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Slater-type basis sets are commonly used to perform nonrelativistic and relativistic variational
calculations. A major limitation of this method is that no more than about 14 powers per nonlinear

parameter can be used while working in double-precision arithmetic without entering into numeri-

cal difficulties. Even for moderate-size basis sets, large numerical errors are introduced. We intro-
duce a variational method based on the orthogonality properties of the Laguerre polynomials. All

the matrix elements of the Dirac Hamiltonian are calculated in closed form, therefore avoiding nu-

merical cancellations and vastly increasing the speed of the calculations. As a result, full double-

precision accuracy is maintained with very large basis sets. Results for sets with 75 powers are
given as examples. The method is applied to a new, very accurate relativistic calculation of the
two-photon decay rates for hydrogenic ions. This calculation resolves a discrepancy between the
previous calculation of Parpia and Johnson [Phys. Rev. A 26, 1142 {1982}]and that by Goldman
and Drake [Phys. Rev. A 24, 183 (1981)]in favor of the latter.

I. INTRODUCTION

During the last few years new variational methods
have been introduced for a relativistic description of the
electron in the presence of a potential. These methods
avoid the problems of spurious roots and variational col-
lapse and are, for example, able to provide a successful
representation of the Dirac-Coulomb and the Dirac-
Hartree-Fock spectra. ' Current experimental precision
in one- and two-electron systems, requires these methods
to provide very accurate and stable results. It is this as-
pect of the theory that is analyzed in this paper.

In this work the numerical accuracy of Slater-type rep-
resentations will be discussed, with the Dirac-Coulomb
case as the test ground. It will be shown that large nu-
merical errors are introduced even for basis sets of
moderate size. The generalized Laguerre method is then
introduced and it will be shown that numerical stability is
maintained for basis sets much larger than the ones that
can be used in the Slater case. The method will then be
applied to a very accurate relativistic calculation of the
two-photon decay rates for the hydrogenic isoelectronic
sequence. This calculation resolves a discrepancy be-
tween the previous calculation of Parpia and Johnson
and that by Goldman and Drake in favor of the second.
We start with a brief review of the Dirac-Coulomb Ham-
iltonian and Slater-type representations.

In the case of a spherically symmetric potential, one
can separate the radial part of the Dirac equation from
the angular part. The radial eigenfunctions satisfy a radi-
al Dirac equation that for the case of the Coulomb poten-
tial can be written in Hamiltonian form in the following
way:

g(r)
f (r) (1.2)

H, is the radial Dirac-Coulomb Hamiltonian, which in
atomic units is given by

1 (xZ

K

r dr

d
Gr

cxZ (1.3)

g;(k, r)
0, (k, r)= c &, i =1,2, . . . , 2Mf; A, , r (1.4)

where X denotes a set of nonlinear parameters. It is con-
venient to choose basis functions that satisfy

(1.5)

where we have used the definition

(0, ~0 )=I 0, 0 dr= I (g, g +f,f )dr . (1.6)

Atomic units 6=m= 1, c =o,'', with a being the fine-
structure constant, are used throughout. In Eq. (1.3) Z is
the nuclear charge and ~ is the Dirac quantum number
tc=+(j+ —,') for l =j+—,'. g(r) and f (r) are called the
large and small radial components, respectively.

The variational solutions to the Hamiltonian (1.3) are
obtained in the following way. One proposes a set of
basis functions

H„N =E4,

where N is a real two-component radial spinor

The simplest Slater-type basis set that provides solu-
tions that satisfy proper variational bound conditions was
introduced by Drake and Goldman. This set is of the
form
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0, (l, , r)=
(2g)2y+» + &

I (2y+2i +1)

—Ar @+ie r

i =0, 1,2, . . . , M —1

that satisfy

(1.12)

(1.13)

0, +M(A, , r) = (2g)&y+»'+ &

I (2y+2i +1)

1/2

—Ar A+i

(1.7)

where

[ 2
( z)2]1/2

i =0, 1,2, . . . , M —1

(1.8)

A rigorous proof of bounds and the conditions to avoid
spurious roots were later discussed by Goldman.

