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It is demonstrated, in calculations on one- and two-electron systems, that K-matrix (real-valued)
boundary conditions in the trial wave function in the minimum-variance method can give anomalies
at certain energies, while T-matrix (complex) boundary conditions do not. A Monte Carlo pro-
cedure is proposed for computing scattering amplitudes in a many-electron system that uses the
minimume-variance approach to treat incident and target electrons on the same footing. Successful
exploratory calculations on e ~-H scattering in the radial limit suggest that this approach may pro-
vide a path to direct Monte Carlo scattering calculations on many-fermion systems.

There has been substantial interest in recent years in
developing methods which reduce the quantum scattering
problem to some variety of the Monte Carlo integration
procedure.? The principal barrier to the development of
such approaches is the same as that encountered in
Monte Carlo calculations on bound states of many-
particle systems,® > namely, that when the wave function
is not of one sign, Monte Carlo integration of functions
which are not positive definite is required.*’ In a scatter-
ing problem this difficulty is especially severe because the
asymptotic form of the wave function is oscillatory, and,
in electron-atom or electron-molecule scattering in par-
ticular, the antisymmetry of the many-electron wave
function further complicates matters. The approach we
would like to explore here is based on a simple—and
old—idea for optimizing a trial scattering wave function
but retains the spirit of more sophisticated Monte Carlo
methods in that it treats the many-particle problem
directly and involves sampling from an N-electron distri-
bution. v

In the context of Monte Carlo calculations of bound-
state energies, Umrigar, Wilson, and Wilkens® pointed
out that minimization of the variance sum

o?=3 w)[HY()/V(i)—E,]'/3 wi) (1)

provides a method for optimizing a trial function ¥ with
a much smaller number of points than would be required
to successfully quadrature matrix elements of the Hamil-
tonian. The sum in this equation is over configurations
(points in the N-particle coordinate space); E, is the
current guess for the energy of the state in question, and
w(i) is a weight function. The argument for why this ap-
proach should require many fewer points than a numeri-
cal integration of matrix elements of H is fairly straight-
forward. If, for example, the trial function V¥, has n pa-
rameters and is capable of representing the exact wave
function, then n points in the sum are sufficient to deter-
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mine the n parameters exactly.
The application of this idea in a scattering calculation
starts with the variance sum in the form

o*=3|(H—E)WY,(i)|*w(i) , (2)

where W, is a trial function satisfying scattering boundary
conditions. This idea is an old one, especially in the form
where the quantity minimized is the variance integral

o}= [I(H=EW,(1)Pw(n)dr . (3)

Scattering problems are generally formulated by expand-
ing the total wave function (target plus projectile) in
terms of a finite set of target states and then explicitly
projecting out these states by integrating over the coordi-
nates of the target. This produces a set of coupled, one-
body equations that describe the motion of the projectile.
In this context, the use of the variance sum, as given in
Eq. (2), has been investigated by Bardsley, Gerjuoy, and
Sukumar’ in a one-channel case and by Mertz and Col-
lins'® in a coupled-channel radial problem. Both of these
studies yielded the encouraging result that accurate
scattering amplitudes could be calculated with a modest
number of terms (fewer than 15 for one channel and
fewer than 50 in the five-channel case) in the sum in Eq.
(2). However, in spite of its occasional resurrection in the
literature, this idea has not emerged as a generally reli-
able approach to scattering calculations.

We wish to examine the idea of using the minimum-
variance principle to solve the full (unprojected)
Schrodinger equation. However, before investigating the
possibility of applying the minimum-variance idea direct-
ly to a many-electron scattering problem, we would like
to point out a serious deficiency in the way this procedure
has been formulated in the past. That deficiency is that
the method can suffer from a problem which appears to
be reminiscent of the anomalies (spurious singularities)
appearing in applications of the Kohn variational princi-
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ple'! and, less seriously, in applications of the Schwinger
variational principle.'”> With the minimum-variance
method, however, the anomalies appear predictably—
near energies where the phase shift or scattering eigen-
phases approach particular values. Fortunately, a simple
modification of the formalism eliminates those spurious
resonances in the present case.

