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Quantum simulation of the electronic structure of atoms and molecules provides a rigorous upper
bound to the true ground-state energy in these systems. Two approximations that are normally in-

voked, the short-time approximation for the Green's function and the fixed-node approximation for
the true ground-state wave function, are investigated. It is found that certain approximations to the
short-time Green's function introduce significant errors in the wave function near the nodes and
Coulomb singularities. These errors can cause the rigorous upper bound to be violated. Introduc-
ing a multiple-time-step method we will show how this can be treated properly.

I. INTRODUCTION

The Green's-function Monte Carlo (GFMC) method
developed by Ceperly and Kalos' was the first quantum-
simulation method applicable to the full many-body
Schrodinger equation. Its greatest success was initially in
obtaining exact ground-state energies for boson quantum
fluids, liquid helium in particular. To date, a practical
formulation of the GFMC or other simulation methods
for the many-fermion problem has eluded researchers, al-
though a few special cases have been solved. '

The quantum simulation of many-fermion problems
has thus progressed through the development of several
approximation schemes. In applications involving the
electronic structure of atoms and molecules, most of
these approximation schemes are some variation of a
method which has become known as the GFMC short-
time approximation. In Sec. II we will derive the short-
time approximation to the GFMC and specifically identi-
fy the sources of error which occur. We wish to explicit-
ly distinguish between errors that result from the short-
time nature of Green's function and those which are in-
herent in dealing with fermion problems.

The principal results of this study were that we were
able to separate the sources of error which occurred as a
result of the finite size of the time step, the attractive
Coulomb singularity, and the nodes of the wave function.
With use of improvement which we call the multiple-
time-step method near the nucleus and nodes, several
significant sources of error were removed. The only
sources of error that remained came from the finite size
of the time step and the fixed-node approximation, which
will be explained in Sec. III. The calculation of the corre-
lation energy of lithiumlike atoms will be shown as a real-
istic example demonstrating the effectiveness of these im-
provements.

II. GREEN'S-FUNCTION MONTE CARLO

METHOD

A. The dift'usion analogy

Kalos and co-workers developed the GFMC method
by noting the analogy between the X-body Schrodinger

equation with the Hamiltonian H,

r) s(R, t)
-V' + V(R) Qs(R, t)=i'

2m Bt

or

+s
s=&

Bt

and the diffusion equation with an absorption term
3 (R),

where R is a three-dimensional position vector,
R =(ri, r2, . . . , rz) and hence 7 is a three-dimensional
Laplacian, and D is a diffusion coefficient.

If the absorption term 3 (R) is equal to V(R), and, set-
ting A = m =D = 1 and ~=it, the two equations are exact-
ly equivalent. With this notation the Schrodinger equa-
tion becomes

(3)

Thus the solutions of the dift'usion equation Pt, (R, r) are
equivalent to the solutions of the Schrodinger equation
fs(R, t) in imaginary time. It is easy to demonstrate that
Eq. (3) can be used directly to find the ground state ener-

gy of the Schrodinger equation. The formal quantum-
mechanical expression for the time evolution of the
4(R, r) from some initial state qt(R, O) is given by

P(R, r) = g g„a(R)exp( —E„),r
where

a„=f dR $(R,O)t(i„(R ) .

Equation (4) decays with time. Actually, the decay pro-
cess occurs with only positive E„,but this can always be
achieved by subtracting constant energy Ez from the
Hamiltonian. It is necessary to choose a trial ground-
state energy E~ which is nearly equal to the true energy
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——z'V'q G(Rz, rz, R (, r))+ V(R —ET)G(Rz)rz, R (, r()

BG(Rz, rz, R, , r, )

av2
(6)

with the boundary condition that in the limit ~2~~],
G(Rz, r&, R &, w&)=o(Rz —R &). Here the trial energy Er
is subtracted from the both sides of the equation. The
time evolution of the density (or wave function) can be
done with this propagator G by the integral equation

Q(Rz, rz)= JdR)G(Rz, rz, Rt, r))Q(R), r)) . (7)

Given the ability to calculate G, Eq. (7) provides one with
the ability to perform the simulation.

