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Relativistic theory for electron-ion scattering
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A relativistic version of electron-scattering close-coupling theory (in the static approximation) is

developed for the 1s,i„2s,i„2p&i„and 2p3/2 states of hydrogenlike (or frozen-core, alkali-metal-
like) target ions. Comparisons are made among close-coupling, distorted-wave, and semiclassical
distorted-wave results as a function of scattering-electron energy and the charge of the target.

I. INTRODUCTION

A relativistic version of distorted-wave theory for elec-
tron scattering from neutral atoms has been available' for
some time. More recently, relativistic distorted-wave
theories have been developed ' for electron scattering
from highly stripped ions. Electron-ion scattering has
been investigated by use of nonrelativistic close-coupling
theory; ' however, little work appears to exist on relativ-
istic close-coupling theory. ' The nonrelativistic work
indicates that close-coupling and distorted-wave results
tend to merge in a given isoelectronic series with increas-
ing target-ion charge Z, but that optically forbidden cross
sections merge more slowly than optically allowed cross
sections. Certainly the increase in atomic-level fine-
structure splitting with increasing Z opens up new opti-
cally forbidden channels which may be significantly cou-
pled to optically allowed channels nearby in energy over
a range of Z and, to my knowledge, this phenomenon has
not been studied. The usefulness of the present theory,
however, is expected to be found not in applications to
highly stripped ions, where distorted-wave theory is gen-
erally valid, but in applications to medium- to high-Z tar-
gets where the ionic charge is small.

There are other advantages for using a relativistic ver-
sion of close-coupling theory. The electron-target wave
function is expanded in eigenstates of the total angular
momentum, which is a conserved quantity. Thus a
closed radial set occurs for each value of the total angular
momentum such that distorted-wave theory following
from a perturbative approximation to this theory does
not require spherical averaging of the potentials. Fur-
ther, I investigate use of a semiclassical approximation
for relativistic distorted-wave theory. This approxima-
tion has already been applied to nonrelativistic
distorted-wave theory in the static approximation. Since
it obviates the need to generate continuum orbitals, the
method is useful in code development for non-local-
thermodynamic-equilibrium plasm as, where numerous
cross sections are needed. The generalization of the
method to relativistic distorted-wave theory is described
below.

II. THEORY

The Dirac equation for two electrons in the field of a
fixed nucleus (in the absence of all electromagnetic fields)
is solved by the substitution of the ansatz

(rb )y, (rb )
jb b b

Pk, t (r, )y, (r, )

jb s
~ ~

J
Jb s

In Eq. (I), P„y„and iQ„y are the large and small
components of the eigenfunctions' for the bound elec-
tron, respectively. Similarly, ttt&y, and ittt&'y, are the.
large and small components of the wave function for the
scattering electron, respectively. The radial and angular
parts of the position vectors of the electrons are denoted
r and r where o. is b or s for the bound or scattering
electron coordinate, respectively. The vector j= j&+j, is
the conserved total angular momentum, where

j = I + s for orbital and spin angular momenta I and
s, respectively, and m is the projection of j . The
principal quantum numbers for the bound and scattering
e1ectron are n and k„r, respectively, and ~ =li or

jb 0

—I —1 is the Dirac quantum number. Projection onto
J~

the space of rb and r leads to a set of coupled, first-order
differential equations in the radial variable r, for the large
and small components of the scattering electron, where
the coupling is the usual Dirac coupling between the
large and small components and coupling among sub-
components of either the large or small components in-

duced by the interelectronic Coulomb potential.
Many workers' ' ' solve the first-order equations.

Others ' " choose to eliminate the small component,
thereby deriving a Schrodinger-like second-order
differential equation. The latter approach is used here.
This has at least two advantages. First, the Coulomb
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Green's function can be used to convert the set of cou-
pled diA'erential equations to a set of coupled integral
equations, ' such that the correct boundary conditions
on the scattering wave function appear naturally through
the Green's function. Second, the use of Riley's semiclas-
sical theory, ' which makes use of the JWKB approxi-
mation to the radial wave functions, requires the
Schrodinger form. Although use of the Schrodinger form
of the Dirac equation is well known in distorted-wave
theory, " its use in close-coupling theory has, to my
knowledge, not been presented before.

