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Relativistic coupled-channel calculations including pseudostates
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The previously developed relativistic, two-center, coupled-channel treatment of atomic collisions
between high-Z ions has been extended to include pseudostates. By augmenting the atomic basis
sets by pseudostates, an approximate representation of the continuum is obtained as well as an im-

proved description of quasimolecular states near the united-atom limit. The problems arising from
approximate basis states, specifically in relativistic collisions, are discussed. Numerical calculations
for U '++U"+ at 500 MeV/u are performed with basis sets of up to 36 real and 16 continuum
pseudostates. While the presently attainable basis sets are presumably still too small, one can get,
nevertheless, reasonable estimates of the cross sections for ionization and K-vacancy production.

I. INTRODUCTION

In two previous publications' we have developed the
theory of fully relativistic coupled-channel calculations
for atomic collisions between high-Z projectiles and
high-Z targets. Using a two-center atomic expansion in
terms of exact hydrogenic Dirac eigenstates we have been
able to give detailed predictions for single-electron excita-
tion and charge-transfer cross sections between specific
atomic states. As an example, we have considered the
U + +U '+ collision at 500 MeV/u.

The method is described in detail in Ref. 2 and shall be
referred to as I. The essential ingredients are the follow-
ing. The target nucleus and the projectile nucleus are
considered as classical point charges, the target being
fixed at the origin of the laboratory frame and the projec-
tile moving with a relativistic velocity v along a classical
rectilinear trajectory R(t)=b+vt The orb. ital motion of
a single electron initially bound to the bare-target nucleus
is described by a two-center time-dependent Dirac equa-
tion. The electromagnetic field generated by the moving
projectile gives rise to excitation, ionization, or charge
transfer. In I we have accounted for excitation and
charge transfer by expanding the time-dependent elec-
tronic wave function throughout the collision in terms of
exact bound eigenstates of the unperturbed target and
projectile Hamiltonians. Solving the time-dependent
Dirac equation within a truncated set of basis states is
equivalent to numerically solving the coupled equations
for the time-dependent expansion coeKcients subject to
appropriate initial conditions. For example, in our most
detailed calculations for U ++U '+, we have coupled
altogether 36 states, namely, 1s, /2, 2s»2, 2p, /z, 2p3/p,
3s, /z, 3p, /z, and 3p3/p states of target and projectile. By
comparison with a preceding 20-state calculation' we
found that the expansion had almost converged within
the space of bound basis states.

However, in order to describe ionization it is mandato-
ry to include target and projectile continuum states. Ion-
ization cross sections in relativistic collisions have mostly
been calculated in first-order perturbation theory, and
only recently Becker et al. used a finite-difference algo-
rithm as a nonperturbative method to compute inner-
shell excitation and ionization for U ++U '+ collision
at 1 GeV/u. Their exploratory computations were, how-
ever, confined to the impact parameter b =0 (which car-
ries zero weight for the cross section). To supplement
those results, Becker has also performed coupled-channel
calculations using a one-center atomic expansion in
terms of target bound and discretized continuum states.
In this method, the projectile merely acts as a moving
source for an electromagnetic field. Molecular two-
center effects during the collision and the possibility of
charge transfer into bound or continuum states of the
projectile are disregarded. Similarly, some relativistic
single-center coupled-channel calculations have been per-
formed by Mehler who computed the impact-parameter
dependence of ionization rates in p +Pb collisions.

The aim of the current work is to remove two of the in-
terrelated difTiculties still inherent in the two-center
atomic-orbital (AO) expansion of I. One of them is the
absence of final or intermediate continuum states men-
tioned above, and the other is the approximate represen-
tation of molecular states at small internuclear separa-
tions by a superposition of AO. While the first deficiency
precludes the description of ionization, the second
renders calculation unreliable whenever close collisions
(i.e., small impact parameters) are important.