The physical interpretation of this equation is that, for
given time ~& at position R, , the probability of moving a
particle to a position R2 at ~z is proportional to the
Green's function, i.e., a configuration at position R2 at 72

is sampled from the propagator G(Rz, rz, R, , r, ).

B. Short-time approximate Green's function

Since the exact analytic form of the Green's function is
not available, one needs to construct certain approxima-
tions to it. In this section the short-time approximation
to the GFMC will be explained. Once the Careen's func-
tion with the short-time approximation is supplied, Eq.
(7) is iterated for large times.

For sufficiently short time,
T 72 7 J )

such that ~ is very small, the configuration does not prop-
agate very far. Since the displacement of a configuration
from an initial position R

&
is small, one can assume that

the potential energy is approximately constant in the vi-
cinity of R &,

U = V ( R z ) Er =const . —

Eo, so that at large time, all the excited states decay out
and the dominant component in the wave function (or
density) is the one with the lowest eigenvalue. Thus, as-
suming that one has a good guess for the ground-state en-
ergy, the asymptotic behavior of Eq. (4) is

g(R, r) ~aogo(R )exp[ —(Eo ET )r] Gogo(R )

where n =0 is referred to the ground state of the wave
function.

The value of ET is refined during the course of the
simulation, so that the density 1t is independent of r for
large ~.

The GFMC method does not attempt to simulate the
Schrodinger equation directly in real time, but substitutes
the diffusion process. The density evolves with time until
it approaches the ground-state wave function. One may
say that the GFMC method simulates the Schrodinger
equation in imaginary time. These formal manipulations
establish the equivalence of the Schrodinger equation in
imaginary time with the diffusion equation in real time.

In the simulation of quantum systems, the Green's
function for the Schrodinger equation plays a key role.
The Green's function is defined as

If the potential were a constant, then Eq. (6) would be-
come

—
—,
'7' G„( Rz, R, , r) +UG„(Rz, R, , r)

r)G„(R,R, , r)
C}7

with the boundary condition G(Rz, R, , O)=5(Rz —R~).
The solution for this equation is well known for a con-
stant potential U,

G„(Rz,R, , r)

=(2vr) exp[ —(Rz —R, ) /2r —Ur] .

This approximate equation is employed in the short-time
GFMC formulation. Knowing the short-time approxi-
mate Green's function, the integration of Eq. (7) can be
performed by stochastic techniques. In the GFMC
method the wave function is supplied as a set of 3N-
dimensional position vectors of electrons, which is called
configuration. Given a configuration R, at ~], the posi-
tion of Rz is sampled from the normalized Green)s func-
tion

(2~r) ' exp[ —(Rz —R, ) /2r]

and the second factor is a measure of the weight which
the new position contributes to the integral. One ac-
counts for this weight as follows. First evaluate the
weight W(R z ) = exp[ —U(R z )r]. If W(R z ) is less than
1, then with probability W(Rz), the configuration at Rz
is retained as a member of the ensemble at time ~. If
W(R z) is greater than 1 but less than 2, then Rz is ac-
cepted once and a second identical configuration is ac-
cepted with the probability W(Rz) —1 as a representa-
tion of g(R z, rz). For W(R z ) ) 2 this process is repeated.
Thus the configurations in the ensemble are continually
being created or destroyed depending on the weights.

C. Importance sampling

Because the iteration of Eq. (7) is performed stochasti-
cally by moving a finite number of configurations forward
in time, the number of configurations in the ensemble
necessarily fluctuates during the course of the simulation.
To reduce these purely statistical variations in the popu-
lation one needs another variance reduction method.
This can be achieved wit' the introduction of an approxi-
mate trial wave function. This trial wave function must
be known analytically, and may be obtained from any
reasonably accurate approximate method. If one simply
multiplies the trial wave function Pr(R z ) on both sides of
Eq. (7), one may rewrite the propagator equation as

Wr(Rz)4(Rz. z)

= J dR, [QT(Rz)G(Rz, R, , r)/fz(R, )]fr(R, )

Xg(R, , r, ),
defining a new density, f (R, r), and importance kernel,
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k(R2, R, , r),

f (R, 7. ) =QT(R )g(R, r ),
K (R2, R, , r)=fr(R2)G(R2, R l, r)/QT(R, ) .

