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The continuous-variable representation of the dynamic group is discussed in general terms, based
on the differential of the group manifold. The unified formalism of various continuous-variable rep-
resentations of the dynamic group is presented, and the essential common features of different
continuous-variable representation theories are exploited from the general mathematical-physical
point of view. The right-hand isomorphic representation and the left-hand anti-isomorphic repre-
sentation of the dynamic group, and their relationship and physical implication are discussed in de-
tail. Specialization of the general formalism to the function spaces of the group, based on both the
Hilbert space of quantum-mechanical states and the von Neumann space of the quantum-statistical
states (density matrices), leads to the results of both the generator coordinate approach to the
dynamic-group representation and the generalized quantum characteristic function method. Tech-
niques for calculating the continuous-variable representation of the group algebra are proposed and
illustrated with the Lipkin SU(2), the Elliott SU(3), and its extension Sp(6) symmetries as examples.
The results obtained for these dynamic groups are instructive for both physicists and mathemati-
cians.

I. INTRDDUCTIQN

The dynamic-group approach to the investigation of
collective behavior of quantum many-body systems (espe-
cially nuclear many-body systems) is becoming more and
more attractive and significant in quantum physics. In
nuclear physics, we have the seniority theory of the
quasispin model' and the Lipkin two-level model [SU(2)
dynamic symmetry], the Elliott SU(3} model and its ex-
tension, the Sp(6) model, the interacting-boson model
(IBM) [SU(6) dynamic symmetry], the SO(8) model of
Ginocchio and the fermion dynamical-symmetry model
(FDSM) of Wu and Feng et al. There are two basic
problems in the dynamic-group approach to quantum
many-body problems. Firstly, one has to identify the
relevant dynamic symmetry dominating a specific quan-
tum system. This is a dynamical problem. Secondly,
given a quantum system with its dynamic symmetry
identified, one should work out a proper representation of
the dynamic group, solve the problem and gain physical
information from this representation. This is a problem
of representation and solution.

In the past decade, extensive studies of nuclear collec-
tive phenomena have shown that nuclear many-body sys-
tems have certain kinds of dynamic symmetries which
dominate nuclear collective motion. These nuclear col-
lective modes can be described in terms of interacting bo-
sons (algebraic model), or in terms of variable mean field
(geometric model). Suppose the dynamic group of a nu-

clear system is identified on the microscopic (fermion)
level, we still need the boson (algebraic) representation
and the continuous-variable (geometric) representation of
the group, because only in these representations the col-
lective variables (the order parameters of the collective
modes) are manifested explicitly. The continuous-
variable representation of the dynamic group has recently
become a powerful tool which has been used to explore
the connection between macroscopic and microscopic nu-
clear collective models, ' to establish the relationship
among different phenomenological nuclear collective
models. ' Recently, it has also been used to study nuclear
phase transitions. " In brief, to achieve a better under-
standing of nuclear collective phenomena, one has to
study dynamic groups and their continuous-variable rep-
resentations; extensive efforts have been made in this
respect.

The theories of continuous-variable representations of
dynamic groups can be classified into three main
categories: (i) The coherent-state theory and boson repre-
sentations (CS-BR).' ' (ii) The generator coordinate
approach to the dynamic-group representation (DGR-
GCM). ' ' (iii) The generalized quantum characteristic
function method (GQCF}. From a comparative investi-
gation of the above three approaches, one has found out
that the DGR-LCM is the generalization of the CS-BR. '

Both the DGR-GCM and the CS-BR works in the Hil-
bert space of quantum-mechanical states, while the
GQCF, different from the above two, works in the von
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Neumann space of quantum-statistical states (density ma-
trices). However, there exist common foundations and
close links among the above three approaches. It is one
of the purposes of this paper to explore the common
features and to present a unified formalism for the
continuous-variable representation of dynamic groups,
which contains the above three approaches as special
cases.

This paper and the previous paper ' (on DGR-GCM)
are sister papers. However, the present paper emphasizes
the general aspects of the topic, and is different from and
new in comparing with the DGR-GCM regarding the fol-
lowing points.

(1) Based on differential operation on the group mani-
fold, the continuous-variable representations of the group
generators are calculated. The right isomorphic repre-
sentation and the left anti-isomorphic representation of
the group are given. While the DGR-GCM only involves
the right representation, the left representation is precise-
ly the isomorphic representation of the corresponding in-
trinsic group G. The interesting relationship between
these two representations is established.

(2) The detailed results are presented and discussed for
the representations in the function spaces of the group
(coset) based on both the Hilbert space and the von Neu-
mann space which are the only two base spaces of physi-
cal importance and meaning. When the function space of
the group is constructed from the Hilbert space, :he re-
sults of the DGR-GCM are obtained and extended. If
the function space of the group is constructed from the
von Neumann space, the results of the GQCF are repro-
duced and generalized. In all the above cases, the right
and left representations of the group and their relation-
ship are presented in detail.

(3) The techniques for calculating the differential repre-
sentation of the group algebra are illustrated with special
emphasis on the case where the group element is written
in noncanonical form. Most results are new compared to
the previous paper. '

The paper is organized as follows: In Sec. II, after in-
troducing the definition of differential operations on the
group manifold, the right and the left representations are
calculated and discussed, respectively. The differential
representations of the group algebra on the coset sub-
rnanifold are given in Sec. III in a version parallel to Sec.
II. In Sec. IV, continuous-variable representations in
function spaces of the group (coset) based on both the
Hilbert space and the von Neumann space are presented.
The results of both the DGR-GCM and the GQCF are
reproduced and generalized from a more general point of
view so that the common features of the two approaches
are exploited. Techniques for calculating the differential

I

operators of the group algebra are illustrated in Sec. V by
taking the Lipkin SU(2), the Elliott SU(3) and its exten-
sion Sp(6) as examples.

