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This paper adopts the hypothesis that the absence of macroscopic quantum fluctuations is due to
a certain universal mechanism. Such a mechanism has recently been proposed by Ghirardi et al.
[Phys. Rev. D 34, 470 (1986)], and here we recapitulate a compact version of it. Karolyhazy [Nuovo
Cimento 52, 390 (1966)] showed earlier the possible role of gravity and, along this line, we construct
here a new parameter-free unification of micro- and macrodynamics. We apply gravitational mea-
sures for reducing macroscopic quantum fluctuations of the mass density. This model leads to clas-
sical trajectories in the macroscopic limit of translational motion. For massive objects, unwanted
macroscopic superpositions of quantum states become destroyed in very short times. The relation
between state-vector and density-operator formalisms has also been discussed. We only anticipate
the need for elaborating characteristic predictions of the model in the region separating micro- and

macroscopic properties.

I. INTRODUCTION

According to widespread views, quantum mechanics
(QM) is in perfect agreement with all definite physics ex-
periments. None of them forces us either to correct or to
complete the theory. On the other hand, it has been
recognized since the earliest time of understanding QM!
that it contradicts our general macroscopic world view.
Unfortunately, strict and detailed quantum-mechanical
calculations cannot be performed for most macrosystems
in question due to their complexity. Consequently, one
cannot decide uniquely whether the formal contradic-
tions with macroscopic experiences indicate relevant
physical contradictions, or are merely illusory.

The literature on the above paradoxical situation with
QM is extensive and here we mention only the most
prominent classical issues, such as Schrodinger’s cat para-
dox,’ the Einstein-Podolsky-Rosen paradox,® and the
measurement problem.*> They are all related to each
other and one hopes that an adequate solution to any of
them will be applicable to the other ones as well. For the
sake of definiteness, here we single out a specific aspect
and expose the problem as follows: If quantum mechan-
ics is universal, then macroscopic bodies would, in princi-
ple, possess macroscopic quantum fluctuations (MQF) in
their positions, orientations, densities, etc.; such MQF
are not seen in nature, however.

We classify the suggested solutions into two classes
reflecting alternative explanations of the absence of
MQF: either it follows purely from the inevitable in-
teractions of macroscopic objects with their actual sur-
rounding (class A) or, alternatively, the lack of MQF is
universal and is due to a certain new mechanism which
modifies the ordinary QM (class B).

Viewpoint 4 has been emphasized by Zeh.® Later,
Wigner’ also acknowledged it and estimated the effect of
cosmic background radiation on simple macroscopic bo-
dies.® Quite recently Joos and Zeh® discussed the quan-
tum dynamics of dust particles in rare gaseous environ-
ments. All these calculations suggest that explanation A4
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could probably work, but, in our opinion, other specific
mechanisms involved by viewpoint B still cannot be ex-
cluded. Actually we need definite models in order to de-
cide.

In favor of the hypothesis B, which this paper sup-
ports, we mention the most recent proposal'® by Ghirar-
di, Rimini, and Weber, universally reducing MQF of po-
sition coordinates (see also Refs. 11-13). This theory will
be paraphrased in Sec. III as quantum mechanics with
universal position localization (QMUPL).

The other basic ingredient of our paper originates from
an earlier model'* ' by Karolyhazy et al. (and especial-
ly from its variant'”'® stressed by Didsi and Lukacs),
where universal gravitational fluctuations have been de-
rived and claimed to suppress MQF of the matter densi-
ty. In Sec. IV, a quantum mechanics with universal densi-
ty localizations (QMUDL) is suggested. This new con-
sistent modification of QM resembles the construction of
the QMUPL in Sec. III but the position localizations are
replaced by density localization processes whose strength
is proportional to the gravitational constant. This choice
makes QMUDL a parameter-free unification of micro-
and macrodynamics.

On the technical part, one needs a certain stochastic
modification of the ordinary Hamiltonian quantum dy-
namics. Such formalisms have been considered, e.g., in a
great variety of continuous state reduction'®” 2> and con-
tinuous measurement**” 2" models. Throughout our pa-
per we apply the successful theory of stochastic
differential equations (SDE’s) which offers a compact and
flexible language®”?® to formulate our equations. The
general theory of SDE’s can be learned from Arnold’s ex-
cellent book.”” An introduction to this technique will be
given automatically in Sec. II.