Of course, it would be desirable to include exact rela-
tivistic continuum states in the expansion. However, the
overlap at infinite separations gives rise to serious prob-
lems, and, numerically, a discretization on a su%ciently
dense energy grid entails presently unsurmountable prob-
lems. Nevertheless, as is known from nonrelativistic col-
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lisions, the fIaws mentioned above may be largely re-
moved by augmenting the AO expansion by appropriate
"pseudostates" attached to target and projectile. Pseudo-
states are arbitrary basis functions chosen so as to im-
prove the flexibility of the basis set in approximating the
true two-center wave function throughout the collision.
Not being eigenstates of the unperturbed atomic Hamil-
tonian but rather simulating some kind of wave packets,
pseudostates, if properly chosen, have an overlap (a) with
bound (highly excited) AO not explicitly included in the
basis set, (b) with atomic or molecular continuum states,
(c) with united-atom wave functions needed to improve
the representation of molecular orbitals. Clearly, as in
any basis optimization it requires many trial calculations
and a great deal of experience to select a suitable set of
pseudostates within the limits given by the available com-
puter time. Through the years, this method has been
forged into a powerful tool for describing excitation, ion-
ization, and charge transfer in nonrelativistic collision.

In relativistic collisions, two additional difficulties
arise. (i) Certain pseudostates may have appreciable
overlap with the negative-energy cont&nuum. This is
clearly undesirable as long as we wish to describe purely
electronic processes. (ii) Approximate atomic eigenstates
obtained by diagonalization within a finite set of exact
eigenstates and pseudostates in the atomic rest frame lose
their orthogonality property if viewed from a moving
Lorentz frame. Both of these problems are inherent in
the method and cannot entirely be removed. Neverthe-
less, we show that the introduction of pseudostates is a
useful concept and in any case improves the results previ-
ously obtained with basis sets composed of exact eigen-
states only.

We also show that cross sections calculated with a
fixed truncated set of basis states depend on the Lorentz
frame in which they are derived, but that only the target
frame' represents a reasonable choice for computing ex-
citation and transfer cross sections.

In Sec. II we discuss the particular difficulties associat-
ed with atomic pseudostates in relativistic close-coupling
calculations. In Sec. III we present calculated results for
the model system U ++U '+ at 500 MeV/u. Finally, in
Sec. IV we discuss the results and draw some conclusions.
Atomic units are used unless explicitly stated otherwise.

II. TWO-CENTER EXPANSIONS
FOR RELATIVISTIC COLLISIONS

The use of approximate wave functions such as pseudo-
states to describe relativistic collisions introduces two
problems that are absent in nonrelativistic ion-atom en-
counters. One of them is the problem of negative-energy
states arising from the Dirac theory for the relativistic
electron motion, the other is the loss of the orthogonality
property of approximate eigenfunctions when they are
Lorentz transformed from the target frame in which they
are constructed to a relativistically moving projectile
frame or vice versa. To our knowledge, the latter prob-
lem has not been discussed before in the context of atom-
ic collisions.

A. The problem of negative-energy components
in pseudostates

As is well known, ' the Dirac equation, while formally
appearing as a single-particle equation, is fully interpret-
able only if considered as an equation for a field operator,
with the consequence that many electron-many positron
systems are represented at the same time. For the appli-
cations in atomic and molecular physics, however, we
wish to confine ourselves to a system with a fixed number
of electrons. Therefore, we want to avoid "negative-
energy solutions" of the Dirac equation, that is, solutions
with eigenenergies E ( —2mc (defining E =0 for a free
electron at rest). While exact solution of the Dirac equa-
tion may immediately be classified by their eigenenergies
and hence we may always choose the desired set of states,
the situation is different for variational solutions. In this
case, negative-energy solutions may always occur since
the Dirac Hamiltonian, owing to its field-theoretical
character, is not bounded from below. This effect, usual-
ly encountered when treating a many-electron system, is
denoted as "variational collapse. "" Closely related to
this is the "Brown-Ravenhall disease"' which leads to
negative-energy states arising from the electron-electron
interaction. In spite of these problems, techniques have
been developed over the years" to avoid negative-energy
states and to perform reliable relativistic many-electron
calculations for atoms and molecules. In fact, there seem
to be many different recipes available leading to the
desired results. The most important feature common to
the majority of them appears to be that the ratio between
upper and lower Dirac components has to be fixed to a
reasonable value and is not left open to variation. The
simplest illustration' is provided by a single-electron
variational function of hydrogenic form. As long as the
ratio between upper and 1ower components is subject to
variation the energy surface is represented by a saddle
providing no lower bound. If, however, this ratio is fixed
to the hydrogenic value, the remaining variation of the
exponent is constrained to the ridge along the saddle and
thus leads to a stable variational minimum.