Using a single-channel, s-wave potential scattering
problem as an example, for which the Hamiltonian is
H=—1d?/dr*+V(r), the usual approach to scattering
calculations via minimizing the variance can be summa-
rized as follows. Let ¢, and ¢, be continuum functions of
the form

¢o=sin(kr) , (4a)
¢, =g(r)cos(kr) , (4b)

where g(r) is a cutoff function which is unity for large r
and goes to zero at least as fast as » for small ». Choose a
trial function which has K-matrix scattering boundary
conditions,
N
V=3 c¢,¢,+dotK¢, , (5)
n=2

where the functions ¢, (r), for n = 2, are square-integrable
basis functions and K denotes the K matrix which, in this
case, is just the tangent of the phase shift, tand. All the
quantities in ¥, are real, so substituting Eq. (5) in Eq. (2)
and setting the derivatives of 0% with respect to ¢, and K
gives the working equation

Ac=b, (6)

where the elements of the matrix 4 and the vector b are
defined by

A, =3S(H—E),(iH—E), (i), (7a)

b,=S(H—E)$,(i)(H—E)d, , (7b)

i

and the first element of the solution vector ¢, denotes K.
It has been alleged that the minimum-variance method
in this form is free of the false resonances which occur in
the Kohn and Hulthen variational principles.”* In a
sense that is true because the functional in Eq. (2) is posi-
tive definite. However, at an energy where the phase
shift § is equal to 7/2, the K matrix is infinite and there-
fore one of the elements of the solution vector in Eq. (6)
becomes infinite. Since \P,K is not capable of reproducing
the exact wave function, the variance will be infinite at
such an energy, as can be seen by substituting Eq. (5) into
Eq. (2) and letting K go to infinity. We speculate that it is
a property of the minimum-variance method that, near
such energies, o2 is minimized by optimizing the
coefficients ¢, at the expense of producing accurate
values of K. The end effect is that a numerical implemen-
tation of the minimum-variance method as outlined
above displays anomalies. These are apparently narrow
in most one-dimensional problems, and to our knowledge
have not been observed previously. In Fig. 1 we present
calculations of the s-wave phase shift for the potential

I&

phase shift

FIG. 1. s-wave phase shift for the potential —exp(—r) from
calculations with basis functions of the form rexp(—{_r) with
exponents =5/1.5" with n=0,1,2,3. Solid line with false reso-
nance: K-matrix boundary conditions; continuous solid line:
T-matrix boundary conditions; circles: exact values.

V(r)=—e " in a basis of our functions of the form
rexp(—¢&,r) with exponents chosen according to
§,=5/1.5". In Fig. 2 we show how the anomaly near the
energy where §=m/2 becomes narrower as the basis is
improved, which is the qualitative behavior observed in
calculations employing the Kohn principle. There are 64
radial points in the variance sum in these calculations
with weights equal to Gauss-Laguerre quadrature
weights, and the cutoff function g(r) is chosen as
1—exp(—r).

The observation of anomalies of this limited type in the
minimum-variance method would not be of much interest
if the problem were as benign for multidimensional prob-
lems as it is for one-dimensional ones. That is not the
case, and we demonstrate below that even in a two-
dimensional problem of these anomalous features can be
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FIG. 2. Basis set dependence of calculations in Fig. 1. Solid
line: T-matrix boundary conditions (both basis sets); dashed
line: K-matrix calculation with four basis functions as in Fig. 1;
dotted line: K-matrix calculation with one additional basis
function with £=5/1.5%
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quite wide and persist even for large basis sets.
Fortunately there is a way to avoid this problem. It is
essentially the same remedy which solves the difficulty of
anomalies in the Kohn variational principle.'* If we
choose the trial function to have T-matrix boundary con-
ditions
N
V=3 c,¢,+dot T, (8)

n=2

with ¢, and ¢, defined as in Eq. (4), but with ¢, defined
as an outgoing wave

b(r)=g(re*r. 9)
Now the matrix elements in Eq. (5) have the form

Ay =3S[(H—E)¢,()]*(H—E)$,,(i), (10a)

b,=3[(H—E)$,(i)]*(H—E), . (10b)