II. PHENOMENOLOGY OF MACROSCOPIC
QUANTUM MECHANICS

A. Quantum-stochastic equations

Consider, for its simplicity, the center-of-mass motion
of a certain free object of macroscopic mass M. The

1165 ©1989 The American Physical Society



1166 L. DIOSI 40

quantum state W, satisfies the Schrodinger equation

d A
S Yo= (P20, . 2.1
P stands for the canonical momentum. Whatever
viewpoint one prefers concerning the paradoxes of mac-
roscopic QM, the simple Schrodinger equation must be
modified due either to environmental interactions or to a
certain new physical effect (cf. viewpoints A4 and B, re-
spectively, in Sec. I) or to both. Anyhow, there exists a
simple phenomenological modification?*~2¢ of Eq. (2.1)
which we are going to recapitulate.

In order to reflect the reduction of MQF of the center
of mass Q, one assumes that the quantum state ¥, is sub-
jected to instantaneous localization processes

W, —exp[ —1a(Q—Q)?1¥, , (2.2)

which occur with average frequency A. Here a is the ac-
curacy parameter of the localization process. In each lo-
calization process (2.2) the coordinate Q is a random
variable of the following probability distribution:

P(Q)=const X {exp[ —a(Q—Q)?]) , (2.3)

where ( ) stands for the quantum expectation value in
the actual state W,, while { ), will be used later to
denote the stochastic average according to the distribu-
tion (2.3) of Q. Because of the randomness of the locali-
zation processes (2.2), the quantum state W, will be
governed by a certain stochastic evolution equation in-
stead of the deterministic Schrodinger equation (2.1). Let
us now take the continuous localization limit

a—0, Aa=T 2.4)

where T is the strength of the continuous localization and
is kept constant.

In Ref. 27 we have proved that the construction
(2.1)~(2.4) leads to an infinite-dimensional Gaussian pro-
cess. For such processes, the proper mathematical tech-
nique seems to be the (quantum) stochastic differential
equations?’® rather than the functional variant of the trad-
itional Fokker-Planck-Kolmogorov equations. In our
case, one can make use of a powerful theorem.

Theorem: Equations (2.1)-(2.4) are equivalent to the
following SDE:

dW,={[—i(®/2M)— 1T(Q—(Q) *]ar
+(Q—(Q)dE Y, , (2.5)

where £ is a vectorial Wiener process whose It6
differential obeys the following multiplication rules:
(dg)y=0,
déodE=1I'1dt ,

(2.6a)
(2.6b)

and higher than second powers of d £ vanish.

For many purposes it is more convenient to introduce
the pure state projector g, E\quﬁQ instead of ¥, and to
rewrite the SDE (2.5) in the following equivalent form:

dpo=L[ppldt +{Q—(Q),p,}dE , (2.7)
L[ ]=—i[P?2M, - 1-1T[QIQ, - 11. (8

The equivalence between the SDE’s (2.5) and (2.7) can be
seen by inserting Eq. (2.5) into the identity
dp=dV¥' +WdV' +dwd¥' and by applying the rules
(2.6). Recall that the product of two It differentials does
not vanish but is always proportional to dt [cf. Eq.
(2.6b)].

Notice that the SDE’s (2.5) and (2.7) are both non-
linear. Nevertheless, the drift term of the SDE (2.7) has
turned out to be linear, since the Liouville operator L
(2.8) is obviously linear. Consequently, by taking the sto-
chastic average of both sides of the SDE (2.7) and by con-
sidering Eq. (2.6a), one obtains a closed linear master (or
Liouville) equation for the density operator (;’)‘Q ) of the
center-of-mass motion:

d , . _ A
E<pQ>st—L[<pQ>st] . 2.9)

Using the notation p(Q,Q’) for the coordinate represen-
tation of the density operator (5), Eq. (2.9) takes the
form

d Ao : :
2P RQA=[H(QQ)]om—:T(Q—Q ’p(Q,Q"),
(2.10)

where [p(Q,Q")]qum stands for the contribution of the or-
dinary QM.