It is thus a reasonable procedure to augment the set of
exact Dirac eigenstates as basis functions in a linear vari-
ational procedure by hydrogenic wave functions generat-
ed by effective charges Z*. Specifically, for a collision
problem, the time-dependent solution of the Dirac equa-
tion is expanded as'

f(t)= pa»(t)t(»(rr, t)+ g a» (t)S 'g» (rp, t'),
k k'

where P» are basis functions attached to the target nu-

cleus, while g» are basis functions attached to the mov-

ing projectile and subsequently transformed to the target
system with the aid of the spinor transformation S ', see
Eqs. (2) and (3). Separately considering target and projec-
tile states, we introduce the pseudostates as follows. (a)
We first choose a subset of exact hydrogenic Dirac eigen-
states corresponding to the actual charge Z of the target
or projectile nucleus. These states are mutually orthogo-
nal. (b) Next, we choose certain elfective charges, both
Z* (Z and Z* & Z, and construct corresponding pseudo-
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B. The problem of orthogonality loss for pseudostates

The relativistic motion of the projectile requires that
matrix elements be transformed from the target system
(with the electronic coordinates r T, t) to the projectile sys-
tem (with the electronic coordinates (r tt') and vice ver-
sa. The Lorentz transformation is mediated by the spinor
transformation '

P'(r', t') =Sf(r, t), (2)

where

i /2
x+1

2
(1—6a, ) =St (3)

and y=(l —u /c ) ', 5=[(y —1)/(y+ I)]'~, and a,
is the familiar Dirac matrix with the z axis chosen in the
beam direction. The transformation given by Eqs. (2) and
(3) is rigorously valid only for exact solutions of the Dirac
equation involving invariant interactions of the type
y„A„where y„and 2„are the Dirac y matrices and the

p components of an external four potential, respectively.

states defined as eigenstates belonging to the charge Z'
and characterized by a given nodal and angular momen-
tum structure. (c) Subsequently, the atomic Dirac Hamil-
tonian is diagonalized within the basis set composed of
the original exact eigenstates and the additional pseudo-
states. This leaves the exact eigenenergies E and corre-
sponding eigenstates unchanged and leads to new
eigenenergies E* and associated eigenvectors. The re-
sulting linear combination of states generated by different
values of Z* therefore represents a wave function that is
Coulomb distorted by the actual nuclear charge Z. (d) If
any unphysical eigenenergy E*(E,„below the highest
exact eigenenergy of the basis set appears the set is dis-
carded. This rarely occurs, and if it does, inspection of
the wave function shows that the lower Dirac com-
ponents are dominant. (e) We reasonably choose the
effective charges so that a few states represent the upper
part of the discrete spectrum, and a few states the lower
(positive-energy) continuum. Clearly, all states are or-
thogonal by construction.

The diagonalization of the target or projectile Dirac
Hamiltonian is performed once and for all. As described
above, one obtains new basis sets, separately for target or
projectile, each of them composed of real bound states,
pseudo-bound-states, and pseudo-continuum-states. Us-
ing these sets, the one-center and two-center matrix ele-
ments can be calculated numerically as described in I
and, finally, the time-dependent coupled equations can be
solved. Similarly, as for real bound states, one obtains
occupation amplitudes and probabilities at t~+ ~ for
pseudo-bound- and pseudo-continuum-states at target
and projectile. The occupation probability of pseudo-
bound-states of the target (projectile) obviously
represents excitation of (transfer into) higher excited
states. Correspondingly, the occupation probability of
pseudo- continuum-states of target and pi ojectile
represents target ionization and charge transfer into the
continuum, respectively.

