coshyz) —2(iv)j(iv 1) +—[K(iv)] I'

X j( +1) +[K(' )] I' C,',,

+ (cosh@ )+(' —l)j(' +1) +[K(' )] jC,'+, . (cosh@ )

Comparing (4.10) and (5.17) we see that the analytic continuation is given by

I i'o — "P[ ' ( l2)(' 1)]I '1'
100 ~2~ .

[ (. )]
100 n' i 'v

(5.17)

(5.18)

We now square the general charge form factor (5.12) and sum over i'. The summation over i' can be trivially done us-
ing the orthonormality properties of SO(3, 1) representation functions. Consequently, we obtain a result similar to the
discrete case (4. 12):

~Ivl' ~2 2 y ~D[n
—1,0](g ) VL+ 1 (p )~2

1

(' =0 v L

[(n i)(n +i + 1)]1/2 y jD[n —10](g )VL+1(p )[D[no](g )]»[ VL +1 (p )]»

+[D [n —1,0](g )]»[VL + 1(p )]»D[n]O(g ) VL, +1 (p

——[(n+i)(n —i —])]'"y jD "-"](S)V'+'(P, )[D'" '"(~ )]*[V'+'(P )]*
L

+ [D[n —1,0](g )]»[ VL +1(p )]»D[n —2, 0](g ) VL +1 (p

+ —,
' [(n —1)(n +/ +1)]g ~D,[,"'L](52)V„+1'.(Pz) l'

+ —,'[(n —l)(n +I+ l)(n +l)(n —l —1)]'

jD[n, O](g )VL+1 (p )[D[n —2, 0](g )]»[VI-+1 (p )]»
L

+[ D[nO]g()]»[, VL +1 (p )]»D [n —2, 0]($ ) VL +1 (p ) I

+—'[(n +1)(n —i —1)]' g /D[" ' ](5 ) V„+,' (/32)/, 52=az y' . —
L

However, if the initial state is the ground state
~
100), we obtain a simple expression as in the discrete case (4.13):

(5.19)

(or
11~100 I 2 ~ Vl (P2) ~

—j 1 (P2)[ V2v(P2) l + I Vlv(P2)] V2v(P2 ) I cos~z
(=o

+ —,
'

~ Vz (/3z)~ cos 62+ —,
'

~ Vz (pz)~ sin 62 (5.20)

where, for arbitrary n, the Euler angle 62 =az —y is given by [from (5.8) and (5.15)]
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sinhgzcos6z= f(iv) —n'+[K(iv)n] },2(iv)n

sinh/3zsin52= K(i v) .

Now, substituting (5.9) into (5.20) and simplifying exactly as in the discrete case, we obtain

(5.21)

Il~&oi2 il '
2s 7K& [(iv)' —1] . , f(&v —1) +[K(sv)] j"

i00 I
2 iv)K +Kiev)

2sinh(wv) 3 f(iv+1) +[K(iv)] ]' + (5.22)

This equation (5.22) is essentially obtained from the
discrete case (4.15) by using the analytic continuation
(5.18). In order to obtain Bethe's result, ' we take
K =q/a and v=a/Ir. Since (5.22) is integrable in v, the
integrability in K requires a measure dv/dK= —u/K .
Using Bethes' variables we see

1
xo, I

— ltm e,(q)
q q 0

28 ~6K

3 (n +ir )'

r
e ] K

exp —4—tan
K CX

(5.25)

2 sinh(nv) =exp
K

1 —exp —2~—
K

since

1 —exp —2~—
K

S 2

(iv)'K = —i
K

(iv) —1
[

.
]p

1 (a +~')
3 K 3

f (iv 1) —+[K(iv)] I"
f(iv+1) +[K(iv)] I"

=exp —2—tan
u
K

2(xK

Q +q K

2aK
tan

A K
=2 tan

K

A'

VI. CONTINUUM-CONTINUUM TRANSITIONS

Equations (5.24) and (5.25) are in exact agreement with
the results of Bethe. Equation (5.24) may also be ob-
tained from (5.20) by using the Gegenbauer addition for-
mula (4. 17) in terms of hyperbolic cosines with the sum-
mation over k in (4.17) ranging from 0 to ~.

Since

1+ix
ln

1 —ix
= i2 tan '(x),

In this case the initial and final states in (4.1) are given
by the physical continuum states P,,l (x), as defined in
(5.1). The charge-form-factor function in spinor notation
is therefore given by

f(iv 1) +[K(—iv)] I f(iv+1) +[K(iv)]
=K [(q +ir) +a ] [(q —Ir) +a ]

a
exp —2—tan

K

20!K

Q +g' —K

CX

1 —exp —2w-
K

—=
I ~.(q) I'

We finally obtain

2"I~q a [ —,'(a +ir')+q ]I I'0
I2

[(q +x. ) +a ] [(q —Ir) +a ]

(5.23)

(5.24)

I,', ', „'
'=

( v'l'm 'I G IL„L„I
vlm ),—

G =exp[ —i B,P~~]exp[ —iKv(L35 L3$)],

6,, , =ln(v/v') .