In matrix form, the second-order, close-coupling equa-
tions following from the ansatz, Eq. (1), are

CX4 CX2
(3a)

where k„& is the channel energy (in rydbergs). For a
Jb

given transition, the channel energy is defined as

k„( +E„( =k, +E (3b)

where E„I is the target energy (in rydbergs). The primes
Jb

in Eq. (2b) (and where appropriate) denote derivatives
with respect to the scattering electron's radial variable r, .
There is one such set of equations for each j in the expan-
sion given by Eq. (1).

For eigenstates
~ j) of total angular momentum, a ma-

trix element of the interelectronic Coulomb potential—]TI2, 1S

where I is the identity matrix, V is the radial potential
matrix, and E is the diagonal matrix

1/2

2&+ 1
j,+, ~„~„j —
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where the summations over all projection quantum num-
bers have been performed analytically. The radial matrix
element corresponding to Eq. (4} is

Rq= I drr, (PI P, , +QI Q, , ).
0

Finally, Eq. (2a) is now converted to an integral equa-
tion. At large r„ the leading term on the right-hand side
of Eq. (2b) is 2ZIa Elr, wh—ere ZI is the ionic charge.
The Coulomb Green's function G (in matrix form) for
scattered-wave boundary conditions is just the Green's
function for the operator of Eq. (2a) with U replaced by
this term. The integral form of Eq. (2a) is then written as

g(r)=F+ f dr,'G(r, , r,')U, (r,')qr(r, '),
0

6, =k„I'FI (k„, r()F,"(k„, r) ),
Jb J~ Jb

(6a)

(6b)

where F is a diagonal matrix of regular Coulomb func-
tions, U, is U after the removal of the Coulombic terms,
and F„and F„"are the regular and irregular Coulomb
functions, respectively. Equation (10) is solved numeri-
cally' for the matrix of radial wave functions cp. Know-
ing y at large r, the K (reactance) matrix is calculated
for each total angular momentum j. The integral cross
section is then calculated from

o,. = Q(2j+1)1[(I iK, ) K, ]„, „.,
Jb Jb Jb

Jb

(7)

for a given nl -~n'l' transition. The K and amplitude
Jb Jb

matrices [where an element of the latter is given as the ar-
gument for the absolute value in Eq. (7)] are symmetric
within acceptable numerical accuracy, and this provides
a check on our numerical procedures. We remark that
the V V term in Eq. (2b) falls off as r, at large r, This
makes the calculation of the K matrix nonstandard in
that the radial waves of Eq. (2a) must be matched with
linear combinations of Coulomb waves of noninteger an-
gular momentum

A. = —
—,'+ —,

' [1+4[K (K +1)—(Zia) ]] '~

corresponding to a r, coefficient:

x(A, +1)=K, (K, +1)—(Zra)' .

A computer code which generates the appropriate
Coulomb functions has been provided by Rescigno. '

Although exchange with the target electron is ignored,
j-j coupling means that the solution for each j represents
a mixture of single and triple scattering, such that Eq. (7)



1312 BURKE RITCHIE 40

III. RESULTS AND DISCUSSION

Our results are presented in Tables I —V. Collision
strengths are defined as cross sections [Eq. (11)] in units
of mao scaled by the channel energies k„& [Eq. (3b)] in

rydbergs. Due to the fine-structure splitting, several in-
elastic thresholds exist, and the results are presented for
collision strengths versus energy in appropriate threshold
units E /AE, where j= 1,2,3 for the cases

k kls ' )/2

1.$

2$

EE . —E
1/2

respectively, where E2, and E2 are degenerate for
)/2 1 )/2

hydrogenic targets. For e,He+, the close-coupling results
were checked against the results of Burke et al. ' and
found to disagree at worst to within about 2%%uo. The
distorted-wave results were checked against the results of
Peek and Mann (their numbers are given at
E~ /AE& =1.35, with footnote a in Tables and II). For
distorted-wave theory the 2p, /2 ~2p3/2 strength follows
the trend of optically forbidden strengths to converge
more slowly than optically allowed strengths to the
close-coupling results, but does not appear to converge
more slowly than the 1s, /z ~2s, /2 strength.