In other words, if we have approximate eigenfunctions
such as pseudostates after diagonalization of the Dirac
Hamiltonian, the boost operator S only represents an ap-
proximate Lorentz transformation.

This has consequences for the overlap matrix elements
and hence the orthogonality properties. Let us consider
the overlap N; k of two states

g,' (rp, t') =P,'.(rp ) exp( t'E—; t')

and

f 0"(rt t )~k'(rp t )d rp=~', k

However, in the target frame

N, q =,' rp, t' S q rp, i' d'rT

(4)

X exP[ ty(E,'—Ek )(u—/c )z~]d rr

X exp[ —iy(E,' Ek. )t] . —

Here the explicit Lorentz transformation of the time
coordinate t' has been used. By exploiting the transfor-
mation properties of the Dirac equation we can convince
ourselves that the orthogonality expressed by Eq. (4) is
also true in the target frame, provided g; and gk are ex-
act eigenstates. This apparently trivial statement is
confirmed by numerical calculations. However, it would
be naive to assume that a similar equivalence also holds
for pseudostates. This cannot be expected since pseudo-
states are not eigenstates of the Dirac equation whose
transformation properties are needed to show that N, &

in the form of Eq. (5) is diagonal as well. Indeed, numeri-
cal calculations reveal that this is not the case, so that

N, '& =6,-
I,. if i', k' are real states

(6)
N, '& W6; & if one or both of i ', k' is a pseudostate .

Note that in nonrelativistic collisions the exponential fac-
tors occurring in Eq. (5) reduce to translation factors.
Since the space part of these factors is state independent,
it cancels for initial and final states and hence does not
destroy the orthogonality even for pseudostates.

A relation analogous to Eq. (6) holds for the Hamil-
tonian matrix. If the Hamiltonian has been diagonalized
in the projectile frame only the submatrix spanned by
real states is diagonal also in the target frame and vice
versa.

The loss of the diagonal property of overlap and Ham-
iltonian matrices under Lorentz transformations poses
serious problems to the calculation and interpretation
within a framework of coupled channels involving pseu-
dostates. Suppose the basis set in the projectile system
includes pseudostates. Then, no matter whether the pro-
jectile Hamiltonian is diagonalized in the projectile or in
the target frame, an observer in the target frame will al-

~k'(rp t ) '(t'k'(rp ) e"p(

in the projectile system. By construction, in the projec-
tile frame,
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ways find that for t ~ ~ the coupling matrix
Hp —i (Blr)t') in the projectile frame is nondiagonal and
hence the occupation amplitudes keep oscillating among
the various projectile basis states. Such a behavior is
physically meaningless. Diagonalizing the coupling ma-
trix rather than the projectile Hamiltonian in the target
frame does not help either since the eigenvalues of this
matrix are almost degenerate (with eigenvalues =0) and
hence a classification of states is not possible.

These difficulties seem to be unavoidable if basis states
are used that are not eigenstates of the target or projectile
Hamiltonian. For example, discretized continuum states
are expected to give rise to similar problems.

In order to handle these problems in a reasonable
manner we have taken the following approaches.

(i) Pseudostates are attached only to the target, not to
the projectile. A complete description of the collision in
the target frame then encounters no difficulties. This ap-
proach is adequate for a treatment of target ionization.
In comparison to the single-center calculation by Becker
it has the advantage of including charge transfer into
bound states of the projectile.

(ii) Similarly, pseudostates are attached to the projec-
tile, not to the target, and the process is described in the
projectile system. This allows for charge transfer to the
continuum but excludes target ionization.

(iii) Pseudostates are attached to both target and pro-
jectile and each set is diagonalized in its own frame. Sub-
sequently, overlap terms (deviations from diagonal struc-
ture of the Hamiltonian and the overlap matrix) arising
from Lorentz transformation into the other frame are
disregarded. This approximation has the advantage of
being symmetric between target and projectile. It hence
approximately includes both target ionization and charge
transfer to the continuum.

