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Stochastic fields with non-Gaussian Markovian phase or frequency jumplike noise are produced
at microwave frequency and used to induce two-photon (TP) processes in a S = 1 spin system. The
influence of the field statistics on the TP-induced second-order response is experimentally investigat-
ed in a system with very short relaxation times, in its stationary state and in the weak-field limit. In
the case of frequency-telegraph noise the experimental spectra of the nonlinear response are found
to reproduce roughly the spectral profiles of the corresponding driving fields but with a larger
width. When the telegraph noise modulates the phase of the field, the relationship between input
and output spectra depends on the phase-jump amplitude ¢,. For ¢,=m/4 the spectrum of the
response is much broader than the input one, whereas it is much narrower for ¢,=m/2. The experi-
mental results are interpreted using the calculation of the TP-induced second-order response
worked out in the preceding paper [Boscaino and Mantegna, Phys. Rev. A 40, 5 (1989)].

I. INTRODUCTION

In the preceding paper! (hereafter referred to as I) we
investigated experimentally the two-photon (TP) process-
es induced in a two-level system by a phase-diffusion
field,> namely by a field whose finite bandwidth originates
in Gaussian Markovian fluctuations of its frequency. In
this paper, the effect of the stochastic nature of the field
on TP processes is studied for a different class of fields,
whose statistical properties can be described in terms of
jumplike noise.

Random-jump processes are widely used in atom-field
interaction theories to take into account the time fluctua-
tions of some interaction parameter. This may be either
the atomic fequency or any variable (amplitude, frequen-
cy, or phase) characterizing the radiation. When the fluc-
tuations occur in a time scale much shorter than the ob-
servational one, the time details of the individual events
can be disregarded, and the fluctuations can be treated as
instantaneous jumps between discrete values. A further
simplification is to assume the noisy variable to be a Mar-
kov process,® in which case only the statistics of the jump
occurrence and the distribution of the allowed values
affect the interaction process under consideration.

Random-jump models of nonmonochromatic radiation
are an attractive alternative to the phase-diffusion-field
model.? In fact, jump models seem to be a more realistic
picture of the field generated by a multimode source
where mode hopping is the dominant broadening mecha-
nism.* Moreover, they often permit nonperturbative ex-
amination of the atom-field interactions, as the atomic
response functions can be evaluated exactly in finite
terms.’”® For these reasons, a variety of models have
been conceived in which a random-jump process modu-
lates the phase, the frequency, or the amplitude of the
field: bivalued and multivalued telegraph noise,*~°
Kubo-Anderson processes,'°”'? independent-increment
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processes,>!* and shot noise.'*!* Recently, non-

Markovian jump models have been also considered which
take into account an arbitrary degree of correlation be-
tween successive jumps.'®!

The influence of the jump noise of the field on the non-
linear response of two- and three-level systems has been
considered for several strong-interaction phenomena,
e.g., ac Stark effect,'” multiphoton absorption,'> reso-
nance fluorescence,*”%'*17 and four-wave mixing.!® In
all these phenomena the atomic response depends strong-
ly on the statistics of the assumed jump process and on
the interplay between the characteristic time of the sto-
chastic field and that of the system.

From an experimental point of view, efforts have been
made recently to realize radiation sources with externally
adjustable statistical properties to test theories of noisy
interactions. This has been done successfully for the
phase-diffusion field, both in optics and in the microwave
region, in connection with experiments of TP absorp-
tion,'® double optical resonance,'’ coherent transients,?
and second-harmonic (SH) generation."?! To our
knowledge, similar experiments employing random-jump
fields have not yet been reported.

In this paper we report on the realization of microwave
fields whose spectra are broadened by jumplike noise. In
particular we are concerned here with two kinds of fields,
in which either the frequency or the phase is modulated
by a bivalued random-telegraph noise (RTN). Bivalued
RTN is the simplest example of random jump process; it
is a non-Gaussian, Markovian process with a Poisson dis-
tribution of the number of jumps in a fixed time interval.
At variance to a previous realization’> of a RTN-
modulated rf source, in our realizations both the jump ex-
cursion and the mean dwell time of the RTN can be
varied externally.