The basis functions 0, are in general not orthogonal [as
is the case in (1.7)]; therefore, the next step involves the
orthonormalization of the basis set. This task is accom-
plished by the diagonalization of the overlap matrix
(0; l0i ) and results in a set of 2M orthonormal basis vec-
tors

2M
6;= ga, ,0, ,

j=1
(1.9)

H„=(e, lH„le, ) . ( l. 10)

This diagonalization results in a set of 2M variational
eigen vectors P, ( A. , r ),

2M 2M 2M

|t, = gee, = g g ca„0k
j=1 j= 1 k =1

The next step in the variational procedure involves the
diagonalization of the Hamiltonian matrix

where E, are the variational energy eigenvalues. The
variational eigenfunctions and eigenvalues can still be op-
timized by varying the nonlinear parameters k. This
nonlinear optimization will involve a repetition of the di-
agonalizations (1.9) and (1.13) for each value of k.

The maximum number of Slater basis functions that
one can use without entering into numerical difficulties
while working in double-precision (64-bit) arithmetic is
M =14. Typical sets of results are presented in Tables I
and II. In these tables we present the positive-energy
variational eigenvalues in the form E+=E —mc . All
the values were calculated for the s, &2 states of hydrogen
with a nonlinear parameter that optimizes the first excit-
ed state. Notice that hydrogen is particularly difficult
from the point of view of the accuracy of the results be-
cause (E+Imc )

—1 —(a l2); therefore, between four
and five digits are lost in the difFerence E+ =E —mc .

The results obtained in double precision with 14 vec-
tors appear, in principle, to be correct; the positive-
energy eigenvalues (first column in Table I) are upper
bounds to the exact ones (fourth column in Table I); simi-
larly, the negative-energy eigenvalues are lower bounds to
—mc . The question we ask now is: How accurate are
these variational results (not as compared to the exact
values but from a numerical perspective, i.e., how many
digits are reliable in the values obtained)? An answer to
this question can be obtained by repeating the calculation
using quadruple-precision (128-bit) arithmetic. These re-
sults are presented in the second column of Table I. The
conclusion is dismal: only a few digits are accurate for
most levels instead of the 11—12-digit accuracy expected
after subtracting the rest mass. The results are (as ex-
pected) much worse when we go to a larger set with

TABLE I. Values of the positive-energy variational eigenvalues for the s states of hydrogen in a.u. , for basis sets with one non-
linear parameter and 14 powers. The methods used are: Slater in double precision (column 1), Slater or Laguerre in quadruple pre-
cision (column 2), and Laguerre in double precision (column 3). The exact bound-state eigenvalues are given in column 4. The digits
underlined are in error when compared to the quadruple precision results.

1

2
3
4
5

6
7
8
9

10
11
12
13
14

Slater (double)

773
1.65
0.64
0.304
0.157
0.080
0.035
0.0079

—0.0091
—0.019 66
—0.031 249 7
—0.055 556 295 176 4
—0.125 002 080 189 8
—0.500 006 656 61

E + —mc (a.u. )

Quadruple precision

7.746 630 013 029 04
1.665 678 692 424 43
0.645 844 802 387 52
0.309 340 149 313 86
0.159 957 562 138 64
0.081 671 631 191 89
0.036 301 819 653 37
0.008 461 459 478 09

—0.008 856 434 142 00
—0.019 633 941 333 34
—0.031 249 630 704 97
—0.055 556 295 176 30
—0.125 002 080 189 48
—0.500 006 656 590 37

Laguerre

7.746 630 013 026
1.665 678 692 419
0.645 844 802 381
0.309 340 149 312
0.159 957 562 133
0.081 671 631 186
0.036 301 819 649
0.008 461 459 475

—0.008 856 434 144
—0.019 633 941 336
—0.031 249 630 706
—0.055 556 295 175 6
—0.125 002 080 189 51
—0.500 006 656 595

Exact
bound-state
eigen values

—0.002 551 029 591 74
—0.002 958 591 301 78
—0.003 472 236 667 83
—0.004 132 250 045 63
—0.005 000 024 629 20
—0.006 172 872 986 72
—0.007 812 547 128 87
—0.010204 150 942 84
—0.013 888 996 749 76
—0.020 000 181 058 54
—0.031 250 338 029 17
—0.055 556 295 176 53
—0.125 002 080 18948
—0.500 006 656 597 48
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TABLE II. Values of the positive-energy variational eigenvalues for the s states of hydrogen in a.u. , for basis sets with one non-

linear parameter and 18 powers. The methods used are: Slater in double precision (column 1), Slater or Laguerre in quadruple pre-

cision (column 2), and Laguerre in double precision (column 3). The exact bound-state eigenvalues are given in column 4. The digits

underlined are in error when compared to the quadruple precision results.