The existence of the linear evolution equation for the
density operator is not accidental but a consequence of
fundamental principles, as shown by Gisin?""?2 and
Di6si.?® In the present case the fulfiliment of this con-
straint relies on the special choice (2.3) made for the
probabilities of the various outcomes of localization pro-
cesses (2.2).

B. Reduction of MQF

The first term on the right-hand side (RHS) of the SDE
(2.5) represents the ordinary quantum-mechanical evolu-
tion with a certain characteristic time 7qy. The second
term violates QM; it definitely reduces the width
AQ=[{(Q—(Q))?)]'? of the wave function. The
characteristic time scale 7, on which the localization of
AQ becomes effective can be estimated by a simple for-
mula:

=~ {AQ)7?. (2.11)

If 7, is much larger than 7qy, then violation of QM
will not be observed; it becomes effective when
TL <<Toum» which, via Eq. (2.11), means

AQ>>1/V Ty - (2.12)

One may notice that 74y also depends on AQ. Never-
theless, the above inequality implies a certain lower
threshold (o ., see later) for AQ. The strength ' of con-
tinuous localization must be adjusted in such a way that
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the above threshold corregsponds to a plausible condition
for MQF of the position Q. Then, as expected, our phe-
nomenological SDE (2.5) pushes down the unwanted
MQF until the threshold (2.12) is reached and a station-
ary quantum fluctuation AQ =o , of the position Q may
be maintained. Exact results regarding this latter regime
will be presented in Sec. II C.

C. Trajectories

In Ref. 28 we considered the solution of the SDE (2.5).
We proved that, for large times, the wave function con-
verges to the unique Gaussian shape

const Xexp[ —(1—i)(Q /20, )*]

and that the motion of this wave packet will imitate clas-
sical trajectories. R R

The quantum fluctuations of Q and P tend to their sta-
tionary values

(AQ)P?—302 , (2.13a)

(AP —i#* /0%, (2.13b)
with

ol =V#h/2TM , (2.14)

where # has been restored. The quantum expectation
values of the canonical coordinates satisfy the following
stochastic differential equations:

d(P)=HdE ,
d(Q)=(1/M){P)dr +20%dE .

(2.15a)
(2.15b)

Equations (2.15) show that the inertial motion of the
wave packet will be modified by an anomalous Brownian
motion. It can be shown (cf. Ref. 10) that the stochastic
spreads of the trajectory coordinates increase with time
as follows:

(AQ).=3#t /M +(3/20% ) #it /M2 +(1/40* ) #t /M),
(2.16a)
(AP:=(3/2)#Tt . (2.16b)

The full-squared uncertainties of the canonical coordi-
nates Q,P are equal to the sum of the squared quantum
[(2.13a) and (2.13b)] and stochastic [(2.16a) and (2.16b)]
fluctuations, respectively. For example,

(AQ)Z,=(AQ)*+(AQ)
=302 [1+(t/tg)+ 1t /1) + (5t /1)),
2.17)
where
to=Qra/ M)~ 12, (2.18)

If the strength of continuous localization T is large
enough, then the stationary quantum fluctuation o
(2.14) of the position Q becomes microscopic and, conse-
quently, the MQF of the center-of-mass position Q will

be destroyed. Also, the classical trajectories will be fairly
mimicked because the anomalous Brownian motion [see
Egs. (2.17) and (2.18)] becomes moderate enough or just
unobservable. One has to add that, according to
Karolyhazy et al., the tiny effect of the anomalous
Brownian motion might possibly be observed in some so-
phisticated experiments.!>'®

III. QUANTUM MECHANICS WITH
UNIVERSAL POSITION LOCALIZATION

A. Construction of QMUPL

At this stage we possess a simple phenomenological
model of translational motion of macroscopic objects (see
Sec. II), reflecting the absence of MQF. According to hy-
pothesis B of Sec. I, this model must take its origin in a
certain universal (not environmental) mechanism.

Let ¥ denote now the quantum state of a closed mac-
roscopic system composed on N constituents with corre-
sponding Cartesian coordinates q, (n =1,2,...,N). It
is crucial to emphasize that our treatment is nonrelativis-
tic. We can then take electrons and nuclei as constitu-
ents, at least for ordinary macroscopic objects. Photons
and bounded subnuclear particles in general must not be
considered for nonrelativistic constituents. (Recall Ref.
10 where constituents have also been specified in a rather
implicit way.)