In our experiments the RTN-modulated radiation,
with a mean frequency @, is used to drive a TP-resonant
two-level (S =1) spin system. As in I, we study the effect
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of the field statistics on the TP-induced second-order
response of the system by monitoring the radiation that it
emits in a narrow spectral region centered at the second
harmonic (SH) frequency 2®.2 As known, frequency
modulated by RTN (RTN-FM) and phase modulation by
RTN (RTN-PM) are physically different from each other
and are expected to yield different effects both on the
driving field and on the atomic response. For RTN-FM
of the driving field, we observe a two-peak or a single-
peak SH emission spectrum depending on the parameter
oT, where o is the frequency jump and T is the mean
dwell time of the RTN. We find that, for T << 1, the
spectral width of the response is four times larger than
the width of the input field, whereas, in the opposite limit
© o T >>1, its peak-to-peak distance is twice the input one.
For the RTN-PM case, we report the experimental re-
sults obtained for two values of the jump amplitude ¢,
do=m/4 and ¢,=m/2. For this kind of field, the profile
of the SH spectrum is found to be quite different from
that of the driving field; in particular, for ¢,=m/2, it is
much narrower than the input one.

In Sec. II we describe the properties of our RTN volt-
ages. In Sec. III we report our method for generating
RTN-FM and RTN-PM fields, analyze the statistics of
the obtained fields, and report the experimental SH spec-
tra. Finally, we make use of the semiclassical calculation
of the second-order response worked out in I to interpret
other experimental results.

II. RANDOM-TELEGRAPH NOISE VOLTAGES

We consider here a RTN voltage v (¢) with the follow-
ing properties: (i) v(¢) can assume only two values with
equal probability; (ii) v (¢) is constant except for instan-
taneous jumps between the two allowed values; (iii) v (#) is
a stationary Markovian process® characterized by the ex-
ponential density function p (¢,) of the dwell time #,:

p(ty)=(1/T)exp(—t,/T), (1)

where T is the mean value of t;. The probability P(n,7)
that its state changes n time in the interval 7 is Poissoni-
an

P(n,7)=exp(—7/TX7/T)"/n! . (2)

To obtain RTN voltage signals, computer-generated
random-number sequences are preliminarily prepared.
The starting point of our procedure is a sequence {x, } of
random numbers uniformly distributed in the interval
0<x, <1. The transformation y, = —k Inx,, yields a se-
quence {y,} of random numbers distributed in the inter-
val (0,) with an exponential density function
P(y)= exp(—y /k) and a mean value y =k. Finally, {y,}
is used to control the jumps of a random binary sequence
{z;, i =1, N,=30000}, where z; is a two-value (0,1) vari-
able changing its state (z;7z;,_;) at =i, with
i, =i, _,+int(y,).

A set of sequences {z;} prepared with different values
of k is stored in the user memory of an arbitrary-
waveform generator. On external command, the selected

sequence {z;} is retrieved and repeatedly converted to an
analog voltage: v (t)=Vyzz; for iAt <t <(i +1)At. Vi is
an adjustable reference voltage and At is the conversion
time step (minimum 40 ns). The resulting signal v(¢)
jumps back and forth between O and V at random times
t,=i,At, as in Fig. 1(a). The dwell time 1;=t¢,
—t,_;=int(y,)At has an exponential distribution with a
mean value T =k At.

In Table I we list the parameters of the voltage signals
used in the experiments described below. As shown, a
wide range of T is covered from 1.78 to 100 usec. To ob-
tain a given 7, the parameters k and At are so chosen as
to minimize distortions of the statistics of v (7). Actually
v (t) departs from an ideal RTN signal for two reasons.
The former is the finite length of the generating sequence
{z;}, causing v (¢) to repeat after a period T =N, At; the
latter is the conversion time step At. As a consequence,
dwell times outside the range At to N,At are cut out. For
all the signals listed in Table I, the condition 50At
< T =<0.017y is fulfilled, which saves dwell times from
0.02T up to 100T.