1

2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18

Slater (double)

10.6
2.4
0.95
0.49

0.28
0.16
0.10
0.06
0.03
0.009

—0.004
—0.0129
—0.019984
—0.031 250 336
—0.055 556 295 1764
—0.125 002 080 190
—0.500 006 656 599

—503.9

E+ —mc (a.u. )

Quadruple precision

13.636 403 682 107 94
3.066 522 079 631 41
1.249 027 401 018 78
0.641 111 124 71997
0.368 662 110773 49
0.224 366 237 015 51
0.139285 770 619 28
0.085 313429 478 87
0.049 299 714 641 09
0.024 461 869 655 88
0.007 056 934 060 61

—0.005 047 234 577 13
—0.013 151 137 11633
—0.019989 975 11426
—0.031 250 336 975 03
—0.055 556 295 176 53
—0.125 002 080 189 48
—0.500 006 656 597 48

Lag uerre

13.636 403 682 09
3.066 522 079 625
1.249 027 401 013
0.641 111 124 71
0.368 662 11076
0.224 366 237 015
0.139285 770 617
0.085 313429 474
0.049 299 714 635
0.024 461 869 653
0.007 056 934 056

—0.005 047 234 580
—0.013 151 137 119
—0.019989 975 116
—0.031 250 336 977
—0.055 556 295 176 47
—0.125 002 080 190
—0.500 006 656 603

Exact
bound-state
eigen values

—0.001 543 214 251 83
—0.001 730 108 986 65
—0.001 953 131 195 80
—0.002 222 229 716 98
—0.002 551 029 591 74
—0.002 958 591 301 78
—0.003 472 236 667 83
—0.004 132 250045 63
—0.005 000 024 629 20
—0.006 172 872 986 72
—0.007 812 547 128 87
—0.010204 150942 84
—0.013 888 996 749 76
—0.020000 181 058 54
—0.031 250 338 029 17
—0.055 556 295 176 53
—0.125 002 080 18948
—0.500 006 656 597 48

M=18. These results are presented in the first column of
Table II. In this case the numerical procedure becomes
unstable and most of the results are meaningless, includ-
ing the appearance of spurious results in the forbidden re-
gion E, )Ef,„b & —mc . This numerical instability
poses a serious limitation on the application of the
method to calculations where large basis sets are needed,
or where the contribution of high-energy states is impor-
tant (e.g. , calculations involving summations over inter-
mediate states).

In Sec. II we shall introduce a new type of basis set
that will solve the problems of numerical stability (accu-
rate results with 75 powers per nonlinear parameter will
be presented as examples), and will perform more
efticiently the calculations by drastically reducing the
number of computations needed. In Sec. III the method
is extended to the nonrelativistic case. In Sec. IV the
generalized Laguerre method is then applied to a new, ac-
curate calculation of the two-photon decay rates of the
2s, &2 state in hydrogenic ions.

n —m
I (a+n +1)

(n —m)!I (a+m +1)

(a+n)(a+n —1) . . (a+m+1) ifm &n
n —m!

1 ifm=n .

(2.3)

It is this orthogonality property that makes these func-
tions perfectly suited to our problem. On the basis of this
orthogonality condition, we define now the basis set

P, (y, A,r),
i =0, 1,2, . . . , M —1

(2.2)

For integer values of a, (2.2) yields the usual definition of
the combinatorial.

The generalized Laguerre polynomials satisfy the
orthogonality condition

II. GENERAI. IZED I.AGUERRK BASIS SETS

We define now a new set of basis functions based on
the generalized Laguerre polynomials:

0
C I+M A f 0 5 t &» ~ ~ ~

where

(2.4}

n n+a zm
L„(x)= g ( —1)

m=0 n m m I

where

(2. 1) (2A, )'
P„(y,A, , r) = e "(2Ar)rL„r(2Ar),

&„(y )

with

(2.5a}
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1/2
I (2y+n +1)P„y =

L

With this definition, the functions 4, satisfy

(e, ie, ) =s„.

(2.5b)

(2.6)

In other words, we start with an orthonormal basis set.
In this way we skip the diagonalization leading to (1.9),

and we are therefore able to approach the calculation
with an arbitrary number of orthonormal basis functions.

In essence we have written down a priori the linear
combinations of Slater functions that yield an orthonor-
mal basis set. Using Eqs. (2.5) and (2.1) we can write, ex-
plicitly, the coefficients a," in the expansion (1.9). In
terms of the Slater basis set (1.7), the generalized
Laguerre basis set can be written as

@„(y,k, r) = r(2y+n +1)
n!

