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Penning electron-energy distributions are calculated for collisions of He(2 'S) and He(2 S) with
sodium and potassium atoms. The formulation is in terms of quantum-mechanical wave functions,
which are determined using previously published complex potentials for the initial states and avail-
able experimental or presently calculated Hartree-Fock potential curves for the final state. Sensi-
tivities to these potentials are tested. The mechanisms for the observed energy structure are ana-
lyzed, and the effects of experimental finite energy resolution and collisional velocity spread on the
structure are shown.

I. INTRODUCTION

The collision of an excited atom A * with a target atom
8 can result in the Penning ionization (PI) process, '

A *+8~A +8++e

if the excitation energy of A * is greater than the ioniza-
tion potential of 8. The atom A is usually chosen as one
of the long-jived metastable species, He(2 'S ) or
He(2 S), whose excitation energies, 20.6 and j9.8 eV, re-
spectively, exceed the first ionization energy of every neu-
tral atom other than He and Ne. The related process of
associative ionization results in the molecular ion AB+.

Measurement and subsequent analysis of the Penning
electron-energy distribution (PEED) give considerable in-
formation about the ionization collision dynamics as well
as about the pertinent interaction potentials. ' Howev-
er, PEED spectra have rarely been calculated from ab in-
itio potential curves and collision theory. ' Nevertheless,
calculation of the PEED presents an exacting additional
test of the theory. The goal of the present study is to pro-
vide better understanding of the aspects of the collision
dynamics that are most important in predicting the
PEED, in particular for co11isions of He* with alkali-
metal atoms.

The optical model, applied to the computation of ei-
ther the total ionization cross sections or the PEED re-
quires the initial-channel potential curve V*(R) and the
transition rate I (R )/A. Accurate calculations of V*(R )

require large configuration-interaction (CI) electronic
structure computations. Models and simplified ab initio
prescriptions have been proposed that yield total PI cross
sections in reasonable agreement with the experiments. '
However, accurate ab initio calculations demand large
basis sets including a large number of diffuse functions to
represent the electronic continuum. Various L approxi-
mations have been devised for calculating the widths
I (R ). ' " The only supplemental information necessary
for the PEED calculation is the final-state potential curve
V+(R), which can be obtained through standard elec-

tronic structure techniques, e.g. , Hartree-Fock or CI cal-
culations.

Penning ionization of alkali-metal atoms by metastable
He has received significant attention in recent years. Be-
sides Penning-ionization electron spectroscopy, ' other
experimental methods used include the crossed-beam
technique, ' ' stationary-afterglow measurement, ' and
spin polarization of Penning electrons. ' In addition, the
experimental analysis of the energy spectra of electrons
released from alkali-metal atoms incident on metal sur-
faces' ' is of current interest. The theoretical counter-
part comprises a classical treatment of the total ioniza-
tion cross sections of Na for collisions with metastable
He and the more elaborate calculations using ab initio op-
tical potentials and widths for the ionization of sodium '

and potassium atoms.
In a recent paper, we reported that the potential

curves correlating with the lowest atomic autoionizing
state and initial Penning state do not cross; therefore, in-
elastic transitions involving the atomic autoionizing
states are expected to be unimportant. In the present
work, we take into account the effect of finite resolution
in the measurements of the electron energies as well as
the effect of averaging over the distribution of the col-
lision energies. For collisions of metastable He with the
alkali-metal atoms, the final-state potential curves (e.g. ,
for HeNa+ and HeK ) are shallow, and hence the associ-
ative ionization cross sections are expected to be very
small, so we need not consider this process.

In Sec. II, we briefly describe the theoretical formula-
tion and the approximations used. In Sec. III, we discuss
the potential curves adopted in this paper. We present
the results in Sec. IV and the conclusions in Sec. V.