With these definitions, Eq. (10) becomes

f(R2, r2)= J K(R2, R, , r)f(R, , r, )dR, , (12)

cess of this equation is that the weight is almost constant.
This is because the total energy does not change much,
even though the potential energy changes rapidly. As a
result, the number of configurations generated by Eq. (12)
is almost constant. Thus, statistical fluctuation is re-
duced in this way.

III. DIFFICULTIES ASSOCIATED
WITH FERMION SYSTEMS

K (R2, R, , ~) = [QT(R2 )/gT(R, )]G (R2, R, , r)

= G(R, ,R, , ~)[exp[lngr(R2) —lngT(R l )]}.
(13)

Expanding lngT(R2) in a Taylor series about R l and
neglecting third-order terms, and also neglecting
terms, the short-time approximate kernel becomes, in an
efficient form,

K„(R2,R, , r)=(2~v*) '~ exp[ —(R2 —Rl Fw*) /2r*]—

Xexp[ —[H~r(R l )/~r(R, ) ET—
(14)

where

r*=~/[1 —V lnPT(R, )~],
F =V 1npT(R l ) (15)

Here we have also neglected some second-order terms of
the form

a2
2(R2, R l )(R2/ R lg )

g g
lnyT

dR „BR,,
where i is not equal to j, and i,j represent x,y, z coordi-
nates.

Inspection of this approximation shows that the effect
of importance sampling is to shift the position of the
center of the Gaussian toward a favorable region of the
trial wave function by an amount F~' and to change the
width by ~*. The weight is

expI —[HPT(R, )/lt T(R, ) Er]r}—
and this term is always close to 1 if the trial energy is
chosen such that Hg/Q=Er. The most important suc-

with the initial condition K(R2, Rl, 0)=6(R2 —Rl). An
intuitive appreciation of the effect of importance sam-
pling can be obtained by considering Eq. (11). It is the
ratio of the trial wave function QT(R2)/QT(R l ) that
gives the biased random walk (biased means that the ran-
dom walk is drawn to the favored region). For example,
when the ratio is less than 1, the probability of moving
R

&
to R 2 is decl eased ~ Thus this ratio gives a biased ran

dom walk toward higher probability densities and the
configurations spend more time in regions favored by the
trial wave function. The diffusion analogies with this new
propagator equation are described in other places.

What is mostly used is not Eq. (11) but the one with
further approximations. Equation (11) can be rewritten
as

In characterizing the errors introduced by the short-
time approximation in many-electron atoms, several com-
plications arise. As before, one does not have an analytic
expression for the correct Green's function for the full
many-body Schrodinger equation and only the short-time
approximate Green's function is available. Furthermore,
one does not know the position of the nodes of the true
ground-state wave function. Finally, the potential is
more complex and in particular it is singular.

Introducing a one-dimensional system, authors have
shown that the error in the energy is linear in the size of
the time step when the importance kernel was used and
the error in the Green's function mostly occurred near
the nodes and singularities. In addressing these prob-
lems, we have focused our attention on the smallest atom-
ic system that has an antisymmetric ground-state lithium
atom.

Lithium has three electrons. The spin of electron 1 can
be assigned to spin P (spin down); and electrons 2 and 3,
to spin a (spin up), respectively. Since the spin of elec-
trons 2 and 3 is the same, one must choose the spatial
wave function to be an antisymmetric function under in-
terchange of r2 and r3. One can express the spatial wave
function as

ND(1 2 3) el(rl )~01(r2)1 2(r3)~ (16)

where lt, are the atomic spatial orbitals and
~ ~

is the
Slater determinant. This will be part of our trial wave
function in the GFMC calculation. The total wave func-
tion is Eq. (16) times the Jastrow factor, which will be
discussed later in this section.