A. Differential operation on the group manifold

Let g be the group parameters of r dimensions,
g =(g', g, . . . , g"). We are now defining the differential
dU(g) and the partial derivative BU(g)/Bg . For clari-
ty, we take the canonical form of the group element

U(g) = exp(ig&& x ), go x =gg x (2. 1)

and x are generators of the group. '
Construct an operator U(A, ) such as

U(k) = exp( —i Agox ) exp[i'(g +dg)ox]

so that

(2.2)

d U(A. )

dA.
= exp( —i Xgax)[i ( —gox+g&&x+dgox )]

X exp[i'(g +dg)&&x ]
= exp( —i Xgox )(idgox ) exp[i'(g +dg)&& x]

(2.3)

and

U(0)=I . (2.4)

In view of Eq. (2.4), we have the integral solution of Eq.
(2.3),

U(X ) =I+ f exp( i pg 0 x )( id—go x )
0

X exp[i@(g +dg)~x]dp . (2.5)

Keeping terms to first order in dg, making use of Eq. (2.2)
and multiplying both sides by e p(xiXgo )xand then set-
ting A. = 1, we obtain

II. DIFFERENTIAL AND DIFFERENTIAL
REPRESENTATION OF THE GROUP

GENERATORS ON THE GROUP MANIFOLD

Let 6 be a Lie group, the collection of the group ele-
ments U(g) spans a topological space (called group
space) xG which is a differentiable manifold. Any group
element U(g') can also be considered to be an operator
acting on the group manifold xz. It is evident that the
group space xG is closed under the action of U(g'). In
this manifold, one can define differential operation and
thus calculate differential representations of the group
generators —the Dyson representation of the group.

or

1

exp[i(g +dg)&&x ]= exp(igox )+ exp[i (1 —p)gox ](idgox ) exp(ipg&&x )dp
0

(2.6)

dU(g) =—U(g +dg) —U(g) = exp[i (g +dg)&&x ]—exp(igox)

aU(g)exp[i(1 —p)gox](idgox) exp(i pgox )dp, =g dg
0 Bg

(2.7)
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where

aU(g) ~ . . a(g. x )—:f exp[i(1 —p)gox]i exp(ipgox)dp
Bg Bg

1

exp[i( 1 —p )go x ]ix exp(i pg o x )d p .
0

Equations (2.7) and (2.8) are the definitions of the differential dU(g) and the partial derivatives aU(g)/ag on the
group manifold.

B. Right and left differential representation of the generators in the group space

Define the right diAerential representation of the generator x as

D~ g, U(g) = lim [ U(g) U(6g )
—U(g)] = U(g)(ix ) .

1
R, m g g m (2.9)

To calculate DR we form

U(g)U(fig ) U(g—)= U(g(g, &g'")) U(g—)

== U(g +d g )
—U(g) =g I

d g =g eR —&5g"
aU(g) . . . aU

Bg
(2.10)

with

( )
ag(gb)

Rmg
g m 6=—0

(2.11)

D I (g, a lag ) is anti-isomorphic to ix

D L g, D„, L g, U(g)=(ix„)(ix )U(g) .
a a

n, L

D, g, U(g) =pe', „„(g),U(g), (2.12)

i.e.,

y(a, b) describes the composition law of the group G in
parameter space. Combining (2.9) and (2.10) leads to

r

(2.17)

It is known that the intrinsic group 6 is anti-isomorphic
to G. Therefore the left representation D, L of ix is
precisely the isomorphic representation of the intrinsic
group G, with generators x

D LD„L~(ix )(ix„) . (2.18)

=Ye~,

is the right representation of ix . It is easy to prove that
D~ (g, a/ag ) is isomorphic to ix„, ,

D~ g, D~ „g, U(g) = U(g)(ix )(~x„) .
a a

Bg ' Bg

It is easy to show that the right representation DR „, com-
mutes with the left representation D I . In fact, from

DR U(g) = U(g)(ix ), D„L U(g) =(ix„)U(g), (2.19)

we obtain after multiplying with (ix ) from the right and
with (ix„) from the left, respectively,

(2.14)
DR mD„L —D, I DR m . (2.20)

=(ix )U(g) .

Repeating the steps used for calculating D„,we find

Dm, L
(3g

a&'(b, g)
ab m

a

b=O ~g

Therefore —iDR is the continuous-variable representa-
tion of the Lie algebra x in the group space.

The left differential representation of the generators in
the group space is defined through

D ~ g, U(g) = lim — [U(6g )U(g) —U(g)]
a

bg O ~g

Equation (2.20) just refiects the fact that group G and its
intrinsic group G commute

[G, G]=0, [x,x„]=—0 . (2.21)

U(g) = exp(i aJ, ) xpe(i f3J ) exp(i yJ, ) . (2.22)

C. Differential representation of the generators
with the group element in noncanonical form

The preceding discussions are confined to the canonical
form of the group element and the differential representa-
tion of the generators is usually rather complicated. For
practical use, the noncanonical (Eulerian) form is more
convenient. For SO(3), the Euler form of the group ele-
ment is

—=ye'. , (g) (2.16) For the Eulerian form, every exponent contains only one
generator and the partial derivative of the group element
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j3U(g)/Bg can be taken as usual functions except that
the order of operators cannot be changed. For instance,
from Eq. (2.22) we have

In practical cases, one usually avoids calculating y(a, b).
A trick is used to obtain D~ and D L, examples will be
found in Sec. V.

'g'= J U( )=l g

aU(g) = ex p(i aJ, )( iJ~ ) exp( i a—J, ) U( g), (2.23)

III. DIFFERENTIAL AND DIFFERENTIAL
REPRESENTATION OF THE GROUP

GENERATORS ON THE COSKT SUBMANIFOLD

U(g +dg) = U(g) U(5g )

= exp(ig J, ) exp(ig~j ) exp(igrJ, ), (2.24)

cp (g, 5g ) =a+da,
y~(g, 5g ) =/3+d/3,

yr(g, 5g)=y+dy .