TABLE I. Collision strengths for e,He' for E, /AE) in the
close-coupling {CC), distorted-wave (DW), and average ( 2) ap-
proxirnation. E) /AE) =E2/AE2 is assumed in the table. See
text for definition of E, /~Ej

is the average result for a total of four states of total-spin
angular momentum. For example, for each angular
momentum l, of the scattering electron, for zero target-
electron orbital angular momentum, there are three
values of j consistent with conservation of total angular
momentum j= j,. + jb. They turn out to be

j =I, —l, l„t,+1 (j =l,. , l,. +1 for l,. =0) corresponding
in ls coupling to j=I+s, where )t, s are the total spatial,
spin angular momentum. For nonzero target-electron or-
bital angular momentum, l,, and j,, have values consistent
with each of these three j values and with conservation of
parity. For j =l, the maximum size of the potential ma-
trix occurs, and for 15]/2, 2s]/2, 2p~/„2p3/2 target states
it is 10X10.

TABLE II. Collision strengths for e,C' . Definitions as in

Table I. Numbers in square brackets, denote powers of 10 by
which preceding number should be multiplied.

E, /AE) 1$, /, ~2$)/2 1$ ) /2 2p 1/ 3 1$) t2~2p

1.08

1.33

CC
DW

CC
DW

0.1053[—1]
0.1287[—1]
0.1300[—1]

0.1069[—1]
0.1298[—1]
0.12878[—1]'
0.1303[—1]
0.13072[—1]'

0.1658[—1]
0.1599[—1]
0.1631[—1]

0.1886[—1]
0.1831[—1]

0.1860[—1]

0.3323[—1]
0.3188[—1]
0.3254[—1]

0.3784[—1]
0.3652[—1]

0.3711[—1]

0.4816[—1]
0.4712[—1]
0.4737[—1]

2.00 0.1124[—1] 0.2400[ —1]
0.1308[—1] 0.2362[—1]
0.1305[—1) 0.2374[—1]

"Results from Peek and Mann (Ref. 9) at E) /AE) = 1.35.

CC
DW

The collision strengths presented in Tables I —V are
converged as l,. wave series to better than four places,
with the exception of the 2s, /2~2p3/2 strength for the
larger E3/AE3 value, which is still changing by about
one unit in the second decimal place at l, "=17. The
An =0 collision strengths for the optically allowed transi-
tions are expected to be very slowly convergent as the
fine-structure splitting decreases to small values; howev-
er, it is the larger splittings at high-Z values which are of
considerable interest in plasma modeling. ' As the split-
ting decreases to very small values for low-Z targets, the
An =0 optical collision strengths approach the limit of
elastic scattering by a point dipole, whose cross section,
in distorted-wave theory, is known' to diverge as lnt, .

due to the r, range of the potential.
A useful approximation in distorted-wave theory is the

use of JWKB wave functions to evaluate the radial ma-
trix element, since obviously the need first to calculate
the initial and final distorted waves by numerically solv-
ing the radial Schrodinger (in our case Dirac) equation is
obviated, reducing the problem to numerical quadrature.
The problem of how to evaluate the distorted-wave in-

tegral near the turning points of the wave functions was
examined by Riley in the context of heavy-particle col-

1.08 CC
DW

E) /AE) 1$) /2 ~2$) /2

0.1147
0.1271
0.1294

1$) /z ~2p)/z

0.1332
0.1300
0.1286

p&/

0.2667
0.2589
0.2557 1$) /v ~2p q/2

TABLE III. Collision strengths for e,Ne''. Definitions as in
Table I. Numbers in square brackets denote powers of 10 by
which preceding number should be multiplied.