In practice, there are several difficulties associated with
the simulation of atomic electronic structure. These
problems are interrelated, but we have tried to separate
them in a way that they can be discussed separately: (a)
finite time step, (b) fixed-node approximation, (c) nodal
surface, (d) Coulomb repulsion singularity between elec-
trons, (e) Coulomb attractive singularity near nucleus,
and (f) infinite variance in the energy.

As explained before, the finite size of the time step is
introduced to derive Eqs. (14) and (15). In fact, this
causes many difficulties. When this short-time approxi-
mate Green's function is derived, it is assumed that the
change in potential is almost constant during the finite
time step. However, the change in the Coulomb potential
near the nucleus is not small. As a result, the Green's
function is inaccurate. Therefore, the energy calculated
from sampled configurations is inaccurate and a rigorous
bound to the true ground-state energy is not guaranteed.
Thus the Green's function must be corrected; otherwise,
this method is no longer reliable. In fact, the finite size of
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the time step is interrelated with other problems. This
will be expanded upon when each problem is discussed
later.

We now discuss how the fixed-node approximation is
introduced in simulating the nodal problems. In applying
the GFMC method to any quantum problem, the wave
function t((R, r) is interpreted as a positive probability
density. However, since the fermion eigenfunction of the
Harniltonian must be antisymmetrized in space and spin
variables, g(R, r) is not, in general, positive definite
everywhere. The subspace of particle positions at which
a wave function is zero is called the nodal surface of the
wave function. Because of the antisymmetric property of
the wave function, there are two equivalent regions of
space in the wave function which are positive or negative.
These regions are separated by a nodal surface. These
two equivalent regions are related by the interchange of
the coordinates, as required by fermion statistics. Hence,
if one knows the function P(R, r) in one such region, its
value in the other regions can be obtained by suitable in-
terchanges of the coordinates. If these nodal surfaces
were known exactly in advance, one could use the GFMC
to solve the problem by imposing the boundary condition
that the solution vanish at the nodes. Unfortunately, the
nodal surfaces are not known in advance but come as a
part of the solution. However, even though one does not
know the nodal surface in the true wave function g, one
can use an analytic trial wave function t(r(R) which
"guesses" the true nodal surfaces. Then the true wave
function follows the same nodal surface in the whole pro-
cess as the trial wave function's guesses. Thus this re-
quires that the GFMC solution vanish at the nodal sur-
face prescribed by the trial wave function. This is known
as the fixed-node approximation. There are some benefits
of using this approximation. First, since the trial wave
function gives a rigorous upper bound to the energy with
a prescribed nodal structure, an upper bound is still ob-
tained in the GFMC method as long as the Green's func-
tion is correct. Second, the trial wave function can be
used as an importance function to reduce variance.
Third, it is a good approximation resulting in errors in
the energy of 1 part in 10 . If the Green's function
satisfies Eq. (6) with the boundary condition
G (R z, w, , R, , r, ) =6(R 2

—R, ) and one additional bound-
ary condition that the Green's function goes to zero at
the nodal surface, then it gives a rigorous upper bound to
the energy. Since the exact Green's function is not avail-
able in the X-fermion problem, one may use the short-
time approximation to the Green's function in practice.
Then there is no guarantee that this will give a rigorous
upper-bound condition. However, if the approximation
satisfies Fq. (6) in the zero-time-step limit with all bound-
ary conditions satisfied, then it gives a rigorous upper
bound in the zero-time-step limit. Moskowitz et al.
proved that the energy obtained by the GFMC method
was always a rigorous upper bound to the true ground-
state energy for fermions, when the Green's function
satisfied the condition that it was zero at the nodes of the
trial wave function and satisfied the correct cusp condi-
tion near the nucleus. In the same paper, they calculated
an energy for LiH that violated this bound; as they noted,

the Green's function did not satisfy the correct cusp con-
dition near the nucleus. A possible way of correcting the
procedure by using a multiple time step will be discussed
in a later section. Thus far, the fixed-node approximation
has been discussed. The fixed-node approximation re-
quires that the GFMC solution vanish at the nodal sur-
face. In principle, one can investigate current flow on the
nodal surface, by the diffusion analogy, to see what actu-
ally happens on the nodal surface. Consider the
diffusion-equation analogue of the Schrodinger equation
with source term S(r)

C}P +T.J=S,
at

where S =(ET—V)p. For an equilibrium state (station-
ary state), such as the ground state, r)p/"r)t =0 and in-

tegrating the above equation over a volume consisting of
a region bounded by nodal surfaces gives

d R V.J= J.da= — d R ET —V p,

where J = —
—,'V'p. Again,

Jda= — d R ET —Vp.