(2.25)

All the formulas of D~ and D z are still valid, noting
that the functions p(a, b), e~, and O'

L should be cal-
culated according to the noncanonical form. For the
SO(3), it follows that

Any group element can be factorized according to a
certain subgroup S,

U(g)=S(gs)QR(gR), U(g)=AL(gL)S(gs), (3.1)

where Qz(g~ ) and QL(gL ) are right and left coset ele-
ments with respect to the subgroup S respectively. gz,
gz, and gz are parameters of the subgroup manifold
S(g&) and of coset submanifolds Ilz(gz ) and IIL(gL ). It
should be pointed out that Qi, (g„) and QL(gL) are
different submanifolds in the group space and they are
not closed under the action of the group element U(g).
In order to define the differential operation and calculate
the corresponding differential representation of the group
generators in the coset subspace, we first evaluate for,
e.g. , the right differential representation

II~(g~)exp(i5g x )=U(g+d"g)=S(d gs)II„(gi, +d g)

~&R(gR)
=S(d g ) II (g„)+pe'i, (g~), 5g

I Bgg
(3.2)

where

~V~(g b)

gym 6 =o, g =g~
(3.3)

which according to (3.2) and (3.4) gives

a
(g )

( Bgg
(3.7)

In the limit 6g ~0, we have

lim S(d gs)=I .
P2l o

(3.4)

Equation (3.7) has the same structure as (2.13) but is
defined in coset space, with the number of parameters re-
duced. Similarly, for the left representation, we have

The differential and derivative operations on the coset
submanifold are defined in the following. If the coset ele-
ments are written in canonical forms, the differential and
partial derivatives are defined according to Sec. II A, Eqs.
(2.7) and (2.8), while for the Eulerian forms, they are
defined according to Sec. II C, Eq. (2.24). Therefore we
have

d+R gR +R gR +d g) +R(gR )

a
Dm, z gL)

ogz

a=ye'. ,(g, )

( ~gz
(3.8)

It is easy to show that Dz are the continuous-variable
representation of the group generators in the right coset
subspace and are isomorphic to x, while D L are the
continuous-variable representation of the intrinsic alge-
bra x and anti-isomorphic to x

(3.&)

D~m g~) ~
8

&~(gR)

1
lim [Qi, (g~ ) exp(i5g x )

—LI~(gz )]
~g -o &g

=Q~ (g~ )(ix ), (3.6)

The right differential representation of x is defined as

D„„DR Aii(g~ )=D~(gi~ )(ix„)(ix ),
Dn, L m, L+L(gL ) (ixm )(ixn )+L(gL )

(3.9)

Since A~ (gz ) acted upon by Dz and QL (gL ) acted
upon by D L are different subspaces of the group mani-
fold, Dz and D L are defined in different spaces.
Ho~ever, if the connection between B~ and BL is
known, the relationship between D~ and D z can be
established accordingly. In Sec. V„we shall give exam-
p1es concerning this point.
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IV. DIFFERENTIAL AND DIFFERENTIAL
REPRESENTATION OF THE GENERATORS
IN THE FUNCTION SPACE OF THE GROUP

As the object on which the group element U(g) and
the coset element A(g) act is the Hilbert space of
quantum-mechanical states ltd), or the von Neumann
space of quantum-statistical states (the density matrices)

p, we can construct the function space of the group
(coset) by means of the inner-product operation in the
Hilbert space or the trace operation in the von Neumann
space. In the former case, we obtain the continuous-
variable representation of quantum states in the parame-
ter space of the dynamical group, which can be used to
describe the collective motions induced by the dynamical
group. In the latter case, we obtain the generalized quan-
tum characteristic function which can be used to calcu-
late the ensemble averages of physical quantities.

A. Function space of the group (coset)
based on the Hilbert space

The results of Secs. II and III can be transplanted to
the function space of the group (coset) based on the Hil-
bert space, if the starting-state vector lgo ) in the inner
product is properly chosen.

The functions of the coset G/S are then defined as

F"«R ) =—& ool~(gs) fIR(gR ) l 0&

=(y, lII (g )ltd&,

F (gL)—= & &ILAIL(g )s(g ) p )

= ( &III (g )lP, &,

(4.5a)

(4.5b)

where lg) is an arbitrary state in the subspace. Only
those irreducible representations which contain states in-
variant with respect to the subgroup S are considered in
this case, i.e., some information has been lost.

The continuous-variable representations of ix are

a
DR, m gR &

&gR
F'(gg ) (4.6)

a
Dm, L gL &

OgL
F (gL ) = ( tb lix IIt. (gt )

l Po ), (4.7)

with D~ and D L from Eqs. (3.7) and (3.8). Since

II&(gR ) and ILL (gt ) are diff'erent, Dz and D L act on
different function spaces. However, the relationship be-
tween F and F, DR and D L can be established as
will be shown in Sec. V.

1. Functions of the group in the Hilbert space

In order to contain all the information of the group
representations in the function space, the starting-state
vector P„) should be chosen such that it has not any
symmetry with respect to the group G, i.e., it should con-
tain components of all irreducible representations of G.
Let g) be an arbitrary state vector of the Hilbert space;
the functions of the group can be written as

3. Equations of motion and expectation ualues

ofphysical uariables

H(ix )lq&=El'&,

(g H(ix )=E(Q

(4.8a)

(4.8b)

Suppose the Hamiltonian of a nuclear system be
H(ix ) and the Schrodinger equation is

F'(g)—= &yo U(g)lq&, F'(g)=—&qlU(g)lyo&, (4.1)
Multiplying Eq. (4.8a) from the left with (Pol U(g) and
Eq. (4.8b) from the right with U(g)lgo), we obtain

for the right and left representation, respectively. The
representations of the generators are, in obvious notation,

H (D~ )F (g)=EF"(g),

H (D L)F (g)=EF (g) .