In ordinary QM, V satisfies the Schrodinger equation

d ~

Et-\l/=—1H\l’, 3.1

with the Hamiltonian A of the closed macroscopic sys-
tem. Let us assume that the localization process (2.2) and
(2.3) is to act not on the system as a whole but on each
constituent separately:

V—exp [~1a3(q,—q,)’ |V, (3.2)

which differs slightly'® from the original proposal of
Ghirardi, Rimini, and Weber.'? Consequently, the joint
probability distribution of the random coordinates §,
must be chosen as

P(quqz, . ,(iN):constX<exp

—az@,—qn)z]) .
(3.3)

We also take the continuous localization limit

a—0, Aa=y=10"" cm s

(3.4)
where we have applied the proposal of Ref. 10 for es-
timating the strength y of the continuous localization of
the constituents.

Equations (3.1)—(3.4) define the modified QM, which we
call quantum mechanics with universal position localiza-
tion. From these equations follows, by straightforward
generalization of the theorem yielding the phenomenolog-
ical SDE (2.5), the basic SDE of QMUPL.:
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Here N-independent vectorial Wiener processes d§,
(n=1,2,...,N) have been introduced:

(d§,)4=0, n=12,...,N (3.6a)

d§,0d§,=1y18,,d, n,m=12,...,N (3.6b)

and higher than second-order products of d£, vanish. If

one introduces the projector p= w¥', the SDE (3.5) can

be rewritten in terms of j as follows:
dp=L[pldt + 3 4, —(q,).pld§, ,

n

(3.7

where we have defined the linear Liouville operator by

L[ 1=—i[H, 1= 34,04, - 11. (33

We note that the master equation of the form (2.9) is val-
id here, too. We can write it in coordinate representation
as follows:

d S,
ar (0,9)=[p(q,q9") Iom

-2 (e, —q,)(q.q), (3.9)
where p(q,q’) stands for the coordinate representation of
the density operator {5),.

Equations (3.5) [or (3.7) and (3.8)] together with (3.6)
represent a consistent theory unifying micro- and macro-
dynamics. Our QMUPL (see also Ref. 13) is identical to
the theory of Ghirardi, Rimini, and Weber in Ref. 10,
apart from the continuous limit (3.4) which thereby was
not taken.

B. Macroscopic phenomenology from QMUPL

QMUPL works in the following way. The extreme
small strength y (3.4) of constituent localizations assures
that QMUPL reduces to the ordinary QM in case of mi-
crosystems. For example, if one considers a single micro-
particle whose wave-function width AQ is about 1 cm,
the violation of the ordinary QM will enter only on time
scales of the order 7, =y ! cm 2=10" s [cf. Eq. (2.12)].
Controlling the above wave function for a year is quite il-
lusory and one will not see any violation of QM. In the
case of a macrosystem, however, the number N of constit-
uents is of the order of 10%} and, as shovg\n in Ref. 10 or
by (3.11), the center-of-mass coordinate Q will endure a
strong localization.

The form (3.7)-(3.8) of QMUPL equations is very suit-
able to demonstrate the above effect. Introduce the
relative-to-c.m.s coordinates r, and substitute the expres-
sions q,=Q+r, (n=12,...,N) into the SDE (3.7).
Assume, furthermore, that the quantum state g has the
separable form p=p,®p,, where p, and p, are pure
states concerning the center of mass and the relative
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motions, respectively. Take then the partial trace over
the state space of relative motion, on both sides of Egs.
(3.7), when one gets

dpg=—i[P*/2M,po]1— INY[Q.[Q.50]]
+{Q—(Q).pp }dE

where £= 3 V., &, and P stands for the momentum con-
jugate to Q.

We have thus deduced the phenomenological SDE (2.7)
and (2.8) of macroscopic objects from the universal SDE
(3.7) and (3.8) of QMUPL. The macroscopic localization
strength I" has turned out to be N times larger than the
localization strength y of constituents. Invoking the es-
timation (3.4) of y, one obtains the following order of
magnitude for I' (in cgs units):

(3.10)

r=Ny=10"M, 3.11)
where we have taken =~ 10** constituents (electrons + nu-
clei) per unit mass.