1/2
n n

g ( —1)
m=0

[r(2y+2~ +1)]'"
r(2y+ m + 1)

(2.7)

C)„=ga„,8, , (2.g)

the Slater approach calculates the Hamiltonian matrix
elements as

)=gg~„;a,&&;IH, I&, & . (2.9)

Our task is now to write down closed-form expressions
for the matrix elements of the Hamiltonian in the basis
set C)„. Rewriting Eq. (2.7) as

This definition can be used in Eq. (2.10) to obtain

2A,
n m

)
g g;(y ,')P, (y————,')5;,

n V m V '=Oj=p
M

P( )P ( )
(2.14)

where M =min(n, m). Using now in Eq. (2.14) the identi-
ty

The sum in the expansion (2.9) introduces a large amount
of numerical cancellations to such a degree that even if
the orthonormal basis set is introduced through Eq. (2.7),
the variational procedure will fail in the same way Slater
basis sets do.

To avoid the expansion (2.9) we need to calculate in
closed form the following quantities:

(2.10)

i=0

we obtain

With this result we can finally write, for vn

(2.15)

M 2y+M
X ~, (y —l)]'=r(2y)

2y =, tPM(y)]'
i=0

and
1 A.

vn
= „— =—R„y (2.16a)

d
Wnm = n m

61T

To calculate v„we use the summation formula

(2 11)
where

min(n, m) (y)
nm V

Pmax(n, m)( Y )
(2.16b)

L„(x)= g L '(x),
m=0

(2.12)
If instead of Eq. (2.12) we use the more general expan-

sion

which, in terms of the functions (I)„,becomes

(2A.r)'
p„(y, &, r)= g P;(y —

—,')p;(y —
—,', A. , r) . (2.13)

P„(y )

L„(x)=
m=0

m+s —1 L„(x),
a similar derivation yields the general formula

s+n —i —1 s+m —i —1

P;(y —s/2)]
Pn P, S —]. S-

T ~

(2.17)

where M =min(n, m). There is no summation involved
in the calculation of U„and the matrix element (2.17) is
calculated by summing a sequence of positive numbers.
Therefore, by using the generalized Laguerre representa-
tion, one avoids the numerical cancellations inherent in

the linear combinations in the Slater basis sets.
To calculate w„, we use the recurrence relation

d - = dL„(x)= L„,(x)—L„,(x),
dx dx
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from which we can derive by successive iterations

n —1

L„(x)=—g L (x) .
dX p

(2.18)
—[(2y+ n)n]' 5„ (2.22')

Eq. (2.17), and

2&(p, lrlp ) =(2n +2y+1)5„—[(2y+m)m]'y |i„

In terms of the functions P„, we obtain

d(t(„(y, A, , r) = —AP„(y, A, , r)+ ~P„(y, A, , r)
r 7

n —1 P.(y)—2A, g P, (y, A, , r) . (2.19)

Using Eqs. (2.16) and (2.19) we obtain

m„= „=—AA„R„ydr
(2.20a)

where

1 ifn &m
0 if n=mnm
—1 ifn)m .

(2.20b)

xL„=(2n +a+1)L„(a+n)L„—,
—(n +1)L„+, ,

to obtain

Finally, for completeness, we add to our list the matrix
elements of the radial variable r. For this purpose, we
use the recursion relation

where Eqs. (2.5b), (2.16b) and (2.20b) apply.
The results obtained using the generalized Laguerre

method are presented in the third column of Tables I and
II. It can be seen by comparing with the quadruple-
precision results that full-double-precision accuracy is
maintained. Notice that four to Ave digits of numerical
precision are lost in the case of hydrogen when the rest
mass 1/a is subtracted. The Laguerre method allows us
to extend the calculations to very large basis sets. As an
example, in Table III we present the double-precision re-
sults for a set with 75 powers. This size of a representa-
tion is simply unthinkable if one uses Slater basis sets.
All the calculations were performed in a VAX 8550 using
double-precision FORTRAN.