(4.9a)

(4.9b)

D g, F (g)=&y lU(g)tx V&R, m

a=pe~ „(g) F (g),

D ~ g, F (g) —= (flix U(g)lpo)
a

m, L

a=ye'. , (g) F'(g) .m, L

(4.2)

(4.3)

It should be noted that H (Dz, . . . , Dz „, . )

isomorphic to H(ix, . . . , ix„, . . . ) and H (D
. . . , D„L, . . . ) is anti-isomorphic to H(ix„, . . . ,

For the function space of the coset, Eqs. (4.9a) and
(4.9b) are still valid, but the parameters should be re-
stricted to the coset space g ~gR (or g ~gt ).

If U(g) is unitary, we have the closure relation and the
orthogonality relation as follows: '

U g p p U g dp g =I (4.10)

2. Functions of the coset in the Hilbert space

Sometimes the physical problem is confined to a sub-

space of the whole Hilbert space, which contains a state
vector lPo) invariant with respect to a subgroup S(gs ) of
G,

(Po U(g)U (g') Po) =b(g —g'),

where the 6 function is subject to

Ag —g'dpg' =1,

J f(g')~(g —g')dp(g')=f(g) .

(4.11)

(4.12a)

(4.12b)

s(g, )ly, )=ly, ) . {4.4) It is easy to obtain
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q &
= jU'(g) ly, & (P, U(g) l 0 &d p(g)

=jU (g)~P, )F (g)dp(g) . (4.13)

x „iy,&=O,

~(gs)~00) = exp 'ygsxl ~4'0)
I

(4.15b)

In the above equation, g) is a state vector in fermion
space, while F"(g ) is the corresponding state in the
continuous-variable function space. Therefore Eq. (4.13)
is the transformation from the continuous-variable func-
tion space F (g) to the fermion space ~g ). The expecta-
tion value of a physical variable 0(ix ) is evaluated as
follows:

(PlO(ix )~P) =(F (g) 0 (D )~F"(g))

FR g +~pa ~F~ g~d~ g

Let

= exp iygs'~l l 40 & .
l

U (g)= exp iggsx) exp igg+x
l 7

X exp igg "x
P

U (g)= exp igg~+x„exp igg

(4.15c)

(4.16a)

(4.14)

Here 0 (D~ ) is isomorphic to 0(ix ). For the left
representation we have similar results, but 0 (D I ) is
anti-isomorphic to 0 (ix„, ).

and define

X exp igg&xl
l

(4.16b)

4. Representation in the coherent-state space

The coherent-state space is a special coset space in
which the subgroup S is the maximal stability subgroup
of 6 and ~P„) is the stability state of S (the extreme state
of an irreducible representation). Let xt be generators of
5, x„, be raising operators, x „, the lowering operators,
and Po) be the lowest-weight state; then

(4. 15a)

(4.17a)
A~ (g ) = exp igg "x

. v

(4.17b)
foal (g+ )= exp igg+x„

P

The right coherent-state representation of ix is defined
as

DR, , g-
ag

F~(g )—:(going(g )(ix ) P)

1
lim (Po A~(g ) exp(i6g x )

—Il~(g ) g)
sg"'--0 ~g

1
lim (Po~ e~p i+dgsx, Q~(g +d g )

—Q~(g )lg) ls
trt p $g

ly e,' (g )~, +ye„-~ (g ) F,'(g ) (4.18a)

dg
=ice', (g )w, +ye„-~ (g (4.18b)

For the left representation, we have

a
, I. g+ ~

'X, L(g+ )&(+X+,L, (g+ )ag- l 0g+

(4.19)

The relationship between D~ and D ~, F,"(g ) and
F, (g~ ) can be found as will be seen in Sec. V C.

B. Function space of the group (coset)
based on the von Neumann space

When the dynamic group acts on this space, by virtue of
the trace operation, we can construct the generalized
quantum characteristic functions of the group (coset) and
define the continuous-variable representation in the con-
structed function space. This procedure leads to the re-
sults of the GQCF and its generalization.

1. GQCF on the group space (Ref. 22)

Suppose p is an arbitrary state vector in the von Neu-
mann space, which is not symmetric at all with respect
the group G. Then the generalized quantum characteris-
tic functions are defined as

To describe the quantum-statistical state we need the
density matrices which span the von Neumann space. W (g):=TrpU(g) = W (g)==TrU(g)p= W(g) . (4.20)
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The right and left representations of ix are readily ob-
tained as follows:

D~ g, W (g)—=Tr[pU(g)(ix )]
Bg

W(g, t) = +to„(0)W„(g, t),

W„(g, t) = ( P„(t) ~ U(g) ~ g„(t)),
ifiW„(g, t) =[H~(D~ ) H—~(D ~ )]W (g, t)

(4.26)

(4.27)

(4.28)

(g) , W (g),

D I g, W (g):—Tr[(ix ) U(g)p]
Bg

(4.21) Equations (4.24) and (4.28) indicate that the time evolu-
tion of the GQCF W(g, t) and W„(g, t) is governed by the
continuous-variable representation of the Hamiltonian
H (D~,„)of the dynamic group G and of H (D L) of
the intrinsic dynamic group G.

=ye'. ,(g), w'(g) . (4.22)

ihp=[H, p], H =H(ix ), (4.23)

can be easily transformed into the corresponding equa-
tion of the continuous-variable representation as follows:

Here DR and D I take the same form and possess the
same properties as given in Sec. II B.

The von Neumann equation

For the stationary case, we have

p =+co„(0)l q„(0) ) ( Q„(0)

I~lq„ & =E. lq„ &,

W'(g) =+co„(0)W„(g),

w„(g) = ( q„(o) l U(g) t q„(o)),

(4.29)

(4.30)

(4.31)

(4.32)

i Aw(g, t) =Tr[HpU(g)] —Tr[pHU(g)]

=[H (D~ ) H(D —L)]W(g, t) . (4.24)

where W„(g) is a bilinear function of ~g„) and ( g„~, and
obeys the equations

Let

p(t)=g~o„(0)lg„(t)) (g„(t)l, (4.25a)

H (D~ )W„(g)=E„W„(g),

H (D L )W„(g)=E„W„(g) .