The statistical analysis of the obtained RTN signals
v(t) has been carried out by determining the density
function p(z;) and the occurrence frequency P(n,T).
Typical results are reported in Figs. 1(b) and 1(c), as ob-
tained for the RTN voltage 4 of Table I. The experi-
mental histogram p (t;) in Fig. 1(b) has been determined
with a time resolution of 7 /5 by counting how many
times t, falls within the range from ¢,—7/10 to
t;+ T /10 and normalizing to unit area; as shown in the
figure, the exponential law of Eq. (1) with a decay time
equal to the nominal T fits quite well the experimental
data. In Fig. 1(c) the experimental values of P(n,7) are
plotted versus n, as obtained by scanning the same signal
v (t) with a window 7=8 p sec, counting how many times
a number n of jumps occurs, and normalizing to units
area; fair agreement is found between the experimental
data and the Poisson distribution of Eq. (2) calculated
with the nominal value of 7. Similarly good agreement
between experimental and theoretical data is found for all
the signals listed in Tables I.

III. RTN-MODULATED FIELDS AND SECOND-ORDER
RESPONSES

The RTN voltage signals v (¢), obtained as described
above, are then used to realize nonmonochromatic mi-
crowave fields,

b(1)=b, exp{ —i[@t +d(1)]} +c.c. , 3)

in which either the phase #(¢) or the instantaneous fre-
quency deviation u(t)=¢(t) is a bivalued RTN. In the
following S,(w—®) denotes the power spectrum of b(z)
and §, its half width at half maximum (HWHM).

Apart from the statistics of the driving field, the exper-
iments reported below are similar to those reported in I.
So, here we limit ourselves to a brief outline, just to state
the relevant experimental conditions. The field b(z) of
Eq. (3) drives a system of N spins S =1 whose frequency
is tuned to the TP resonance w,=2& with the mean fre-
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FIG. 1. Statistical analysis of the telegraph-noise voltage v (¢)
indicated as A4 in Table I. (a) Time dependence of v (¢) in a win-
dow of 20 usec. (b) Distribution function p(t;) (normalized to
unit area) of the dwell time. The histogram is the result of the
analysis of v (¢) and the curve is the exponential law of Eq. (1)
with T'=1.78 usec. (c) The histogram shows the frequency of n
jumps in intervals 7 of 8.0 usec in v (¢); the curve is the Poisson
distribution of Eq. (2) with T'=1.78 usec.
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TABLE 1. Random-telegraph signals v (#) used for generat-
ing RTN-FM and RTN-PM fields. T is the mean dwell time.
N; is the number of jumps in the repetition period Tk.

T Tx Resolution
v(t) (usec) N; (msec) (nsec)
A 1.78 670 1.2 40
B 3.16 400 1.2 40
C 5.62 210 1.2 40
D 10.0 120 1.2 40
E 17.8 170 3.0 100
F 31.6 190 6.0 200
G 56.2 110 6.0 200
H 100.0 150 15.0 500

quency @ of b(t) (@=2mwX2.95 GHz). The Rabi fre-
quency wg(?) of the TP transitions induced by b(z) is
given by**

wgr(t)=wgoexplidg(1)], (4)
with
wro=[7?b? sin(2a)/wy] and g (1)=24(1) .

Here y is the gyromagnetic ratio and « is the polariza-
tion angle of b(z). Our experiments aim at investigating
the effect of the field statistics on the TP-induced second-
order response of the system, namely on its SH transverse
magnetization mff)(t). As calculated in I, the power
spectrum S,(w—2@) of m!?(t) images the spectrum
Sr(w) of wg(t):

S,(w—28)= L#y>N’T3Sp(0) , (5)

where T, is the dephasing time of the system. We em-
phasize that Eq. (5) was derived for the steady-state
response of a two-level system at TP resonance within the
weak-field approximation and assuming that the correla-
tion time of the input field is much longer than the relax-
ation times 7'} and T, of the system (in our sample and in
our experimental conditions T, =T, =0.07 usec).

The RTN-FM case and the RTN-PM one are con-
sidered separately in the following two subsections. For
each case, first we examine the properties of the obtained
field b(¢) and then we report the corresponding experi-
mental spectra of the SH radiation emitted by the system.