C. The problem of the frame-dependence of cross sections

We now may view the same process of target excitation
from the projectile frame. The corresponding expansion
then reads

g(rp, t')= g a&,(t')S 'Pk (rp)
k'( ~%')

X exp —i yFk t'+ zp
C

where S ' defined by Eq. (2) just rearranges the spinor
components and the set of Pk. (rp ) is again a set of target-
centered basis functions, simply displaced by a Lorentz
transformation from the target frame to the projectile
frame. However, the original time oscillation in the tar-
get frame gives rise to an additional space oscillation in
the projectile frame. Therefore, if N is large enough to
yield a good approximation to the cross section in the
target frame, N' must be considerably larger than N in
order to compensate for these space oscillations and to
give a similarly adequate representation of the target in
the projectile frame. If the same expansion N =N' is
used in both Lorentz frames, it is clear that cross sections
calculated by the coupled-channel method are different in
the target and in the projectile system. This frame depen-
dence is connected with the Lorentz transformation of
the time oscillation and hence disappears in the nonrela-
tivistic limit. This has been verified in numerical calcula-
tions.

It is obvious from the discussion given above that tar-
get excitation and ionization are best described in the tar-
get frame, as has been done in Refs. 1 and 2. The same is
true for charge transfer which is mainly determined by (a)
the coupling within the target, and (b) the subsequent
single-step transfer from the target to the projectile. The
latter is a first-order process and, in the same way as the
first-order excitation, is, fortuitously, independent of the
Lorentz frame.

Exact cross sections for relativistic collisions are in-

variant under Lorentz transformation. This means that
coupled-channel calculations with a complete set of
infinitely many basis functions would yield the same cross
sections in the target and in the projectile frame. For
nonrelativistic collisions this is also true if a truncated
finite set of basis functions is used. The question arises
whether this frame independence of cross sections calcu-
lated with a truncated basis set is still valid for relativistic
collisions.

It is easy to see that this not the case. For the simplici-
ty of the argument consider a single-center expansion in
terms of target basis functions. In the target system, Eq.
(l) reduces to

tt(rr, t)= g a~(t)(bk(rr) exp( —I'F~t),

where the time dependence is exhibited explicitly. It is
assumed here that a finite number N of basis states leads
to a sufficiently good approximation for excitation (or
ionization) cross sections when the expansion (7) is insert-
ed into the time-dependent Dirac equation describing
the process.

III. RESULTS AND DISCUSSION

In this section, we present some results of pseudostate
calculations for the system U +U ' at 500 MeV/u.
This collision system has served already as a model case
in earlier publications in this series, so that we can best
study the effect of augmenting the two-center basis by
pseudostates. A discussion of the collision of Xe +Ag
will also be given.

Similarly, as in I, the accuracy of the numerical calcu-
lations has been subject to several tests. We have exam-
ined the convergence of the matrix elements and of the
time integration with respect to the number of mesh
points chosen. We also compared with cases where a
partially analytic solution is possible. Furthermore, for
each calculation we verify that the unitarity requirement
is satisfied to an accuracy of better than 10 . Finally, as
a very stringent test, we find that for all cases examined,
detailed balancing for target excitation and charge
transfer is valid within an accuracy of 10 to 10

In Table I, we display four different sets of basis states
that have been used with the target, or with the projec-
tile, or with both of them, corresponding to the ap-
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TABLE I. Basis sets for pseudostate calculations. The notation (N„„~,N„„„d„~ for the target or
~N„,~, N~„„d, ) for the projectile specifies the numbers N„„and N„„„d, of exact hydrogenic eigenstates
of U '+ and of pseudostates, respectively. Each pseudo-basis-state is characterized by its effective
charge Z and its angular momentum and nodal structure.