(4.33)

with

then

a~q„(t)&
=H~q„(t) &,at

(4.25b)

The above equations show that W„(g) contains informa-
tion of the dynamic symmetry H ( G) and its intrinsic
counterpart H(G), i.e., W„(g) contains information
about both

~ g„) and ( f„~.
For the average values of physical quantities, we have

(0(ix ) ) =TrO(ix )p= [TrpU(g)0(ix )] o=[TrO(ix )U(g)p] o=0 "(DR ) W(g) ~

, t )W(g)Is=0 ~

($„~0(ix )~g„)=(@„)U(g)0(ix )(Q„)( =o=($„~0(ix )U(g)~g„)) O=O (D~ )W„(g)) o

=0 (D ) w„(g)~ =0,
(0(ix )) =+co„O (D„)w„(g)~ 0+co„O (D L)W„(g) o .

(4.34)

(4.35)

(4.36)

2. GQCF on the coset subspace

Suppose p, is a state vector in a subspace, which is in-
variant with respect to the subgroup S,

the subscript c denoting "coset." In general, Qz(gz )

MAL(gL ) and hence W,"(gz )A W, (gL ). The representa-
tions of ix are readily obtained from the results of Sec.
III,

Sp, =p, S=p, . (4.37)

In this case, a special quantum-statistical ensemble with
symmetry S is treated and the GQCF degenerates to the
one in the coset space G/S. From Eqs. (3.1), (4.20), and
(4.37), we have

(4.38a)

DR, m gR &

~gR
W, (g~ )—:Tr[p, AR(g~ )ix ]

a=ye', (g, ), w,'(g, ),
I ~gR

W, (gz ) =TrQL (gL )p, , (4.38b) (4.39)
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a
m, L gL&

OgL
W, (gL ):—Tr[ix Ar(g. L )p ]

a=pe' L(gt ), W, (gL ) .

(4.40)

H (D t ) W„'(g, ) =E„'W„'(g, ), (4.47b)

(4.48)

&0(ix )&, =Trp, 0(ix )=0 (D„)W,(g, )l,

=0 (D t) W(g, )
l

In general, the von Neumann equations for W, (g~)
and W, (gt ) do not exist. Only in the case II~(g~)
=III (gL ) and W, (g~ ) = W, (gt ), we can derive the fol-
lowing equation:

&q„lO(ix )lq'„&=0'(D )W„'(g, )l =o

=0'(D L)W, (g, )ls =0 . (4.49)

ifiW, (g, t)=[H (D~ ) H(D— L)]W, (g„t) . (4.41)
3. GQCEin the coherent state -space

For the stationary case, we have the following results:
To define the GQCF in the coherent-state space, we

need state vectors with the following properties:

p, =&~:l0:&&&: (4.42)
x&p=AIp=px&, xI ES (4.50)

Hlpc &
Ec lac &

sly'„& = lq'„&,

W, (g, ) =+co'„W„'(g, ),

W„'(g, ) = & g'„ III(g, )lg'„&,

H (D„)W„'(g,)=E„'W„'(g,),

(4.43) x „p=O, px„=O .

(4 44) Now let

(4.45)

(4.46)

(4.4») and calculate

U(g)= exp iggsxI exp igg'+x, exp igg "x
I 7 P

(4.51)

(4.52)

TrpU(g) =Tr U(g)p= exp iggsAI Tr p exp igg

= exp iggsAI Tr exp igg "x „p = exp iggsA~
P

(4.53)

The last step in Eq. (4.53) is based on Eq. (4.51) and indi-
cates that Trp U(g) is not a functional of p. The above re-
sult means that, because of the cyclic invariance of the
trace operation, we cannot define any generalized quan-
tum characteristic function by means of lowering or rais-
ing operators. In other words, the coherent-state space
demands p to be the extreme state vector, which is too
restrictive to define a generalized quantum characteristic
function according to Eq. (4.53).

V. TECHNIQUES FOR CALCULATING

THE CONTINUOUS-VARIABLE REPRESENTATION
OF THE GROUP GENERATORS: ILLUSTRATIONS

The formalism presented in the above sections will be
applied to practical cases where the various continuous-

variable representations of the Lipkin SU(2), the Elliott
SU(3), and its extension Sp(6) are calculated as illustra-
tions. Techniques for calculating various differential rep-
resentations of the generators are given in the examples
and most results obtained here are new.

A. Representations in the group space

1. Group element in canonical form

Suppose the group element is written in canonical form
(2.1). Let us calculate the commutator

a = — a — a
, U(g) = exp(ig&&x) exp( —igox) e p(ixgo ) —x

Bg Bg Bg

= exp(togx)QI" (g)(ix, )=+V' (g)Dz, g, U(g),
I

(5.1a)
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where the c-numbers V' (g) are defined through

a a
Vt (g)(ix )= exp( —ig&x) exp(ig&x)—

m ( a m agm

a . a
exp( —ig&&K) exp(ig&&K) — = g Cz, (5.7a)

ag ag

where

(5.1b)

Since det
~~

V' (g)~ %0, the inverse of V, V ', exists. '

Hence

Co= —, C ~ = [C„,, igo K]=i ( C 'K )
a

ag

we have

(5.7b)

a
DR, &n

ag
'(g)'(

I ag
(5.2)

which is the right representation. In a similar way, we
obtain the left representation of ix

a
ag

( a

( ag
(5.3)

[K,Kp]=ipse tt~, Ky .
r

(5.4)

Example: SU(2). Let K (a=1,2, 3) be generators of
the SU(2) satisfying

a l
exp( —ig&&K) exp(igoK) — = g (C 'K)

ag

=g V'(g)(iK, ),

which is linear in the generators K, with

V(g)= (e —1) .
1

C

(5.8)