The T matrix is not singular at real energies in the con-
tinuum [T =e'%in(8) in the s-wave example], and Eq. (6)
does not become ill conditioned at any energy. An essen-
tial point to note here is that, in using T-matrix boundary
conditions, one is allowing the variational principle to
determine both the magnitude and phase of an unknown
quantity, whereas K-matrix boundary conditions force all
the basis set error into the phase of the scattering matrix.
Calculations using T-matrix boundary conditions for the
one-dimensional example are shown in Figs. 1 and 2.

The use of T-matrix (or S-matrix) boundary conditions
in the complex Kohn variational method leads to a com-
plex symmetric matrix representation of H —FE in the
working equations, and this feature has been credited
with being at the heart of the elimination of spurious
singularities in the Kohn method.!* This observation
suggests that using the complex trial function W7 in a cal-
culation which extremizes the “complex” variance o?
defined without complex conjugation,

ol=S[(H—E)¥! (i) w(i) (1

provides an alternative which performs still better nu-
merically. For the one-dimensional case Eq. (11) gives re-
sults which are essentially indistinguishable from those
from Eq. (2), but for the two-dimensional case Eq. (11)
gives a slight improvement, as we demonstrate below.
Having eliminated the false resonances in the usual for-
mulation of the minimum-variance method, we propose
to solve electron-atom or electron-molecule problems by
applying the minimum-variance technique directly to the
N-electron system. The trial function in Eq. (2) or Eq.
(11) must therefore be able to include the effects of elec-
tron correlation, but since no matrix elements are re-
quired, it may be chosen in a sophisticated and flexible
way. As in bound-state Monte Carlo calculations we may
make explicit use of interelectronic coordinates or Jas-
trow factors'® to enforce the two-electron cusp condition.
We also propose to use Monte Carlo methods to sample
the many-electron coordinate space to provide points for
the variance sum, as did Umrigar, Wilson, and Wilkens?
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in their bound-state calculations.

To perform a preliminary test of this idea we have
chosen the radial limit of a two-electron system,
electron-hydrogen-atom scattering with singlet spin cou-
pling. For this problem the Hamiltonian is

2
H:-____.___l__d____l__.i_i,__l_’ (12)

where r; and r, are the distances of the two electrons
from the nucleus and r ., is the greater of | and r,. This
is a legitimate two-electron problem in which only the
/=0 angular momentum component of the interelectron-
ic repulsion is retained. In this example we consider only
elastic scattering, and the two-electron trial function is

N
Y, =(xpdo)teixid)+ X calXn s Xm,) > (13)

a=2

where ¢, denotes the T-matrix element for elastic scatter-
ing. The notation (), ;) denotes the symmetrized prod-
uct

XX ) =D rOx (r) FxGr X (r)1/V2 (14

¢o and ¢, are continuum functions defined as in Egs. (4a)
and (9), x;, X, and x; are the hydrogenic 1s, 2s, and 3s
functions, and the remaining basis functions are Laguerre
functions of the form

Xn4aP)={A/[(n+1)(n+2)]} 2L P (Ar)e 272 (15)

with A=6. We used functions with n =0 to 7 in Eq. (15)
to yield a total of 11 square-integrable basis functions and
66 correlating terms in W7. The trial function chosen in
Eq. (13) is clearly restricted to elastic scattering below the
n=2 threshold, since continuum functions only appear in
connection with the 1s target state. Equation (13) can be
suitably modified to treat inelastic processes.

The points in the variance sum are chosen by sampling
a distribution which allows a high probability for one

3
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FIG. 3. Phase shifts for the radial limit e -H scattering
problem. Continuous solid line: “complex” variance method
[Eq. (11)] with T-matrix boundary conditions; solid line with
false resonance: K-matrix boundary conditions; dashed line:
minimum-variance method [Eq. (2)] with T-matrix boundary
conditions.
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TABLE 1. Comparison of calculations for singlet ¢ -H
scattering phase shifts in the radial limit.