In some calculations, the convergence of the results is
largely improved if basis sets with several nonlinear pa-
rameters are used. ' The overlaps between basis sets with
different nonlinear parameters do not introduce the nu-
merical errors inherent in basis sets with many powers
and one nonlinear parameter. This can be easily seen; the
basis functions 0, [Eq. (1.7)] for consecutive values of the
power of r become increasingly similar:

1/2

and

2Arg„=(2n +2y+1)(t(„—[(2 y+n)n]' y2((„((

—[(2y+n +1)(n +1}]' (2.21)

(2n+2y+1) if n =m
—[(2y+n)n]' if n =m +1

2X((t„lrl(t( ) = ' —[(2y+n +1)(n +1)]'y
if n=m —1

0, otherwise . (2.22)

(2.16')

(2.20')

Again, in Eqs. (2.20) and (2.22), one avoids the linear
combinations involved in the calculation of matrix ele-
ments using Slater orthonormal basis vectors. Equation
(2.22) can be extended to any power of r by using, repeat-
edly, the recursion relation (2.21).

To recapitulate, we present now a list of the matrix ele-
ments that we have expressed in closed form throughout
this section:

( 0;(A, , r) l6);+, ((M, r) )

2y+2i —1

2y+2i

1/2 ' y+i —(1/2)
2i,

A, +p

2p
X+@

@+i +(1/2)

(2.24)

and the overlaps do not approach unity. The reason is
that for different values of the nonlinear parameter the
Slater functions are grouped into different regions of the
radial variable r. Still, the same limitation on the number
of powers that can be used remains in effect for each ex-
ponential parameter, and the numerical stability of the
method will depend on the proper calculation of the ma-
trix elements between basis functions with the same non-
linear parameter. The results obtained previously can be
extended to the multiexponential case with the help of
the formula

for i »1, (2.23)

resulting in the numerica1 failure of the diagonalization
of Eq. (1.9) (orthonormalization). If different values of
the exponential parameters are used, (2.23) changes into

(4g )y+(1/21
(P„(y,A, , r)lP (y, A, , r)) =( —1) ~ —R„'(y)

(g+ )2y+ 1 ™p+ g

'N —M
M N

M —jj =(O

2y+N+ j
j

2J
p
p+ A.

(2.25}
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TABLE III. Sample of the variational energy eigenvalues in a.u. , for the s states of hydrogen with a
generalized Laguerre basis set with one nonlinear parameter and 75 powers, optimizing the first excited
state. E+ —mc' and E +mc denote the relativistic {Dirac) positive- and negative-energy eigenvalues.
The computational accuracy is limited by the number of significant digits that remain after adding the
rest mass. E„„denotes the nonrelativistic (Schrodinger) eigenvalues.

1

2
3

5

6
7
8

9
10
11
12

63
64
65
66
67
68
69
70
71
72
73
74
75

E„,
—0.499 999 999 999 999
—0.125 000 000 000 000
—0.055 555 555 555 556
—0.031 250 000 000 000
—0.020 000 000 000 000
—0.013 888 888 888 889
—0.010204 081 632 653
—0.007 812 499 999 999
—0.006 172 839 491 092
—0.004 999 979 873 617
—0.004 129 220 399 329
—0.003 408 238 546055

0

1.428 252 894 11960
1.694 402 812 677 92
2.037 203 003 604 60
2.489 069 155 245 73
3.101 516 537 425 34
3.960 419914 592 94
5.217 628 667 031 32
7.162 502 078 461 75

10.403 290 530 987 3
16.403 442 592 123 8
29.460 609 371 706 6
67.136 778 903 250 7

273.875 789 416 07

E+ —mc'

—0.500 006 656 6
—0.125 002 080 2
—0.055 556 29S 2
—0.031 250 338 0
—0.020 000 181 1
—0.013 888 996 7
—0.010204 150 9
—0.007 812 547 1

—0.006 172 873 0
—0.005 000 004 5
—0.004 129 239 3
—0.003 408 256 3

1.428 183 257 5
1.694 305 437 5

2.037 063 122 0
2.488 861 619 3
3.101 196281 3
3.959 900 991 6
5.216 733 927 6
7.160 828 101 9

10.399 787 966 4
16.394 821 181 4
29.433 164 104 4
66.997 076 1650

271.649 044 035 7

E +mc'
—0.004 359 009 5
—0.005 396 1142
—0.006 434 430 0
—0.007 521 340 6
—0.008 676 422 9
—0.009 911 614 1
—0.011 235 936 1
—0.012 657 148 3
—0.014 182 474 3
—0.015 818 979 8
—0.017 573 797 8
—0.019454 282 3

—1.878 627 441 0
—2.214 705 972 4
—2.645 719 140 7
—3.211 188 381 2
—3.973 610 580 3
—5.036 595 593 0
—6.582 227 0130
—8.955 045 813 5

—12.873 378 820 1

—20.048 499 691 0
—35.442 980 900 3
—78.979 547 290 6

—309.182 500 195 8

In Sec. III we generalize the Laguerre method to the non-
relativistic case. Then, in Sec. IV we apply the relativis-
tic generalized Laguerre basis set to perform an accurate
calculation of the two-photon decay rate of the metasta-
ble 2s, &2 states in hydrogenic ions.