The interpretation of the equation is as follows. The
left-hand side of the equation is the net current flow
across the nodal surface and the right-hand side is a small
but nonzero quantity because the potential fluctuates as a
function of configurations. Thus the current flow across
the nodal surface, which is represented by the number of
configurations, is not zero since there is a nonzero contri-
bution from the integration of (ET —V)p. This is expect-
ed because the fermion ground-state wave function is
linear in the spatial coordinates and so its derivative eval-
uated at the nodal surface gives some constant. This
phenomenon is altered when importance sampling is in-
troduced. In this case, the current is represented by
J = —V'f = —V(ggt ), which is equal to zero because f is

proportional to the square of the spatial coordinates, and
its derivative, which is evaluated at the nodal surface, is
zero. When the short-time approximate Green's function
is introduced, the condition that the solution vanish at
the nodal surface is violated. In other words, since the
short-time approximate Green's function, which we in-
troduced from Eqs. (14) and (15), does not satisfy the an-
tisymmetric condition, some configurations are still sam-
pled from the nodal surface. As a result, the current flow
across the nodal surface is not zero. Fortunately this
number is very small compared to the total number of
configurations during the process. It was noted that,
when a bigger time step was used, this number increased.
In addition, this number can be used to check how reli-
able this method can be.

The Jastrow factor has been introduced for the correla-
tions of electrons. Electrons will be in favorable positions
when they are far away from each other because of their
repulsive forces. The Jastrow factor is defined as

W~ =e px[U(r, )],
where
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C)r,
1+C r2 /J

r, is an interparticle distance, and C, and C2 are varia-
tional parameters. This gives a higher probability when
electrons are far away from each other and, therefore,
reduces statistical Auctuations. Even if one were to intro-
duce the Jastrow factor, there still would exist finite prob-
ability since the wave function is finite (qir is not zero)
when electrons are close to each other. When electrons
are close to each other the potential is divergent. Even
though the potential is divergent the total energy is not
divergent because the wave function is finite and its
second derivative, which is related to the kinetic energy,
is divergent in such a way that those two divergences
cancel each other. This is called the cusp condition. A
main advantage of using the Jastrow factor is that this
can reduce the variance in the calculation, since the ran-
dom walks are biased by the factor. The total trial wave
function is now expressed as a product of the Jastrow fac-
tor and the Slater determinant,

where OD is the Slater-determinant wave function.
Item e identifies the diSculty which arises in treating

the attractive Coulomb singularity between the electron
and the nucleus. In the derivation of the short-time ap-
proximate Green's function it is assumed that the change
in potential during a time interval ~ is small. If this con-
dition is satisfied, then Eq. (9) is still valid, and in the lim-
it of zero time step a rigorous upper bound will be ob-
tained. Since there is a Coulomb singularity near the nu-
cleus, the potential changes are large such that the short-
time approximate Green's function does not satisfy Eq.
(9). Also, the importance kernel does not satisfy the
correct cusp condition. In fact, part of this second
derivative term, which is related to the kinetic energy, is
neglected in the derivation of the short-time approximate
importance kernel, Eq. (14). It seems that this effect
would be small if the correct Green's function were used.
Since the short-time approximate Green's function is
used near the nucleus, there is no guarantee that this
effect is small. Unless this problem is corrected, this
method cannot be reliable. Moskowitz et al. introduced
a square well for the divergent Coulomb potential such
that the depth of the well Vo was chosen to be

Vo = 3 /4R „,f —d r,1

where the integral limit is from zero to R . In the same
paper they also stated that in the limit ~~0 and R„~O
calculation would give the exact result. A better solution
to this problem is to use a method which generates the
correct Green's function for this singularity. We will in-
troduce the multiple time step in this work to correct this
problem.