T matrix T matrix
k K matrix Eq. (2) Eq. (11) Ref. 17
0.2 1.9248 1.8989 1.9044 1.8973
0.4 1.2535 1.2723 1.2690 1.2696
0.6 0.9080 0.9193 0.9109 0.9105
0.8 0.7268 0.7404 0.7254 0.7261

electron to be distant from the atom while the other one
remains near the nucleus. In these calculations we chose
points by Metropolis'® sampling the particular distribu-
tion

—aylx)l —a, xz}

—aix,| —aslxy
plx ,x,)="€ te c ) (16)
2/(ay0,)+8/(a+ay)”

on the interval (— o0, ) for both variables and defining
ri=I|x,| and r,=|x,]. We then chose the weight func-
tion in Eq. (2) or (11) to be

w(ry,ry)=rr,/plry,r,y) (17)

to further weight the large-r region. The exponents in
the distribution function are @;=0.1 and a,=0.05. With
these choices of distribution and weight functions the
variance sum approaches a particular variance integral as
the number of Monte Carlo points M is increased:
M
o’= [(H—E)W,()|?w(i)
i=1
s fowdr,fowdrz\(H—E)\l’,(rl,rz)|2r,r2 . (18)

The results of calculations with 2000 Monte Carlo
points are given in Fig. 3, which shows calculations using
T-matrix boundary conditions in Eq. (2) and in Eq. (11) as
well as the results of calculations using K-matrix bound-
ary conditions. Even with the flexible trial function we
used in these calculations, the false resonance which ap-
pears in the K-matrix results is quite broad and is even
broader with other weight functions of the form (r,r,)"
with 0=m =3 which we investigated. T-matrix bound-
ary conditions give accurate values for the phase shift us-
ing both forms of the variance sum, with the “complex”
variance approach in Eq. (11) generally giving slightly
better results. Numerical comparison with the results of
Adelman and Reinhardt!” are given in Table I.

These results suggest that the proposed approach to
electron-scattering calculations may provide a practical
method for solving the problem including electron corre-

18

SSIIIRTZZ
SEIIIIZIT
SHTTIITEIT
RITRTIIIRZ
22
22
2

2
TIEIIILoTT ST SRS
e TS
232 S
=

—
r RIS
1 0.3:::::0: 0:.:...%,::0“.:..;.,. o2
=
T

=2

FIG. 4. Local variance, [(H—E)¥, (r,,r,)*rr,, from a
minimum-variance calculation with 66 correlating configu-
rations using 11 Laguerre functions with A=2.0 (so n=0 is hy-
drogenic 1s) at k=0.6.

lation and target response. The key to such calculations
is the construction of a flexible trial function capable of
an accurate representation of the correlated wave func-
tion. Since the minimum-variance technique is a fitting
method, it is important that the trial function be efficient
in the sense that it contain as few variational parameters
as possible. It is clear from bound-state Monte Carlo cal-
culations, and in particular from the work of Umrigar,
Wilson, and Wilens,® that enforcement of the cusp condi-
tion on the wave function is critical to effectively minim-
izing the local variance. In Fig. 4 we show the value of
the variance function, |(H—E)W¥,(r,,r,)|*r r,, from a
minimum-variance calculation on the radial limit prob-
lem. The variance peaks along the line r; =r,, reflecting
the fact that the trial function we have used in these cal-
culations does not explicitly enforce the cusp condition
for the radial limit problem. Clearly, it will be important
to employ Jastrow factors'’ in the general case.

Calculations using these methods on inelastic processes
and on systems of higher dimensionality are underway.
The critical question, which remains open at this time, is
whether the Monte Carlo minimum-variance method
proposed here performs well in higher-dimensional
systems—as the success of similar methods in optimizing
trial functions in the electronic bound-state problem sug-
gests it might.
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