A. Frequency modulation

In this case the instantaneous frequency deviation
u(t)=¢(t) of b(t) in Eq. (3) is a zero-mean RTN, jumping
between o and —o. As known,*? the power spectrum
of b(t) is given by

8mbio?T?
(=) *T*+2TH 0 —5)(2—o T +o*T*
(6)

SI(C()_ZL-)):

Depending on o7, S|(w—) can be either a singlet (for
oT <V'2) or a doublet (for o T > V'2) with two symmetri-
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cal peaks at w—&@=*(c?T?—2)""2/T. In both cases
S,(w—®) is non-Lorentzian, as its far wings fall off as
1/(o—a)*. However, for o T << 1, its center part is ap-
proximately described by a Lorentzian curve with a
HWHM §,=(0’T)/2. In the other limit (0T >>1)
peak-to-peak distance tends to 6,, , =20.

In order to produce this kind of radiation, one of the
RTN signals of Table I added to a dc voltage — Vy /2 for
symmetric excursion is used to drive the FM network of
a microwave source. The source is a cavity-stabilized
klystron oscillator tuned at @; its FM circuit has a band-
width of nearly 5 MHz and a voltage-to-frequency con-
version Kygc=50.5+0.5 kHz/V, so that 0 =1KygcV;y.
Representative spectra of the obtained radiation are
shown in Fig. 2, for two different values of o T: the form-
er 2(a) (0T=0.28) is a bell-shaped spectrum with
8,/2m=3.410.3 kHz; the latter 2(b) (6 T =18.0) exhibits
two peaks distant 8, , /2r=98+t4 kHz. The smooth
curves are the theoretical spectra calculated from Eq. (6)
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for nominal values of o and T; as shown, for both the
spectra, the agreement between experimental and
theoretical spectra is remarkable, down to —60 dB below
the maxima. Similarly good agreement is found at inter-
mediate values of o T.

When a RTN-FM field is used to drive the TP-resonant
spin system we find that the spectrum S,(w—2®) of the
TP-induced second-order response of the system repro-
duce roughly the spectral profile of the input field, but
with a larger width. The curves in Figs. 2(c) and 2(d) are
the SH emission spectra measured when the radiation
2(a) and 2(b), respectively, is used as driving field. As
shown, for 0 T=0.28 the SH spectrum 2(c) has a bell-
shaped form with a HWHM §,/2=14.5+1.5 kHz,
namely nearly four times larger than the input one:
5,/8,=4.3+0.4. In the other case (6T =18) the SH
spectrum 2(d) has a two-peak structure, with a peak-
to-peak distance 8, , /2mr=1941t4 kHz, namely with
82p.p./B1p.p. =2.0£0.2.
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FIG. 2. Telegraph noise of the frequency. In (a) and (b) we report the experimental spectra of the driving field obtained for two
different values of 07: 0T=0.28 (a) and 0T=18.0 (b). D =(w—@)/2mw. These spectra are obtained by using the noise signals 4
and G of Table I, respectively; the HWHM of the spectrum (a) is 8, /27 =3.4%0.3 kHz, the peak-to-peak distance of the spectrum (b)
is 8y, /2m=98+4 kHz. In (c) and (d) we report the experimental spectra of the second harmonic radiation emitted by the system
when driven by the radiation (a) and (b), respectively. D =(w—2&)/27. The HWHM of spectrum (c) is §,/27=14.5+1.5 kHz; the
peak-to-peak distance of spectrum (d) is 8,, , /27 =194%4 kHz. Smooth curves are theoretical spectra, calculated as described in the
text.



40 TWO-PHOTON PROCESSES IN THE PRESENCE OF PHASE-OR . .. 17

The experimental results reported above are in agree-
ment with the expected ones. In fact, for a RTN-FM
field b(¢), wg(?) in Eq. (4) is a stochastic process whose
instantaneous frequency g (1)=24(t) is as well a RTN,

J

o7}

with the same dwell time but with a jump excursion twice
larger o0 g =20. So, the spectrum Sz (w) can be obtained
in a straightforward way by rescaling Eq. (6). Finally, by
using Eq. (5), we obtain

Sz(w—25)=50

with
So=(m#N*y2/16)0%,T3 .