There is another serious problem in the derivation of
Eq. (14), which is related to the infinite variance in the
energy. It is assumed that the force (F =Vlngr) and
second derivative (V' In/7) are small enough so that

V' in'= V P/g ~ VP~ /it ~ .

At the nucleus, even if the first derivative of the wave
function is finite (because of the "cusp"), its second
derivative is divergent. At the nodal surface, because P,
which goes to zero, occurs in the denominator of each
term, while the numerator of each term is finite, the
second derivative of in/ is divergent. In summary, the
first derivative is finite but the second derivative is diver-
gent at the nucleus, and both the first- and second-
derivative terms are divergent at the nodal surface. Thus
the short-time approximate importance kernel is not
correct near the nucleus and the nodal surface. In partic-
ular, since this kernel is not correct near the nucleus, a
correct cusp condition is not satisfied. As a result the en-
ergy is still finite (due to a wrong cusp condition) but
shows an infinite variance. In Sec. IV we will show how
the infinite variance can be removed.

IV. MULTIPLE- TIME-STEP
SAMPLING TECHNIQUE

In Sec. III we argued that a number of approximations
are present in the usual implementation of the short-time
approximation which cause it to be untenable as a reli-
able tool in investigating many-fermion problems. In this
section we will present a resolution of these problems
which is consistent with the original philosophy of the
short-time GFMC formalism. In other words, we will
present a method of implementing these ideas which has
the virtue that the errors due to the finite size of the time
step do indeed go to zero as the time step goes to zero.

Our goal is to fix the short-time approximate Green's
f'unction by using a multiple-time-step sampling tech-
nique and reduce all other errors at least by the same or-
der of magnitude as the size of the time step. We will in-
troduce a multiple-time-step sampling technique in this
section and argue that this solves the problem at the nu-
cleus and the nodal surface.

The multiple-time-step method is constructed by not-
ing that the Green's function can be propagated forward
in time by itself,

G (R 3, 7i, R, , 7i)

= jG(R3, 7„R2,7q)G(R2, 7q, R i, 7i)dR~ . (17)

This says that the Green's function at a large time ~; can
be obtained from Green's function at an earlier time ~2 by
propagating it forward in time using G(R3, 73, R z, 72). In
principle, the above process may be repeated indefinitely.
Then Eq. (17) becomes

V Inner «1 and V Inner ((1. In fact, these conditions
are violated near the nucleus and nodal surface. It can be
shown as follows. The force term is expressed as

F = V in/ = V it /it .

Since P is linear in the spatial coordinates and finite at
the nucleus, its derivative is some constant, and so the
force term is constant, not divergent. But at the nodal
surface, g is zero, thus the force term is not constant but
divergent. The second derivative term is expressed by
two terms,
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G(Rf, r~, R, , r, )= J J dR„. . dR, G(R~, rf, R„,r„).. . G(R, , r, , R;, r;) . (18)

The Green's function which is propagated from the initial time ~, to final time ~f can be expressed as the product of
many intermediate Green's functions 6 with a smaller time step A~ & A~o, where the original time step is

It is also noted that A~„does not have to be the same in the process. One can write down a similar ex-
pression for an importance kernel,

K(Rf, rf R, , r)= J JdR, dR~. . . dR„K(R),rf, R„,r„)K(R„,r, ,R„,,r„,) K(R, , r, , R;, r, ) . (19)

In this expression each kernel has a weight. If one separates the weight from each kernel, it may be rewritten as

WK'(Rf, rf, R;,r;)= W, . . . W„J . . . f dR, dR, dR„K'(Rf, rf, R„,r„)

XK'(R„,r„,R„,,r„,)
. K'(R ~, r, , R, )r, ), (20)

where primed coordinates represent the kernel without
its weight factor. Thus the total weight during the prop-
agation of this kernel from ~,- to ~f can be expressed by

W=QW, , (21)