(5.9)

From Eqs. (5.2) and (5.9), we obtain the right representa-
tion of iK

The group element in canonical form is
a

ag

1

C —
1 ~ ve ag

(5.10)

U(g) = exp(ig&& K), go K =gg K (5.5)
For the left representation, we have

It is not difticult to calculate

[K,ig&&K]=QC (g)K,, =(CK)
y

(5.6a)

a —1D t g, =g Cag, , e —1

a

ag
(5.1 1)

gg e'
t3),

p

0

g

—g
0 g]

0

By means of the identity

where the matrix C(g) is defined as

(5.6b)
g =(a,p, 1) . (5.12)

To calculate the right representation we evaluate, ex-
panding the exponentials and using commutator (5.4) to-
gether with (2.9):

2. Group element in noncanonical form

We still use the SU(2) as an example. Let U(g) be in
the Eulerian form,

U(g)= exp(iyK3) e p(xiPK )e2xp(iaK3),

a a
U(g) = U(g)iK3 =DR 3 g, U(g),

CX ag
(5.13)

U(g) = U(g) exp( —i aK3 )(iKz ) exp(i aK3 )
a

a
(cosa)DR q g,

ag

a—(sina)DR, , g
ag

U(g), (5.14)

U(g) = U(g) exp( —iaK3) exp( —ipKz)(iK3) exp(ipKz) exp(iaK3)
ap

= [(cosa)(sin/3)DR, +(sina)(sin/3)DR 2+ (cosP)DR, ]U(g) . (5.15)
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The solution of the above equations is

a
DR, 1 ag

a ~ a= i.R
&

= —
( cosa )( cotp) —

( sina )
Ba BP

coso.'a
sinP By

(5.16a)

a a a
Dii 2 g, =iRz = —(sina)(cotp) +(cosa)R, 2 a 2 aa

a
DR3 g, aag

sina a
sinP By

=iDi== a
aA

(5.16b)

(5.16c)

D1,L
ag

a . a= (cosy )(cotp) + (siny )

These are precisely the angular momentum operators in
the Eulerian angle form.

For the left representation, we obtain

P„U(g) = exp(iyK, ) exp(ipK, ) =Or (gl ),
gL=(y, p) . (5.18b)

This procedure can be easily realized by introducing an
SO(2) invariant state i/0& in the Hilbert space,

K, ly, & =0. (5.19)

The functions of the coset SU(2)/SO(2) are defined as fol-
lows:

(5.20a)

(5.20b)

It is obvious that the right representation can only be
defined in the function space F (gii ) and the left one in
the F (gl ). By using the results of Sec. V A, we can easi-
ly obtain the representation of K in the coset space
SU(2)/SO(2).

For the right representation, setting a=g, p=0, and

y =0, from Eqs. (5.20a) and (5.16), we obtain

cosy
sinP Ba

(5.17a) F'(g~ ) = &Pole 'e 'l0& g~ =(|) v ) (5.21)

a a
Dz ~ g, = —(siny)(cotp) +(cosy)2, L

+ siny a
sinP Ba

(5.17b)

a
DR, 1 gR~ a

= i%', = —(cosy)(cotO)
a

a—(sinip) (5.22a)

aD g, ——
3, L

a
ay

(5.17c)
a

DR, 2 gR~ a
a= i%'z = —(sincp)(cotH )

ac/

This is precisely the continuous-variable representation of
the intrinsic group SU(2) in the Eulerian angle form. It
is well known that D L is anti-isomorphic to K and iso-
morphic to K, and that SU(2) and SU(2) commute.

a
DR, 3 gR~ a

(coscp)

a

ag

(5.22b)

(5.22c)

B. Representation in the coset space

To calculate the differential representation of the gen-
erators in the coset space, it is convenient to work in the
function space of the coset where the invariant state vec-
tor l~I)0& with respect to S plays the role of the projectors
onto the coset space.

l. Example: SU(2)/SO(2)

(5.23)

a
D1,L gL~ ~

agL
—(cos+)(cot8) +(sing)

a . a
ac/ ao '

(5.24a)

i.e., the orbital-angular-momentum operators of a parti-
cule with spin zero.

For the left representation, setting P = 0, y =y, and
a=0, from Eqs. (5.20b) and (5.17), we obtain

Let the group element be

U(g) = exp(iyK3) exp(iPK&) exp(iaK3)
a

D2, L gL~ ~
agL

a a= —(sining)(cot8) + (cosy)

where the SO(2) generator is Ki. The projector Pn onto
R

the right coset space is equivalent to putting y =0, and
the projector Pz onto the left coset space is equivalent

L

to putting a=0,
a

D3, L gL~ ~
agL

a

(5.24b)

(5.24c)

Pr, U(g) = exp(ipK2) exp(iaK3) =IIii(g„),

gi, =(a,P) (5.18a)

This is the differential representation of the intrinsic
group SU(2) in the coset space. However, „D(g ,iiB/
Bgii ) and D L(gl, B!Bgl ) have diff'erent definitions since
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they act on the diff'erent function spaces F"(gR ) and
F (gI ) which are related as follows:

1 22
B =(B» ), B =v'30a-( —1)

p —v v —p
F (gL)=[F"(—gR)]* . (5.25)

(5.29c)
It is easy to check that Eqs. (5.22) and (5.24) satisfy the
relation where the subscript d =p —v, and

gL, &

~g'L

a
DR, n gR &

OgR
(5.26)

(L 2 =L2 =0) .