The smooth curves in Figs. 2(c) and 2(d) are the spectra
S,(w—2®) of Eq. (7) calculated with the nominal values
of o and T of the input field. As shown, the agreement
with the experimental spectra is quite good, at least down
to —40 dB below the maximum. Moreover, we calculate
from Eq. (7) that for 0T <<1 the HWHM 8§, of S, tends
to 8,=20°T, so that §,/8, tends to 4.0. In the opposite
limit, o T >>1, the output peak-to-peak distance tends to
8,5 p=40. Both limits are in agreement with the experi-
mental behavior.

B. Phase modulation

If ¢(¢) in Eq. (3) is a bivalued RTN with allowed values
+¢, and mean dwell time 7, the power spectrum of the
field b (¢) is known® to be the superposition of a mono-
chromatic part and of a Lorentzian spectrum

S (w—&)=27b3|( cos’$y)8(w—o)

2T

+(sin¢y) ———— | .
%o (0—&)T2+4

(8)

The mean dwell time T controls the width of the
Lorentzian part, whereas the phase-jump amplitude ¢,
controls the distribution of the integral power between
the two contributions. Two representative cases,
¢o=m/4 and ¢,=m/2, are considered here. According
to Eq. (8) the input spectrum S,(w—®) consists of two
equal-area contributions for ¢,=w/4 and of only the
Lorentzian part for ¢o=1m/2.

To inject a RTN on the phase of a monochromatic ra-
diation, the output signal of the microwave oscillator is
passed through an electronic phase shifter, which intro-
duces a phase shift linearly dependent on the external
control voltage, with a nominal transition time of 20
nsec. The control input of the phase shifter is driven by
one of the RTN voltages of Table I, with amplitude and
voltage offset regulated so as to produce the desired
amount of phase jump.

In Fig. 3 we report the experimental results obtained
for ¢o=45°+2°. The spectrum 2(a) is the input field spec-
trum taken with T =17.8 usec (noise signal E of Table I).
Its center peak corresponds to the 6-like contribution to
S, (o—a) in Eq. (5), obviously broadened by the frequen-
cy resolution of our spectrum analyzer (1 kHz), whereas
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FIG. 3. Telegraph noise of the phase with ¢,=45°+2". (a)
Power spectrum, centered at @, of the input field for T=17.8
psec (notice the linear scale). (b) Power spectrum, centered at
2@, of the second harmonic emitted by the spin system driven
by the field (a). (c) Input (O) and output () HWHM, §, and
8,, respectively, measured by using all the sequences of Table 1.
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the underlying broad curve corresponds to the Lorentzi-
an part. On increasing T, the relative amplitude of the
broad component is found to increase and its width to de-
crease, until, at long values of 7, the two contributions
can hardly be distinguished. Note that a linear vertical
scale is used in this figure for better evidencing the 8-like
contribution and its contrast with the output spectrum.

When the radiation in Fig. 3(a) is used to excite TP
transitions in the spin system, the measured SH spec-
trum, shown in Fig. 3(b), consists of only a broad line
with no trace of the monochromatic component of the in-
put spectrum. A similar spectral profile is found in the
whole investigated range of 7. However, on increasing T,
the SH spectrum becomes narrower and narrower, as
shown in Fig. 3(c), where the experimental values of &,
are plotted versus 1 /T.

The experimental results obtained for ¢,=90°1+2° are
reported in Fig. 4. In Fig. 4(a) we show a typical spec-
trum of the input field, as obtained using the noise signal
E of Table I (T =17.8 usec). In agreement with Eq. (5),
it exhibits only the broad component, whose width 8, of
S(w—w) depends as 2/T on T, as shown in Fig. 4(c).
When the radiation in Fig. 4(a) is used to drive the TP-
resonant spin system, the power spectrum of the second-
order response is found to consist of a very narrow peak
superimposed to a much less intense broad line, as in Fig.
4(b); the narrow peak, within our experimental errors,
can be taken as a monochromatic component since its
width equals the frequency resolution of our spectrum
analyzer for any value of T investigated.