Ar, = 3/f, ,

b, r~ =-B/f, ,
(22)

where f, is the force (=V' lngr ),f, is the second deriva-
tive term ( =V' jngT), and 3 and B are some arbitrary
constants. Wherever f, or f, becomes large, which
violates the validity of the approximate kernel, a small
enough time step should be used so that those derivatives
times the step are small enough to recover the validity of
the approximation. Among these two time steps, the
smaller will be chosen because the approximation is more
seriously violated for the smaller time step. So the next
time step may be chosen as

m'n( ~~o~ ~~
~ ~~b (23j

where min means the minirnurn of those variables. For
example, if 6~0 is chosen, then the error will be the same
order of magnitude as the size of the time step. In this
case it becomes a normal process, i.e. , Eq. (19) is not tak-
en. If A~, or A~& are chosen, it is a sign that the force or
second derivative are big. Then the multiple-time-step
Green's function Eq. (19) is taken. This process will be
finished when A~', which is defined by

where 8' is the ith weight of the kernel in each step.
The way to decide the intermediate time step ~ is

shown as follows. As explained earlier, the force and the
second derivative of the trial wave function must be small
so that the importance kernel, Eq. (14), is valid. For-
tunately the force and the second derivative term can be
monitored to determine exactly when and where these
terms are big. Whenever they become large, that
configuration will use the multiple time steps of Eq. (19).
Instead of a large-time propagation Azo=~f —~, , many
small substeps will be chosen. The question of how many
steps should be taken is decided in the following way.
Let A~o be the initial time step and define two more time
steps such that

becomes zero so that it achieves the zero time limit near
the nucleus and nodal surface. Since each subprocess in
Eq. (18) satisfies the approximation, Eq. (8), the resulting
Green's function is regarded as the correct one. Similar-
ly, since the subprocess in Eq. (19) satisfies the short-time
approximation conditions, the resulting kernel is taken as
the correct one. After this process the resulting
configuration will be taken with the total weight ex-
pressed in Eq. (21).

What we have done here is to sample an accurate
Green's function near the nucleus and nodal surface. It
can be explained as follows how these two problems are
treated properly with the multiple-time-step sampling
technique.

First, because of the small time step used near the nu-
cleus, the change in potential is small. Thus the approxi-
mate Green's function, Eq. (8), is still valid. The error
from this process is reduced approximately to the same
order of magnitude as the size of the time step. Also, the
cusp condition is satisfied, since the Green's function and
the approximate kernel are fixed. As a result, the infinite
variance is removed and the error in the energy will be
the same order as the size of the time step.

Second, the importance kernel was not correct near the
nodal surface. With the introduction of the multiple time
step, the Green's function was improved and, further-
rnore, the importance kernel was corrected such that
fewer configurations were sampled near the nodal sur-
face. Since the antisymmetric condition is still not
satisfied in the importance kernel, the boundary condi-
tion that the solution vanish at the nodal surfaces is still
violated, but with the multiple-time-step sampling tech-
nique, fewer configurations are sampled near the nodal
surface. By doing this, the error in the importance kernel
is reduced by approximately the same order of magnitude
as the size of the time step which is consistent with the
initial assumption when it was derived.

The only remaining source of errors is from the finite
size of the time step and the fixed-node approximation.
These two problems are inherent in the method. The
finite size of the time step can be removed by taking the
limit to zero time step. The energy for the zero time step
can be obtained from extrapolation. This will be shown
in Sec. V.
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FIG. 1. Calculations of the ground-state energy of the lithi-
um atom in terms of time steps from the old method.

FIG. 2. Calculations of the ground-state energy of the lithi-
um atom in terms of time steps from the multiple-time-step
sampling technique.

V. COMPARISON AND RESULTS

We will provide numerical results in this section which
show the conventional short-time approximate GFMC
fails and how the new method introduced in this study
works. We chose to study the lithium atom since it has
an antisymmetric wave function (i.e., helium has a sym-
metric wave function). Because it is highly desirable to
supply the best initial information to the configurations, a
variational Monte Carlo (VMC) calculation was done.
Another purpose of doing this is to compare its results
with the GFMC results and see the improvement.