Q =(Q„), L =(L„)
(5.29d)

2. Example: SU(3)/SO(3) in canonical form

The Elliott SU(3) algebra is SU(3)= I Q„,Lq I, where
Q„are the Elliott quadrupole operators, and the angular
momentum operators L constitute the SO(3) algebra.
The SU(3) group element can be written as

~L—~R

6L 6R
I3

(5.30a)

(5.30b)

The left representation can be obtained in a similar way
as that for the derivation of Eq. (5.26). It reads

U (g) = exp(iaQ) exp(ifIL ),
U (g) = exp(i AL ) exp(iaQ),

where

(5.27a)

(5.27b)
3. Example: SU(3)/SU(2) in noncanonical form

Choose lPo& to be a scalar of SU(2)=IQz
+ Q 2, L„Q2 —Q 2 ) subject to

F (g )=&&,IU"(g)it( & =&Pole "Qlg&,

F'(g, ) = & @lU'(g)ly, &
=

& pie "ly. & .

(5.28a)

(5.28b)

It is obvious that

aQ =+a„Q, Q =( —1)"Q „, p= —2, —1,0, 1, 2
P

IIL =gfl L, L =( —1)qL, q= —101 .q' q
q

Choosing
l Po & as the SO(3) invariant state vector,

Lq i/0& =0, we have the functions of the coset
SU(3)/SO(3) as follows:

Q+2IPO& =L IPO& =0

The group element of the SU(3) can be written as

R
—ia'(Q2+Q ~) —ip'L, iy'(Q2+Q ~—) ivL

lr&Q2+Q &j l13L, l~[Q2+Q 2] l(9QOXe ' 'e 'e ' 'e
iHQO ia(Q2+Q ~) ipL, iy(Q2+Q 2) ivL

2 —2eze2 —2
—ir'&Q +Q ) —iP'L —ia'(Q +Q

The functions of the coset SU(3)/SU(2) are

(5.31a)

(5.3 lb)

(5.32a)

(5.32b)

F'(gL)=[F"(—gR)l* . (5.28c) F'(g )=&0 IU"(g)it(&

In a previous paper, ' we presented the right representa-
tion of the Elliott SU(3) in the coset SU(3)/SO(3) space,

ivLz iy(Q2+Q 2) ipL ia(Q2+Q 2)

xe (5.33a)

SR= B a
ac* (5.29a)

F'(g )=&qlU'(g)lyo&
i()QO ia(Q~ Q+2) iPL iy(Q2+Q ~)

1/2
6R = i 3BtB—

where

cot(3B B)', (5.29b)
BA

xe' (5.33b)

where g„=gI = IO, a,p, y, v]. The generalization of the
method for deriving SU(2) representation (5.12) and (5.16)
leads to the following results for the right representation:

X„=i —sin(0+ a —y )(sinp)( tanv) ——' sin(0+ a —y )(cscp)(cotv)
R a
X

BO Ba

+cos(0+ a —y )(cosp)(cotv) + —,
' sin(8+ a —y )[(cscp)(cotv)+ (sinp)(tanv) ]

~ ~ a
Qp 2

Bp

+cos(0+ a —y )( sinp)
Bv (5.34a)
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=i ——' sin(0 —a —y )(cosP)(tanv) ——' sin(0 —a —y )(secP)(cotv)R a
2 B|9 Be

+cos(0 —a —y )(sinp)(cotv) —
—,
' sin(0 —a —

y ) [(sec/3)(cotv) + (cosp)(tanv) ]
(3 a

ap By

a—cos(0 —a —
y )(cos/3)

Bv
(5.34b)

X,"=i (cot2/3)(sin2a)
a

Be
a a—(cos2a )

—(csc2/3)(sin2/3)

R ~ R(Q~+Q 2) = — 6i, Qo = —3i

(5.34c)

(5.34d)

(Qz —Q 2)"=&6 —(cot2P)(cos2P) —(sin2u) +(csc2/3)(cos2a)a a a
Ba Bp

(5.34e)

(Q +Q )"=+(—')' —3cos(0+a —y)(sinp)(tanv) +cos(0+a —y)(cscp)(cotv)
1 —1 B|9 Be

+2 sin(0++ —y )(cos/3)(cotv)
~ a

a

—cos(0+ a —y ) [(cscp)(cotv) + (sinp)(tanv) ]
a

+2sin(0+a —y)( sinP)
a

Bv
(5.34f)

(Q|—Q &) =( ', )' i 3—cos(0 —a —y)(cosP)(tanv) +cos(0 —a —y)(secP)(cotv)

+2 sin(0 —a —y)(sinp)(cotv) +cos(0 —a —y)[(seep)(cotv)+(cosp)(tanv))a a
Bp By

a—2 sin(0 —a —y)(cosP)
Bv

(5.34g)

F (gL)=[F ( gR)]*

+~(gL ) = [X, ( —gz )]*, i =x,y, z

Q„'-(gi)=[Q„'(—g~)1* / =+2 +1 0.

(5.35a)

(5.35b)

(5.35c)

which allow analytical solutions of all the SU(3) irreduc-
ible representation bases.

For the left representation, the following relations
hold.

a, =(r, ip; )l&2, a, =—(r, +i@, )lv'2, -

e=x,y, z . (5.36)

(5.37a)

&a aa/3 ~ ~ ia if3 ~ (5.37b)

As an extension of the Elliott SU(3) group, the Sp(6)
group consists of the following generators:

C. Representation in the coherent-state space.
Example: Sp(6)/U(3) C g= g (a," a,p+ —,'5 p), (5.37c)

Let r, , p, be the coordinate and momentum of the ith
particle; the corresponding creation and annihilation
operators can be constructed as follows:

where the generators C
&

constitute the U(3) subalgebra.
Their commutators are

[C p, C,]=C,5p —C f35, .

[C p, A, ]=— 1
(5 +1+5,fiA,p+5,+1+5 ~A, ,g),Q 1+5„

[A p, A, ]=— (Cp 5,+C 5p, +Cfi, 5 +C,5p,, ),1

(1+5 p)(1+5r, )

(5.38a)

(5.38b)

(5.38c)
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[C p, Aq, ]= [5p~+1+5,A, +5p,+1+5 A r],+P 'Y~ +1+5 Pv'

[A p, A, ]=[A p, At, ]=0.