III. THE NONRKLATIVISTIC CASE

In this section we generalize the Laguerre method to
the nonrelativistic case. This case is much simpler, given
that, in the solutions to the Coulomb case, the radial vari-
able appears in the wave functions with integer powers
only. In this case, if we write the eigenfunctions to the
Schrodinger Hamiltonian as

„,(r)'P„)(r)= Yl (r}, (3.1)r
the nonrelativistic eigenvalue equation can be written as

2 2y+ 1+M'
2y —1 P„I' (3.&)

at the origin, namely, P —r +' becomes

2A. 1/2

P„(L,A., r) = e "(2Ar) +'L„+ (2Ar), (3.4)
P„(L +1)

with P„defined in Eq. (2.5b). All the matrix elements of
the Hamiltonian can be easily obtained, with the added
advantage that all the I functions are replaced by factori-
als. Using the results of Sec. II, we find after some alge-
bra

~l= —X~5„+2k, E„R„(y)
dp

+LIL+1)(Q„I, p I)

H, Q„=E„Q„,
where the radial Schrodinger Hamiltonian is given by

1 d 1(I +1)
2f'

(3.2)

(3.3)

4A.
4 nl. P

'(t'mI.
2 +M nm

7

(%+ 1}(M+1)
2y —1

(%+M +1)M
2g

The exact radial wave functions satisfy at the origin
the boundary condition P„&-r' '. The generalized
Laguerre basis set satisfying a similar boundary condition

(3.6)
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(2L +n +2)!
n! (3.8)

Notice that in the case L =l, i.e., when the basis set
satisfies the exact boundary conditions at the origin, the
coeScient of & P„ I

r
I P ) in the Hamiltonian matrix

elements is identically zero. In this case, the Hamiltonian
matrix elements are given by

where we used the definitions of Sec. II and

M =min(n, m), N =max(n, m), M'=min(n, m —1),
(3.7)

Q7 ~C02

(2ir) c

&fIA i In )&nI A f Ii )

E„—E; +coq

tion, while, in the calculation by Goldman and Drake,
Slater basis sets were used to represent the Dirac-
Coulomb Green function.

The theory of two-photon transitions is given in detail
in Ref. 3; we repeat here only a few relevant points. The
differential two-photon emission rate is given by

& f I
~ ~ I

n & & n
I
~ ) I

i &

E„E;+—co,

xdA, dB~, (4.1)

&p„,IH„Ip I ) =k' —5„+ R„(y)

2y+ 1+M' PM+'
2y+1 P.P. (3.9)

IV. RELATIVISTIC TWO-PHOTON DECAY RATES

We apply now the Laguerre basis set to the relativistic
calculation of the two-photon decay rates of the 2s&/2
state in hydrogenic ions. The aim is to provide a very ac-
curate calculation that will resolve the discrepancy be-
tween the two previous calculations of Parpia and
Johnson and of Goldman and Drake. In the first two
columns of Table IV we present a comparison between
these two calculations for the 2E1 contribution to the to-
tal two-photon decay rate. We note that the difference in
the results is larger than the uncertainty in each of the
calculations. The calculation by Parpia and Johnson was
done by a numerical solution of a perturbed Dirac equa-

In Table III we present the results obtained with a
basis set of the form (3.4) with one exponential parameter
and 75 powers, for the case l=O, and optimizing the first
excited state. An accuracy of 15 digits is obtained for the
full variational energy spectrum. The calculation was
performed on an IBM PC using the matrix oriented pack-
age GAUSS.

where i and f denote the initial and final states, co,. and
dQ are the frequency and element of solid angle of pho-
ton j, and g' denotes summation over all intermediate
bound states and integration over positive- and negative-
energy continua. The photon energies satisfy the energy
conservation requirement

E, —Ef = co, +A@2 . (4.2)

For photon plane waves, the operators 3 ' are given by

A~* =a.(ej + Gkj )e ' —Ge (4.3)

[e).Y'I M(k, )][uLM(r)]
A. , L, M

where v= 1, 0, —1, and

(4.4)

where k is the propagation vector, e is the polarization
vector, and G is an arbitrary gauge parameter, i.e., the re-
sults are independent of G. The total decay rate w is ob-
tained by integrating expression (4.1) with respect to the
photon frequency.