E, /AE) 1$)/2 —~2$)/, 1$, /, ~2p)/3

1.33 CC
DW

0.0898
0.1256
0.12499"'

0.1277
0.12834"

0.1575
0.1494

0.1505

0.3173
0.2970

0.2992

CC
DW

2.00 0.4124
0.3934
0.3967

0.0900 0.2039
0.1239 0.1978
0.1245 0.1995

'Results from Peek and Mann (Ref. 9) at E, /AE) = 1.35.

1.08

1.33

2.00

CC
DW

CC
DW

CC
DW

0.3996[—2]
0.4583[—2]
0.4613[—2]

0.4085[—2]
0.4634[—2]
0.4640[ —2]

0.4257[ —2]
0.4697[—2]
0.4670[—2]

0.6026[—2]
0.5887[—2]
0.6022[ —2]

0.6850[—2]
0.6727[—2]
0.6865 [—2]

0.8730[—2]
0.8652[—2]
0.8721[—2]

0. 1206[—1]
0.1174[—1]
0.1201[—1]

0.1371[—1]
0.1342[—1]
0.1369[—1]

0.1748[—1]
0. 1726[—1]
0.1740[—1]
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TABLE IV. Collision strengths for e,Si"+ for E, /AE„E&/hE&, and E&/bE3. See text for definition of definitions E, /AE, . The
2p fine-structure splitting is 1.75 eV. Numbers in square brackets denote powers of 10 by which preceding number should be multi-
plied.

1.001 CC
DW

E~ /b E~ 1/2 I /2

0.2112[—2]
0.2339[—2]
0.2351[—2]

1s]/z ~2p I /z

0.2935[—2]
0.2887[—2]
0.2970[—2]

El /hE,

1.0001

» I/z 2p3/z

0.5857[—2]
0.5747[—2]
0.5915[—2]

E3/b E3

1.12

2$ I /p ~2p 3/7

0.3389
0.3418
0.3069

2p l/z ~2p 3/

0.5354[—1]
0.5153[—1]
0.5654[—1]

1.081 CC
DW

0.2114[—2]
0.2352[—2]
0.2358[—2]

0.3089[—2]
0.3043[—2]
0.3103[—2]

1.08 0.6167[—2]
0.6059[—2]
0.6178[—2]

92.6 0.4026
0.4048
0.3855

0.4808[—1]
0.4638[—1]
0.5009[—1]

M, ~
= —,

' cos
K(r)

+ U)csin

[K, (r') —K (r~')]d7'—
K(r')

[K, (r') —K~(r'))
dl" dp'

r 2 K(r')

(10a)

(lr + —,')
K (r) =k —U (r)—J J J 2

( lob)

K(r) =
—,'[K, (r) +K&(r) ], (10c)

where r is the turning point of K(r) U, is a d.iagonal
element of Eq. (2b), with the negative derivative term re-
placed by —,

' U + —,
' U'-, where U is a diagonal element of

the matrix multiplying the derivative in Eq. (2b). These
terms arise from the wave-function transformation which
removes the derivative term from the distorted-wave
equations (for example, for scattering in a potential V,

lisions. He proposed that the lower limit of integration
be the turning point of the average local kinetic energy of
the two JWKB wave functions. Thus the method is re-
ferred to as the average approximation. Peek and Mann
applied the method to nonrelativistic electron scattering
(their numbers appear with footnotes a in Tables I and
II). It turns out to be accurate over a wide range of ener-
gies, as inspection of Tables I—V shows. Some care had
to be taken to get the Dirac equations in the appropriate
second-order Schrodinger form for use of standard
JWKB theory. This was discussed earlier. In the aver-
age approximation the radial distorted-wave matrix ele-
ment is written as

they are the familiar terms, ' "
' —2

—,'( V') E —V+
CX2

+—'V" E —V+

IV. CONCLUSION

Tables I—V show that relativistic close-coupling and
distorted-wave results tend to converge with increasing
Z, in agreement with earlier nonrelativistic results. The
new aspect of the present theory is that the target and
scattering electrons are treated fully relativistically. Thus
fine-structure splitting opens new channels, such as the
2p

& /p ~2p 3/p which are optically forbidden and strongly
coupled to optically allowed channels energetically near-

In Eq. (2b), off diagonally, the derivative term is approxi-
mated by ignoring the operation on the prefactor in the
JWKB wave function (see Ref. 8). Thus U, z is the off-
diagonal element in Eq. (2b) less the derivative term, and
U&p is the off-diagonal element of the matrix multiplying
the derivative. Equation (10) gives the average approxi-
mation.