The experimental results reported in Figs. 3 and 4 can
be explained on the basis of Eq. (5). In fact, according to
Eq. (4), for a driving field whose phase is modulated by
RTN, the TP Rabi frequency wy(¢) is a stochastic pro-
cess whose phase ¢ (¢) is a RTN with mean dwell time T
and a phase-jump amplitude ¢yx =2¢,. As before, Sy (w)
can be obtained by rescaling Eq. (8) and we get for the SH
spectrum

2T sin®(24,)
(0—2®)T*+4
9)

S, (0—2m)=S, | cos®(2¢y)d(w—2&)+

with
S, =(r# N2 /64)w%T3 .

For ¢,=m /4, namely when the input spectrum [Eq. (8)]
has both a &-like and a Lorentzian part, S,(0—2®) in
Eq. (9) consists of only the Lorentzian part, in agreement
with the experimental spectrum in Fig. 3(b). Moreover,
the HWHM §, of S,(w—2®) is expected from Eq. (9) to
vary as 2/T, the theoretical curve, plotted in Fig. 3(c),
well fits the experimental values. The situation is some-
what opposite as regards the case ¢,=m/2. Here the in-
put field [Eq. (8)] has only the Lorentzian component,
whereas the power spectrum of the second-order response
of the system [Eq. (9)] is expected to be 6-like, in agree-
ment with the presence of a narrow center peak in the ex-
perimental SH spectrum in Fig. 4(b). This spectral nar-
rowing effect of the system nonlinear response with
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FIG. 4. Telegraph noise of the phase with ¢,=90°12°. (a)
Power spectrum, centered at @, of the input field for T=17.8
usec. (b) Power spectrum, centered at 2@, of the second har-
monic emitted by the spin system driven by the field (a). (c) In-
put (O) and output () HWHM, &, and §,, respectively.

respect to the driving field can be understood in an intui-
tive fashion, by considering that the phase jumps with
full excursion 2¢,=, which broaden the spectrum of the
driving field, yield effectless phase jumps with full excur-
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sion 2¢,=27 in the TP Rabi frequency; so the second-
order response of the system recovers monochromatic
properties. Finally, we note that in Fig. 4(b), in addition
to the sharp center component, a broad line of minor in-
tensity is visible in the experimental SH spectrum, in con-
trast with theoretical prediction. We ascribe this
discrepancy to the finite width of the cavity modes. In
fact, as described in I, both the pump and the detection
mode of the resonant bimodal cavity used for the experi-
ments described above have a halfwidth of nearly 400
kHz, so that the spectral wings of the exciting field and of
the emitted SH radiation may be altered by the filter ac-
tion of the cavity. This action manifests itself in a more
evident way in the case of the spectrum in Fig. 4(b) for
the particular 8-like form of its center part. For this
spectrum we have verified that its broad component de-
pends strongly on the tuning of the pump mode, which
suggests that it can be considered an experimental ar-
tifact.

IV. CONCLUSION

We have reported the experimental realization of non-
monochromatic microwave sources with RTN modula-
tion of phase and frequency. The agreement between ex-
perimental and theoretical results indicates that the ob-
tained radiation can be considered an ideal RTN field to
a very good approximation in spite of the limited time

resolution of the actual RTN sequences used and of their
pseudorandom nature. Experiments have been reported
in which the obtained RTN radiation is used to induce
TP processes in a two-level spin system and its second-
order response is investigated in the frequency domain.
For a RTN-FM field the output spectrum reproduces
roughly the input one but with a larger width. Instead,
when a RTN-PM field is used, the form of the output
spectrum is different from the input one and in a particu-
lar case is &-like in spite of the finite bandwidth of the
driving field spectrum. We emphasize that the experi-
mental results reported here, as well as those in the
preceding paper, refer to a case in which the spin system
has zero memory, as its relaxation times are much short-
er than the correlation time of the input field. Experi-
mental and theoretical work is in progress to extend the
present study to the opposite limit, where the coherent
effects induced by the fluctuations of the input field pa-
rameters cannot be disregarded.
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