The calculation of (4.1) is performed by replacing the
summation g' by a finite summation over the positive-
and negative-energy variational eigenstates. The in-
tegrals over k, and kz in Eq. (4.1) are evaluated by mak-
ing use of the partial-wave expansions

Goldman
and Drake'

Z u) (2E1)
Parpia

and Johnson
This

calculation

1

20
40
60
80
92

8.2291(8)
8.1181(8)
7.8096(8)
7.3446(7)
6.7440(7)
6.3097(6)

8.2291
8.1196
7.8116
7 ~ 3453
6.7426
6.3093

8.229 062 6
9.117403 5
7.809 261 2
7.344 648 2
6.742 887 6
6.309 662 3

'Reference 3.
Reference 2.

TABLE IV. Different calculations of the 2E1 decay rates for
the 2s 1 /2 state in hydrogenic ions in s ', for a selected set of
values of the nuclear charge Z. The numbers in parentheses
denote the estimated error in the last digit.

Multipoles

2E1
E1M2
2M1
2E2
2M2
E2M3
E2M1
2E3
E3M2
E3M4

Intermediate
states

I l/2~I 3/2

P 3/2
S 1/2

d &/2, ds/2

I 3n~fsn
5/2

3/2

fsn f7nfsxz

f7n

Lowest order (s ')

8.229 06 X Z
2.537 18X10 ' XZ'
1.38036x10 "xZ"
4.907 23 X 10 '~ X Z '0

3.069 35 X 10 X Z '

1.422 93 X 10 X Z '

1.63936x10 "xZ"
5.52671x10-"x Z"
3.198 17X10 ' XZ'
1.57046x10-"xZ"

TABLE V. Multipole combinations included in the present
calculation of the total two-photon decay rates, with the al-
lowed intermediate states in the summation of Eq. (3.1). The
lowest-order term in an (aZ)' expansion for each multipole con-
tribution is presented in column 3.
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a.(az"M )*, v=o, 1

(
—(v) )s

LM G( .(a(vI )e (Ps )
(4.5)

TABLE VI. Total two-photon decay rates in s '. The num-
bers in parentheses denote powers of 10. For the finite nuclear
mass correction, the results should be multiplied by 1 —m /M.

The YL'M are related to the vector spherical harmonics

and

YpM~ ( k ) =Yz z M ( k )

YL'M(k) = —ik X YLM(k),

YzM"(k) =k XYL~(k),

azM =gz (kr)Yz z M(r),
1/2

(4.6a)

(4.6b)

(4.6c)

(4.7a)

(+1&
LM

L
2L +1 gL+1(k )YL,L+1,M(r)

1/2L+1
2L +1 gz +, (kr)Yz z+, M(r), (4.7b)

~'LM =gz(«) ~zM(r),

gz(kr)=4i i jL(kr),

and jz(kr) is a sPherica! Bessel function.
The contribution from v= —1 (gauge-dependent part)

vanishes identically. Terms with v=1 are electric rnul-
tipoles and terms with v=0 are magnetic multipoles.
Enough rnultipoles have been included in the calculation
to obtain an accuracy of eight significant digits for values
of the nuclear charge from Z=1 to Z= 100. The stability
and accuracy of the results have been verified with
respect to variations of the size of the basis set, the non-
linear parameter, and the gauge parameter. It was found
that a generalized Laguerre set with 18 powers was
sufticient to obtain the required precision. A11 the radial
integrals have been performed in closed form in terms of
hypergeometric functions, while the integration with
respect to the photon frequency has been performed us-

ing a 40-point Gauss-Legendre integration.
In Table V we list all the multipole combinations in-

cluded in the calculation in order to attain the accuracy
presented. We also show which intermediate states are to
be included in each case in the summations in Eq. (4.1),
as well as the lowest-order Z dependence of each contri-
bution.