II. THEORY

Hickman and Morgner presented a comprehensive
description of the theory of Penning ionization within the
Born-Oppenheimer approximation as derived by several
authors. ' We shall use their working formula for the
PEED (atomic units are used throughout, except when
specifically indicated otherwise),
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where gd is the partial-wave solution to a single-channel
Schrodinger equation with complex potential V*(R )—

—,'iI (R ), 6& is the complex phase shift, g,
' is the partial-

wave solution to a single-channel Schrodinger equation
with potential V+(R ), p is the reduced mass of the sys-
tem, E =k /2p is the initial relative collision energy, and
c is the Penning electron energy. The nuclear rotation is
included in the initial and final channels through a rota-
tional centrifugal energy term l(l+ I )/2pR .

The expression in Eq. (2) is quantum mechanical but
still incorporates a few approximations. First, we assume
that the initial and final partial-wave functions have the
same I, i.e., the small amount of angular momentum car-
ried away by the Penning electron is neglected. This ap-
proximation is necessary since the partial (I-dependent)
widths have not been calculated. Because the sum in Eq.
(2) includes a large number of partial waves (e.g.,
1,„=200 at thermal energies), this approximation is
reasonable. Second, we assume that the electronic cou-
pling of the initial state to the final state can be represent-
ed by a real R-dependent quantity I (R), i.e. , any R-
dependent phase is neglected. To the best of our
knowledge, this phase has never been calculated for any
Penning ionization reaction, so it is difficult to say how
much effect it might have. It is easiest to understand the
possible effect of such a phase in terms of a stationary-
phase argument. If there is more than one point of sta-
tionary phase associated with a given electron energy c.

(often there are two), some error will be caused by this
approximation to the extent that the phase varies. A
third, related approximation, well justified by the station-
ary phase, entails the use in the calculation of I (R) of a
continuum state at exactly the energy V*(R)—V+(R).

In the present treatment, both the initial- and final-
state wave functions gd and g', are obtained by solving the
Schrodinger equation using the Numerov algorithm.
Conservation of energy requires that

k~
+Cp C

2p 2p

where k&/2p is the asymptotic kinetic energy in the final

state, and

Eo = V*( oo )
—V+ ( co ) .
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As a test of our computer code, we repeated the calcu-
lations of Waibel et al. on He*+H. First, we calculated
the associative ionization cross sections at the collisional
energies of 0.01, 0.05, 0.08, 0.10, and 0.15 eV. The
diff'erence between our results and their results is less
than 0.5%%uo in every case except at 0.08 eV, where it is
1.0%%uo. Waibel et al. separated the calculation of the Pen-
ning ionization into two parts: Penning and quasiassocia-
tive, in which the final quasi-bound-states are treated as
bound states. We use the same process to calculate the
electron-energy distribution in both regimes. To obtain
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FIG. 1. (a) Stieltjes widths for He(2'S)+Na (solid) and for
He(2'S)+Na (long and short dash); (b) potential curves for
He(2'S)+Na (solid) and for He(2'S)+Na (long and short
dash); (c) potential curve for He+Na+ —experimental results of
Ref. 26 (solid) and the Hartree-Fock calculation (dash).
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the total cross section, we integrated the electron-energy
distribution. This integration requires a large number of
Penning electron energies due to the resonances of the
quasiassociative regime. In the position of each quasi-
bound-state, we have very narrow resonances. We did
the calculation at 0.5 eV for 2550 Penning electron ener-

gies. The value obtained integrating the electron-energy
distribution was 98. 10ao. This value compares we11 with
the published value of 98.35a o [(91.20+ 7. 15 )a o ) ].

III. POTENTIAL

For He*+Na we adopt the V'(R) curves and widths
of Cohen et al. ' In that work, ab init&o potential curves
were first calculated using a moderate-sized CI calcula-
tion and then adjusted to yield the experimental well
depth' and the correct asymptotic van der Waals form.
The curves are shown in Fig. 1(b). The widths, which
were obtained from a Stieltjes analysis" of a discrete
representation of the e +HeNa+ continuum, are shown
in Fig. 1(a). Using the same basis as Cohen et at ,

'
we.

obtained the Hartree'-Fock curve for HeNa+ that is com-
pared with the experimental results of Mason and
Schamp in Fig. 1(c). Since both atoms are closed shell
in this case, the Hartree-Fock approximation is reason-
ably good.