Z

92
92
92
92

100
100
70

100
110

(10, 10
States

1$l/2
2$ l /2

2p I/z

2p 3/2

1$1/2
2$ l /2

2p 1/2

2p 1/2

2p I/z

Z

92
92
92
92

70
110
70
70

100
110

(10, 12~

States

1Sl/z
2s l/z

2p l/z

2p 3/

1S l/z
1S l/z
2$ l /2

2p I/z

2pi
2pl/z

Z

92
92
92
92

60
100
60
80

100
120
135

States

1$1/2
2S l /z

2p l/z

2p 3/2

1s I/z
1s l/z
2s l/z

2pl
2p l/z

2p
2p 3/2

Z

92
92
92
92
92
92
92

110
130
90

120

(is, si
States

1$1/2

2Sl/z
2p

2p3/z
3$ l/z

3p i/z

3p3/z
1S l/z
2$

2pl/2
2pl/z

proaches (i) to (iii) of Sec. II B. Each set (N„„„N„„d,~
is

characterized by the numbers N„,&
of "real" states, that

is, of exact eigenstates of the target or projectile Dirac
Hamiltonian and, in addition, by the number of pseudo-
states. For the (nonorthogonal) pseudo-basis-states we
list the effective charges Z and the classification of the
basis states. The pseudo-basis-states have been chosen
such that after diagonalization of the atomic Hamiltonian
the lowest pseudo-bound-state lies above the highest real
state considered, and furthermore, such that pseudo-
continuum-states occur at reasonable energies. (We
found that pseudo-continuum-states with too high ener-
gies have little effect on the cross sections. ) Clearly, as in
any pseudostate treatment, the choice of the basis states
is somewhat arbitrary.

In Table II we show the angular momentum
classification and eigenenergies of the pseudostates after
diagonalization. In the first three sets we have four
pseudo-bound-states supplementing the ten real bound

states, while the number of pseudo-continuum-states is
increasing from 6 to 12. In the last set, (18,8 ~, no further
bound states are needed, so that the eight pseudostates all
lie in the continuum.

The basis sets of Tables I and II are used in our calcu-
lations in different combinations, as shown in Tables III
and IV. For each combination of target and projectile
basis sets, we have performed a complete coupled-
channel calculation as described in Sec. II and in Ref. 2.
Since simultaneously we follow the time evolution origi-
nating from all possible initial conditions, we obtain a
large number of state-to-state cross sections for excita-
tion, ionization, and charge transfer. Here ionization is
interpreted as excitation of a pseudo-continuum-state ei-
ther in the target or in the projectile ("charge transfer to
the continuum"). We do not present all of the data here
and rather confine ourselves, in Tables III and IV, to the
initial 1s

& &2 state and, moreover, to cross sections
summed over magnetic substates.

TABLE II. Angular momenta and energies E —mc (in atomic units) associated with the pseudo-
states within the basis sets (N„„|,N~„„d„~ presented in Table I after diagonaiization of the Hamiltonian.
The energies of the real states are, of course, unchanged and not listed.

(io, io~

State E —mc'
(10, 12'

State F. —mc'
(10,16i

State E —mc State
(is, si

E —mc

P I /2

$1/2

—529 ~ 8
—177.4

p I /2

S l /2

—529.8
—506.4

S 1/2

p 1/2

—534.6
—511.0

p 1 /2

Pl/Z
S l /2

333.3
7352
8861

p i/z

$1/2

p 1 /2

$1/2

333.3
1482
7352

24 560

P3/Z

p 1/2

S I /2

p 1/2

$1/2

435.2
692.9
764.6

11 680
16 780

p 1/2

$1/2

P l /2

s 1/2

102.4
6933
7013

25 250
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Let us consider Table III for excitation and ionization.
Columns 2 and 8 summarize the calculations with the
bases of 20 and 36 exact atomic eigenstates of Refs. 1 and
2, respectively. In columns 3 and 4, following method (i)
of Sec. II 8, we have augmented only the target basis by
pseudostates. Correspondingly, in columns 5 and 6 we
have augmented the projectile basis by pseudo states. Fi-
nally, in columns 7 and 9, we have chosen method (iii) of
Sec. IIB and supplemented both target and projectile
bases with pseudostates at the expense of ignoring small
overlap terms among projectile pseudostates. Table IV
displays the corresponding data for charge exchange and
is organized in the same manner.