Equation (10a) depends only on the low-frequency (i.e.,
phase difference) contribution to the matrix element, the
high-frequency part having been dropped as unimpor-
tant. ' Thus the accuracy of the JWKB approximation
should improve with increasing energy as the integrand
develops a smaller rather than larger number of oscilla-
tions. Tables I—V show that the average approxima-
tion ' gives, with several exceptions near threshold,
reasonably accurate distorted-wave results over a wide
range of energy and ion charge.

TABLE V. Collision strengths for e Ar' +. See Table IV for definitions. The 2p fine-structure splitting is 4.81 eV. Numbers in
square brackets denote powers of 10 by which preceding number should be multiplied.

Eq /AEq

1.001 CC
DW

1s, /~ ~2s
1 /q

0.1308[—2]
0.1436[—2]
0.1429[—2]

ls 1 /2 ~ p l /2

0.1804[—2]
0.1766[—2]
0.1797[—2]

E, /bE,

1.0001

ls l /2 ~2p3/z

0.3672[—2)
0.3509[—2]
0.3570[—2]

E3/AE)

1.069

p3/z

0.2085
0.2097
0.1872

2p 1/2 2p 3/2

0.3188[—1]
0.3105[—1]
0.3388[—1]

1.081 CC
DW

0.1317[—2]
0.1444[—2]
0.1436[—2]

0.1878[—2]
0.1860[—2]
0.1884[—2]

1.08 0.3739[—2]
0.3697[—2]
0.3744[—2]

56.3 0.2425
0.2435
0.2312

0.2874[—1]
0.2801[—1]
0.3001[—1]
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by. Thus, as the 1s~2s channel studied earlier, the
fine-structure channels show slower convergence of close
coupling to distorted-wave results with increasing Z.

Except for the fine-structure channel, relativistic effects
on the scattering are small as measured by adding fine-
structure component cross sections and comparing the
results with nonrelativistic cross sections. However, the
present study was confined to Z =2 —18 targets because
of the abundance of nonrelativistic results in this range of
Z. For example, comparison with the pseudostate results
for Ar' + of Oza et al. '" shows that our relative values
for coupled versus distorted-wave results are in reason-
able agreement with their relative values. Also, we infer
the error in our results, relative to their results, due to
omission of exchange. At E~ /AE, =2 this error is about
18% for 1s ~2s and about 7% for 1s ~2p cross sections.
Although exchange becomes less important with increas-
ing Z (being about 5% or less for the 2s~2p cross sec-
tions of Ref. 3), the size of the error remains fairly large
in the optically forbidden channels, even for the Z =54
target' of Ref. 3. Thus, although relativistic effects such
as orbital contraction and the importance of the small
component of the continuum orbital are expected to be
more important than exchange for high Z (at least for
target excitation as opposed to ionization), it would be
useful nonetheless to include exchange in the present
theory by use of a suitable local-exchange approximation.

The tables also show that the average method is a reli-
able approximation to distorted-wave theory over a wide
range of energy, in general agreement with earlier nonre-
lativistic results. It should be emphasized that the po-
tential functions used in the relativistic version of the
average method, as defined by Eq. (2b), are quite different
from those used in its nonrelativistic version. Since they
account fully for relativistic effects in the distortion and
coupling, these potential functions become more ap-
propriate with increasing Z. The form of the theory
makes it clear that relativistic effects contribute to the
coupling, both in its close-coupling and distorted-wave
versions. In conventional relativistic distorted-wave
theory, ' however, relativistic effects are absent in the
coupling and appear only in the distortion.
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