(5.38d)

(5.38e)

A
&

are the cross-shell two-phonon excitation operators
and responsible for the giant quadrupole and monopole
resonance excitations. C & are the phonon-conversion
operators and responsible for the surface oscillations.
Suppose

~ Po ) = ~N, N, N ) is the ground state of a nucleus
with a closed shell in harmonic-oscillator basis, then

1+6,
p, E 2

1+6y,
g A=+ — g~' Ar, .

P,E'
The functions of the coherent state are defined as

(5.40c)

C.p~y, &=~.p~y, &, ~.p= N+ 5,A

(5.39a)

(5.39b)

F'(g )=&y, U'(g)ly&ls, =,=&&,le'

g* w~
F'(g ) = & qlU'(g) lgo& l„=a= & &le" 140& .

(5.4 la)

(5.41b)

where N is the total phonon number in each direction.
Obviously ~Po) is the lowest-weight state of a certain irre-

ducible representation of the Sp(6). To construct the
coherent state of the Sp(6), we write

We first calculate the right representation. From the
equation

pF (g )=&2(1+5 p)&Pole A pl/)
ag ~

U (g) = exp g gsPC p exp(g+ A ) exp(g A ),
a, /3

(S.4Oa)

UL(g ) = exp(g+ A ) exp(g A ) exp ggs pC
p

a, /3

(5.40b)

we have

Apg
ag

=+2(1+5 p)A p g
Bg

1 a
&2(1+5 p) Bg P

F"(g )

(5.42a)

(5.42b)

where Furthermore, from the equation

R~.p g-
ag

F"(g )=&Po~e C pe e ~P)

r

=&go~ C pe +QQ(1+5, )(l+5p, )&2g 'e A,p ~g)

A p+QQ(1+5, )(1+5p,)&2g 'A,"p g 'ag FR( ) (5.43a)

we get

RCpg
ag

=A p+ QQ(1+5, )( 1+5p, )&2g 'A, p

ae=A p+QQ(1+5, )/(1+5p, )g
'

E Bg

To get (A. "p)", we need to calculate

0=&y, ~A'.@'- ~q&

(5.43b)

=&po~e A p
—(2N+A)&2g p— y Q(1+5., )( 1+5p, )(1+5„)g 'gP'A „Q 1 + 5&p y, p

(A "p) —(2N+ A)&2g P— QQ(1+5 )(1+5p,)(1+5~,)g Pg P'~,
~ F (g )+1+5.p „ (5.44a)
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and obtain

(Az )t
Bg

=(2N+ A)&2g ~+
1+5 p

={2N+A)&2g ~+ y~(1+5 )(1+5 )(1+5 )g g~'A"+1+5 r
apr ~

[/2

g Q(1+5 ~)(1+5p,)(1+5,)g rg~'
1+5, ()g r (5.44b)

In summary, we have obtained the right coherent-state representation of the Sp(6) as follows:

~R
&Z(1+5.,} ag.~ ' (S.4Sa)

1 /2

(A~g) =(2N+ A)V2g ~+ g Q(1+5 )( I+5g, )/(1+5~, }g rg~' (5.45b)

0 g=(N+ 3/2)5 p+QQ(1+5, )/(1+5', )g
' a

ag~'
(5.45c)

The left representation can be obtained from the follow-
ing relations:

VI. DISCUSSION

FL(g+)=[F (g )]* (g+=g* ), (5.46)

Ap g~, — = (Ag) g
L ~ R

Bg+ Bg
(5.47a)

(A g) g~,
0g~

R aApg
Bg

(5.47b)

Cp g~,
og+

R a
Cp g

ag
(5.47c)

1 ~b
&2(1+5 p) Bg ~

&Zg ~ b'.~,
where the boson operators obey

[b p, b"
p ]=(5 5'.+5 p5p ~ )/(1+5 p),

[b p, b p ]=[b p, b"
p ]=0 .

The right representation in the boson form is thus

RA ~/3 &~p

(A p) =(2N+ A)b p

(5.48a)

(5.48b)

(5.49a)

(5.49b)

(5.50a)

+ QQ(1+5 }(I+5g, )(1+5,r)
1 +5&@y, g

X b rbPb, ,

C p=(N+ 2 /2)5„p+QQ(1+5, )(1+5',)b,b,p .

(5.50b)

(5.50c)

By using the DGR-GCM, ' the coherent-state repre-
sentation can be transformed into boson form. For the
right representation it amounts to the substitutions

In this paper we have presented a unified formalism for
the continuous-variable representation of dynamic
groups. Our general formalism is based on the
differential on the group manifold. The advantage of the
formalism is that it unifies difT'erent continuous-variable
representation theories. For instance, the DGR-GCM
and the GQCF at first glance appear to be quite different
approaches. After the above lengthy investigation we
finally find out that these two approaches are just two
specializations of a general formalism in two difterent
physical spaces (the Hilbert space and the von Neumann
space). Their common features are thus unveiled clearly.
The unification of different continuous-variable represen-
tation theories of the dynamic groups will strengthen
their mathematical foundation and make the theories
more transparent.

Another interesting point of the present formalism is
to display the duality of the right and the left representa-
tions of the dynamic group. This duality of representa-
tions is universal and reAects the following profound and
well-known fact: According to group theory, any group
G has its anti-isomorphic counterpart, its intrinsic group
G. This universal property of the group is of course
preserved in its representation theory. We have known
for a long time the situation for the rotation group SO(3}
where the anti-isomorphic counterpart of the rotation
group SO(3) is just the same group viewed from the in-
trinsic coordinate system (for example, the body-fixed
system of a rotating top). From the SO(3) example we
conjecture that any intrinsic dynamic group and its rep-
resentation have some physical meaning. In this paper
we have seen that the duality of representations in the
SO(3) case exists in general. The questions are therefore
raised about the physical meaning of the left representa-
tion of the dynamic group and its usage in physics. This
problem deserves further investigation.
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