The results obtained for the 2E1 transitions are com-
pared with the two previous calculations in Table IV.
Within the estimated errors, the calculation by Goldman
and Drake agrees with the present calculation. In fact,
using the Laguerre method, the results of Parpia and
Johnson can be reproduced to all digits if a Romberg in-
tegration of order 5 is used for the numerical integration
over photon frequencies. It is for the intermediate range
of nuclear charges that this integration is most dificult,
due to a rapid change in the first derivative of the in-
tegrand close to the nucleus. A higher-order routine than
that used by Parpia and Johnson is therefore needed to
attain convergence even for a relatively small number of
digits. This explains also the previous seemingly contra-
dicting fact that a non-numerical error could be present
in their calculation, given that their results were gauge

1

2
3

4
5

6
7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

u{s ')

8.229 062 6
5.266042 2(2)
5.997 293 7(3)
3 ~ 368 842 5(4)
1.284 705 1(5)
3.834 6300(5)
9.665 109 2( 5 )

2. 152 440 9( 6)
4.361 035 0(6)
8.200 651 3(6)
1.451 741 0(7)
2.444 985 1(7)
3,948 897 6(7)
6.154 354 3( 7 )

9.301 052 1(7)
1.368 505 7(8)
1.966 684 1( 8 )

2.767 979 6(8)
3.823 920 3(8)
5.195 165 8(8)
6.952 491 3( 8 )

9.177 814 3(8)
1.196 526 0(9)
1.542 226 6(9)

25
26
27
28
29
30
32
34
36
38
40
42
45
50
55
60
65
70
75
80
85
90
92

100

u.& (s ')

1.967 072 0(9)
2.484 813 4(9)
3.110885 2(9)
3 ~ 862 528 6(9)
4.758 917 6(9)
5.821 288 8(9)
8.540 025 0(9)
1.223 492 1( 10)
1.716 377 6( 10)
2.363 046 8( 10)
3.198 947 3( 10)
4.265 043 2{10)
6.400 220 4( 10)
1.186 913 1{11)
2.069471 1(11)
3.428 241 3(11)
5.438 792 6(11)
8.314 131 3(11)
1.230 568 6{12 )

1.770 223 7(12)
2.482 587 6( 12)
3.402 365 6(12)
3.836 368 1(12)
6.005 552 2( 12)

V. CONCLUSIONS

The results of Sec. II demonstrate that the generalized
Laguerre method is a very powerful tool for relativistic
variational calculations. Its main feature is the ability to
avoid the numerical problems associated with the more
cornrnonly used Slater basis sets. Another advantage is
that all the Hamiltonian matrix elements can be calculat-
ed in closed form in terms of the Laguerre orthonormal
basis vectors. In this way one obtains a much better nu-
rnerical accuracy and one is able to perform the calcula-
tions more efficiently by eliminating the expansion in
terms of the nonorthogonal Slater basis vectors 0;.

Another variational technique using 8 splines '' has
been recently introduced for calculations in atomic phys-
ics. This method uses piecewise polynomials defined over
a radial grid from r=O to a maximum value r =R. The
grid is defined in terms of a set of nodes and the varia-
tional calculation is optimized with respect to the posi-
tion of these nodes and the degree of the polynomials
used. The ad vantage of this method over the Slater

invariant.
Finally, the results for the total decay rates for a large

selection of hydrogenic ions are presented in Table VI.
These results do not include the reduced mass correction
factor 1 —m /M. The most important corrections not in-
cluded are those introduced by the finite nuclear size and
by quantum electrodynamic eAects. These can be treated
as perturbations, and calculated using the same finite
basis-set techniques.
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method is that the Hamiltonian matrix is sparse (all the
matrix elements between nonoverlapping splines is zero)
and therefore "well behaved. " However, the B-spline ei-
genvalues fall in some cases below the exact positive-
energy eigenvalues and are, therefore, not upper bounds
for the true spectrum as are those obtained using Slater-
type sets. Moreover, the results obtained using B splines
both for energy eigenvalues or for calculations involving
sums over intermediate states do not converge as fast as
those using Slater-type basis sets, so that the latter ones
produce more accurate results. The Laguerre method re-
moves the only disadvantage of the Slater-type vectors by
introducing computational efficiency and numerical sta-

bility, even for very large numbers of powers. The
Laguerre basis sets provide also excellent convergence for
calculations involving sums over intermediate states. For
example, the sum rules (relativistic and nonrelativistic) of
the form g„ i(0irin ) i (E„Eo—)

'
for k=0, 1,2,3 were all

satisfied to 15 digits accuracy. This also compares very
favorably with similar calculations using B splines. '
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