(6.1)

L„vlm ) =vIvlm ),
(6.2)

L ~6 I
vlm ) =

—,
' [( i v l ) ( —i v+—I -+—1 ) ]

'
I
v+ 1 lm )

+ —,'[( iv+1)( iv I ——I)—]' I—v —llm ) .

The action of L~6 and L46 on the continuum basis state
I
vlm ) is given by

The square of the coordinate matrix element is given by Therefore the charge form factor becomes

I"',™=
f
—v(v'I'm'IGIvlm )+ —,'[( —iv 1)( —iv+—I +1)]' (v'l'm'IG v+ lim )

f,l

+ —'[( —iv+1)( —iv I —1)]' —(v'I'm'IGIv —llm ) f (6.3)

The matrix elements of G can be computed as before using Euler rotations in SO(2, 1) and using SO(3, 1) representation
functions. " We obtain
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IV'I'm
Vlm y D [iv' —1,0]( ) V o (p)D [iv —1,0]( )

( 0I'mt V V 1 ml0
0

—
—,'[( —iv I—)( —iv+I+1)]' gD[,', ' ](a)V„',+, (P)D[' '1](y)

0
0

—
—,'[( —iv+I)( i—v I——1)]' QD1[,'

1

' ](a)V,', , (p)D["
1

](y), I0=0, 1, . . . , ~
0

0

(6.4)

sinh(P/2)= —
I [iv' —(

—iv)] +[K(iv')( —iv)] ]'
2 &(iv')( iv—)

cosh(P/2) = —
[ [iv'+ (

—iv)] + [K (i v')( —i v)] ]
'

2 &(I v')( —i v )

sinhP sinha = —K( —i v),

sinh/3cosha= . , I(iv') —( —iv) +[K(iv)( —iv)] ]2(i v')( i v )—
sinhP sinhy =K(i v'),

sinhPcoshy= — I( —iv) —(iv') +[K(iv)( —iv')] ]
1

2&(iv')( i v')—

The SO(2, 1) representation function is given by

(6.5)

VI +1 (p)
1

2 sin[sr(i v i v')]— l —iv'
l +I V

l+iv

]/2

[i tanh(p/2)]" "[cosh(p/2)] '

X &F1[—I +i v', —I —i v;i v' —i v+ 1;tanh (P/2)]

1 l +tv
+

2sin[~( —iv+iv')] I +'v
I —iv'

l —iv

]/2

[—i tanh(p/2)] "+"[cosh(/3/2)] '

X2F1[—I —iv', —I+iv; —iv'+iv+1;tanh (P/2)], V,+„+1(P)=V', +'(P);,, ;,,+1 . (6.6)

By comparing (6.4) with the discrete case (4.6) and also the SO(2, 1) representation functions given in (4.9) and (6.6), we
establish the analytic continuation

vlm 2 2si n[w(i v iv')]-
L

(6.7)

Furthermore, as in the previous two cases, we can square (6.4) and sum over I' using the orthonormality properties of
SO(3, 1) representation functions. ' When K~0, the Euler angles a and y go to zero and hence the SO(3, 1) representa-
tion functions give 5& &

and Ii&&, and consequently the charge form factor (6.4) becomes
0 0

I,1' (K =0)= — [vV', ,+'(P) —
—,'[( —iv I)( i v+—I +1)]' V'.+,, +,—(f3) ——,'[( —iv+I)( —iv I —1)]'~—V'.+,, ', (f3) ] .1

I
V

(6.&)

VII. CONCLUSIONS

We have obtained exact analytic results by a group-
theoretical method for the unsolved problems concerning
the form factors mentioned in the Introduction. The final
results are (4.6) and sum formula (4.12) for discrete-
discrete transitions, the special case (4.15) being the
Bethe's result; Eqs. (5.11) and (5.19), the corresponding
formulas for discrete-continuum transitions with the spe-
cial case (5.22) again being the Bethe's result; and, finally,
Eq. (6.4), the result for the continuum-continuum transi-
tions. Now that analytic formulas for the form factors

from the ground state are obtained, arbitrary form fac-
tors can be evaluated by computer if need be. The above
form factors in these cases are the analytic continuation
of each other.

Besides the classic Massey-Mohr paper, there are a
number of other results dealing with the same or related
topics.
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