In the lower part of Table III we collect ionization
data. By construction, there is only target ionization in
columns 3 and 4, only charge transfer to the continuum
(taken from Table IV) in columns 5 and 6, and both tar-
get and projectile ionization in columns 7 and 9. We
have also included K-vacancy production which comes
about by excitation, charge transfer and ionization. In a
fully analogous fashion, Table IV contains cross sections
for charge transfer into various final states.

Inspection of Tables III and IV shows that the cross
sections for final bound states are not drastically altered
by the inclusion of pseudostates. Most changes are on
the 10% level. Quantitatively, the addition of target
pseudostates tends to decrease the excitation cross sec-
tions because some of the probability Aux is diverted into
the additional states. On the other hand, the addition of
projectile pseudostates tends to increase the capture rates
because the rearrangement channel attracts more proba-
bility Aux which subsequently is redistributed among the
projectile states. The latter observation is particularly
evident when comparing the 52-state calculation of
column 9 with 36-state ca1culation of column 8 in Table
IV; however, in this case also, excitation is enhanced by
adding continuum pseudostates.

Regarding ionization, only the sets of columns 7 and 9
allow for both target ionization and charge transfer into
the continuum. If one adds both terms, one obtains K-
shell ionization cross sections (per K electron) of 7.7 X 10
b and 1.0X10" b, respectively. A similar number is de-
rived if target ionization of column 3 and charge transfer
to the continuum from column 5 are added. Summing
the corresponding numbers from columns 4 and 6, how-
ever, yields almost twice this value. From our calcula-
tions, we therefore estimate an ionization cross section of
(1—2) X 10 b per K electron. While the ionization data
still contain considerable ambiguity, the cross section per
electron for K-vacancy production can be more reliably
estimated and compared with experimental data. From
Table III we get o.x- —(3—3.8) X 10 b. This is in approxi-
mate accordance with the cross section of (3—3.5) X 10 b
per electron in U+U collisions at 422 MeV/u measured
by Anholt et al. Of course, the existence of filled target
shells reduces the theoretical number given above while
the change of the energy from 500 to 422 MeV/u in-
creases it.

We have also performed calculations for Xe ++Ag.
However, the technique of pseudostates becomes very
difficult for a complex target atom with many filled shells.
In order to remove the overlap of pseudostates with occu-
pied electro6ic levels one would have to include a large
number of target shells explicitly. This is generally not
feasible within an acceptable computing time. Neverthe-
less, we can conclude from our tentative calculations that
excitation and charge-transfer cross sections are altered
only on the 10%%uo level by including pseudostates in the
basis set.

IV. CONCLUDING REMARKS

Within our series of papers' on two-center coupled-
channel calculations we have extended the formalism to
augment the atomic basis sets by the inclusion of pseudo-
states. We have found that in comparison to nonrela-
tivistic or to relativistic single-center calculations addi-
tional problems arise owing to the 1oss of orthogonality of
approximate eigenstates of a Dirac Hamiltonian under
Lorentz transformations. This problem is not specific to
pseudostates but will also arise in connection with other
approximate states like discretized continuum states. On
the other hand, what one might expect to be a problem,
namely, the occurrence of spurious negative-energy solu-
tions, can be coped with on a practical level.

In our calculations, we have either avoided the
nonorthogonality problem by attaching pseudostates to
only one of the collision partners or we have ignored it by
discarding the small overlap terms while at the same time
retaining the symmetry between target and projectile.

It is furthermore shown that relativistic cross sections
(unlike nonrelativistic ones) calculated within a coupled-
channel approach that uses a fixed number of basis states
depend on the choice of the Lorentz frame. One can easi-
ly see that only the target frame is appropriate if the
number of channels is to be kept at a minimum.

The numerical calculations for U ++U ' at 500
MeV/u have been extended up to basis sets composed of
52 states, including 36 real and 16 continuum pseudo-
states. The results show that excitation and capture cross
sections are changed only on the 10% level in most cases.
While the basis sets are presumably still too small to en-
sure convergence one can, nevertheless, estimate cross
sections for ionization and K-shell vacancy production.
The results for K-vacancy production appear to be in
reasonable accord with experimental data.
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