Figure 1 shows the behavior of the old method. Illus-
trated is the ground-state energy of the lithium atom for
various sizes of the time step. Total run time was 40 a.u.
before and after the equilibrium. When ~=0.001 was
used, the run time was 10 h with the IBM 3081D. The
parallel line in the figure is the experimental value for a
lithium atom. As explained, since the short-time approx-
imate importance kernel is inaccurate near the nodal sur-
face and the nucleus, it turns out to be totally unreliable.
The scatter of energy for dift'erent sizes of the time step is
definite evidence of the infinite variance mentioned ear-

lier. Furthermore, it is clear that the exact energy would
not be obtained from the extrapolation to the zero time
limit.

Shown in Fig. 2 are the results of the new method in-
troduced in this study. Since the Green's function is
corrected properly with the introduction of the multiple-
time-step sampling technique, the problems near the no-
dal surface are reduced and the cusp condition is
satisfied. As a result, the infinite variance is removed and
the error generated from the nodes and Coulomb singu-
larities is approximated to an order of the same magni-
tude as the finite size of the time step. In other words,
most of the errors result from the inherent finite size of
the time step. Clearly, the errors in the energy are larger
for larger time steps. This behavior is very predictable
because the exact ground-state energy can be obtained
from the extrapolation to zero time step. Also notice
that for small time steps the curve is linear in the step
which is consistent with the one-dimensional case. The
extrapolation gives very accurate results. For example,
the ground-state energy for the lithium atom is 7.478 a.u.
experimentally and our answer from the extrapolation
gives 7.479+0.0022 a.u. This variance would be reduced

TABLE I. Comparison of HF, VMC, and GFMC methods for various nuclei (all in a.u. ). The num-
bers in parentheses are uncertainty figures.

Z HF

—7.4327
—14.2774
—23.3760
—34.7261
—48.3268
—64.1780

VMC

—7.450(7)
—14.287(9)
—23.399(7)
—34.752(12)
—48.324(17)
—64.164(19)

GFMC

—7.4790(22)
—14.3149(72)
—23.4234(35)
—34.7743(38)
—48.3537(42)
—64.2156(58)

+corr

0.0463
0.0462
0.0475
0.0482
0.0407
0.0376
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wave function (with the Jastrow factor) was used. Table I
also shows that this improvement is not noticeable for
heavier atoms because of the statistical uncertainty. The
main goal of this calculation is the GFMC results. It will
be convenient to define a correlation energy as the result
of the HF method minus that of the GFMC method.
Consistently the GFMC method gives better ground-state
energy than the HF method. Illustrated in Fig. 3 are the
correlation energies for various nuclei. For heavier nu-
clei, it is observed that a smaller time step is required to
achieve the linear fit for the extrapolation. The increase
of the correlation energies for heavier nuclei is not notice-
able. This is the evidence that the HF approximation,
which basically comes from the independent electron
model, improves for heavier nuclei, since the electrons
become more independent because of smaller screening
effects for heavier nuclei.

VI. CONCLUSION

carr HF GF MC

FIG. 3. Correlation energies for various nuclei.

if longer runs were taken. In addition to this calculation
of the lithium atom we did some more calculations for
lithium-like atoms (arbitrary z with three electrons) using
the multiple-time-step sampling technique. Table I
shows the results of the variational Monte Carlo method,
which we calculated, the Hartree-Fock (HF) method,
and our new method. The VMC method gives a little
better result than the HF method, since a better trial

It has been shown that the error in the Green's func-
tion mostly occurred near the nodes and Coulomb singu-
larities. We were able to separate the sources of errors
from the finite size of the time step and those from nodes
and Coulomb singularities and the fixed-node approxima-
tion. As a result, a correct treatment near the nodes and
Coulomb singularities using a multiple-time-step sam-
pling technique recovered most of the experimental
values. Our calculation gave 7.479+0.0022 a.u. for the
lithium atom, while the experimental value was 7.478 a.u.
What it means is that the fixed-node approximation,
which is inherently introduced, is a very good approxi-
mation.
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University, Jeonju, Jeonbug 560-756, Korea.
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