For He'+K, we used the adjusted CI potential curves
and the widths of Scheibner et al. , who took the same
approach as Cohen et al. ' Scheibner et al. obtained a
curve crossing between the Penning state
He(2 S)+K(3p 4s) and the atomic autoionizing state
He(ls )+K(3p 4s ) that had the effect of increasing the
total ionization cross section slightly. However, we have
reported ' a more accurate calculation that shows that
such a crossing is unlikely. We have also calculated a
Hartree-Fock potential curve for HeK+, using the same
basis as Scheibner et al. The initial-state interatomic
potentials, the widths, and the final-state ionic potential
are plotted in Fig. 2.

IV. RESULTS

A. He*+ Na ~He+ Na+ +e
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FICx. 2. Same as Fig. 1 but for He+ K.
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We have calculated the PEED's for He(2 'S, 2 'S)+Na
at the average experimental collision energy of 0.071 eV,
employing the potential curves and autoionization widths
of Cohen et al. ' and the experimental ion curve of
Mason and Schamp for Na+ +He. The individual
partial-wave terms in Eq. (2) exhibit rapid oscillations
corresponding to the nodes in the initial- and final-state
wave functions. Most of this structure is washed out in
the sum over a larger number of partial waves, but that
which remains is physically interesting and wi11 be dis-
cussed in detail. The results of Eq. (2) are plotted in Figs.
3 and 4. We have also calculated the Hartree-Fock ion
curve for the final state. The difT'erences between the en-

ergy distributions obtained using the experimental and
Hartree-Fock ion curves are too small to be observed in
the graphs, being less than 1% in the singlet case. For
the triplet case, the distribution is very slightly shifted to
the left, i.e., to lower electron energies. In both cases, a
more accurate calculation for the final state seems un-
necessary. In fact, as a test of sensitivity, we used
V (R ) =0, and found that the distribution resulting from
this extreme choice of ion curve looks very much like the
other two, but is shifted to the left by about 0.03 eV. The
reason for this insensitivity is that the classical turning
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For the collision of the He(2 'S) with Na, the resulting
shape of the theoretical spectrum agrees well with the ex-
periment. For the collision of He(2 S) with Na, the
agreement is fair, but the structure appears to be rather
more prominent in the theoretical curve.

To analyze the shape of the electron-energy distribu-
tion for He(2 S)+Na, we evaluated separately the con-
tributions of different regions of internuclear separation
R to the PEED. Specifically, we find the partial distribu-
tion obtained by calculating the integral of Eq. (2) with
limits that correspond to different intervals: (i) [0,5]; (ii)

[7, oo]; (iii) both of the former intervals in the same calcu-
lation, i.e., excluding [5,7]; and (iv) [5,7]. In Fig. 6(a), we
show the partial distributions for the cases (i), (ii), and
(iii). In Fig. 6(b), we show the result of case (iv), and we

also reproduce the total PEED of Fig. 4 in order to facili-

FIG. 3. Penning electron-energy distribution as a function of
relative electron energy (c.—c0) using the theoretical V and the
experimental V for He(2 'S)+Na.

point of the initial-channel (upper) potential curve lies to
the right of the region in which the experimental and
Hartree-Fock ion (lower) curves differ considerably. In
addition, both curves are very close to zero outside this
small internuclear separation region. The total ionization
cross section depends strongly on the magnitude of the
width function, but the electron-energy distribution is
also very sensitive to the shape of the width function.

The theoretical PEED's exhibit rich structure that has
not been observed in the experimental results, presum-
ably because the latter are smoothed by the finite energy
resolution in the detection of the Penning electrons. Ruf
et al. estimated their effective resolution to be between
55 and 105 meV full width at half-maximum (FWHM).
Using a Gaussian distribution with these respective
values for the FTHM, centered at each point of our
PEED, we obtain the results of Fig. 5. As we shall show
for He*+K, the use of the average collision energy does
not significantly modify the shape of the distributions.
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FIG. 5. Penning electron-energy distributions for (a)
He(2 'S)+Na and (b) He(2'S)+Na convoluted with the detec-
tor function. The energy resolutions are 105 meV (solid) and 55
meV (long and short dash). The insets show the experimental
(Ref. 6) PEED's. The energy axes of the insets have the same
values as the full frames at the corresponding tick marks, but
the units of the experimental PEED's and aspect ratios are arbi-
trary.
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potential curves and the widths calculated by Scheibner
et al. for the upper electronic state and the Hartree-
Fock curve for the ion. As before, we focus on the aver-
age collision energy of the most recent experimental
data, which is 0.067 eV. The results are plotted in Figs.
7 and 8.

We also took into account the finite experimental
electron-energy resolution as we did before. The results
are illustrated in Fig. 9. Finally, we investigated the
effects of averaging over the collision-energy distribution.
We assumed a Maxwellian distribution for the K beam
with the experimental temperature of 750 K, and a
Gaussian distribution for the metastable He beam corre-
sponding to an experimental average velocity of 1757 m/s
and an experimental velocity width b,u/uH, (FWHM) of
31%%uo. With these two distributions, we determined the
effective distribution

D(u)= fDg(vH, )DM(vK)dvH (5)

where Dg is the Gaussian distribution, D~ is the Maxwel-
lian distribution, and vK =v+ vH, .

With the distribution normalized to that JD(E)dE
= 1, where E is the collision energy, the velocity-
averaged PEED is given by
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FIG. 10. Penning electron-energy distributions for
He(2'S)+K with a detector energy resolution of 80 meV. The
light curves show the cross sections for the several energies
(0.002 54, 0.010 62, 0.025 24, 0.044 60, 0.067 00, 0.090 44,
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We calculated do(E, e)/de f. or the triplet He metastable
collision at the relative energies necessary for a ten-point
Gaussian quadrature of Eq. (6). Since the raw distribu-
tions have such a rapidly varying structure, we used in
the final integral the distribution convoluted with the
electron-energy resolution function. In Fig. 10, we show
the average PEED as a heavy dashed curve superimposed
on the individual cross sections used in the calculation.

For He(2 'S ) +K, the agreement of the calculated
PEED with the experimental shape is good, as in the
case of Na, but for He(2 S)+K the theoretical curve
shows considerably more intensity at the higher electron
energies (especially e —so= —0.2 eV) than does the ex-
perimental curve. As for He(2 S)+Na, the agreement
between the theoretical and experimental results could be
improved by modifying either the potential or the width,
so we do not present such an empirical adjustment.
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V. CONCLUSIONS

Penning electron-energy distribution (PEED) calcula-
tions provide an exacting test of the potential-energy and
autoionizing-width curves used to theoretically describe
the Penning-ionization collision process. However, it is
still not generally possible to infer uniquely these curves
from the experimental data, even though the situation is
simplified for metastable helium collisions with alkali-
metal atoms by the flatness of the final-state potential
curve. The present calculation of the PEED is complete-
ly quantum mechanical, and the results are expected to
be almost as good as the curves used. The convolution of
the theoretical spectrum with the experimental resolution
function has been found to be essentia1 for understanding
the observed shape, but the averaging over collision-
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energy distribution has little qualitative effect.
The experimental PEED's for singlet metastable heli-

um exhibit no structure for any of the alkali-metal atoms;
on the other hand, the PEED's for triplet metastable heli-
um show some structure for every alkali-metal atom, in-
cluding a shoulder on the high-energy side of the spec-
tra. The experimental energy measurement is not
sufficient to resolve most of the calculated structure. Our
calculated PEED shapes for collisions of He(2 'S) with
sodium and potassium atoms are in agreement with the
experimental shapes. However, the calculated shapes for
He(2 S) with potassium, and to a lesser extent sodium,
contain more high-electron-energy intensity and display
more structure than the experimental distributions, even
after the smoothing corresponding to the stated experi-
mental conditions. It is interesting to note that such pro-
nounced structure is present in the experimental PEED

for He(2 S) with lithium.
On the experimental side, higher-resolution Penning

electron spectra would certainly be useful, since the
present resolution washes out most of the calculated
structure. On the theoretical side, further progress de-
pends on the more accurate calculation of the energies
and widths of the Penning resonance states.
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