In Sec. IV we shall point out that the above value of I
is able to assure the proper asymptotics of the phenome-
nological SDE (2.7) and (2.8): for microsystems QM re-
stores, and, opposingly, macroscopic objects move along
classical trajectories without observable quantum or sto-
chastic spreads. In Ref. 13 we have pointed out that
QMUPL predicts classical behavior also for rotational
motion of solids.

C. Remarks on QMUPL

One should inevitably notice certain ad hoc features of
QMUPL, such as, e.g., the distinguishing role of the con-
stituent coordinates. The parametrization of the theory
seems to be practical but is elusive, as emphasized by
Bell.!> We hope to alleviate these troubles in the model
that we will present in Sec. IV.

IV. QUANTUM MECHANICS WITH
UNIVERSAL DENSITY LOCALIZATION

A. Construction of QMUDL

In this section we are going to repeat the construction
(3.1)-(3.4) of QMUPL presented in Sec. III with one
change. The continuously localized quantity will not be
the constituent position but the mass distribution f(r) of
the given system. This permits the localization effect to
be parametrized by the Newton constant G.

The model does not work for pointlike mass distribu-
tions. In order to give an extension to constituents, one is
compelled to rely on some approximations. For con-
creteness, we will consider the constituents as rigid
spheres. Hence, the mass-density operator takes the form
flr)= 3N f.(r—4q,), where f, stands for the mass dis-
tribution of the nth constituent. The width of f, may be
chosen for about » =10~ '3 ecm. (The classical electron ra-
dius and the typical nuclear size are both of that order of
magnitude.) Nevertheless, such details of the mass-
distribution operator F(r) turn out to be irrelevant in
several important applications, as we shall see later.
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For the completeness of this section, let us recall the
Schrodinger equation of our system in ordinary QM:

d

S y=—iAvV .

dt
Similarly to the QMUPL model, the above deterministic
evolution will be interrupted by instantaneous localiza-
tion processes occurring with frequency A:

4.1)

\V~—>exp(—%a\|f—f||26)\lf , (4.2a)

where f(r) is the Schrodinger operator of the mass densi-
ty at point r. The G norm of a given function f(r) is
defined by introducing the bilinear form U:

Ifllg=—UU0)

where

(4.2b)

U(fl,fz)E‘Gfffl(rl)fz(rz)(l/rlz)drldrz » (4.2¢)

i.e., so that U is formally equal to the gravitational in-
teraction potential of the mass distributions f, and f,.
Obviously, the quadratic form U in Eq. (4.2b) is negative
definite, as it must be.

The function f(r) in the Eq. (4.2a) is a random variable
with the distribution functional

P[f1=constX {(exp( —al||f—F||%)) (4.3)
Let us require the continuous localization limit
a—0, Aa=«k, (4.4)

where « is a certain number. Fortunately, it is dimen-
sionless and we shall assume its order is of unity.

The construction of quantum mechanics with universal
density localization has thus become completed. Now we
anticipate the compact mathematical form of QMUDL.
From Egs. (4.1)-(4.4) it follows that the quantum state
satisfies the basic SDE:

dv= [(—iﬁ-%KHf‘(ﬁ)HzG)dt

)Y dE(r)dr |V, 4.5)

+ [[fi—(fir

where the continuous set &(r)
cesses has been introduced:

(d§(r)) =0
dé‘(rl)dé‘(rz):%KG

of the scalar Wiener pro-

(4.6a)

(1/r;)dt (4.6b)

Higher-order products of d§ vanish.

It is convenient to introduce the operator representa-
tion of the quantum state. If we introduce the projector
p= Wy and then substltute Egs. (4. 5) and (4.6) into the
identity dp= dWW +wd W +dWwd W' we obtain the fol-
lowing SDE:

dp=L[pldr + [[[(r)—([(r),pld&(r)dr 4.7)
with the linear Liouville operator
L[---1=—i[H, - 1-icUUALLF - 1D 4.8)
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The shorthand notation U([f,[f, T

as
-G [ [[f)[Firy, .

For later discussions, let us write down the master
equation which governs the evolution of the density
operator {p),. The stochastic average of both sides of
the SDE (4.7) yields the master equation proposed by
Diosi:'®

d
dt

11) should be read

11 /r)drdr,

(Pra=LI{p)y]
= ‘l[ﬁ,<ﬁ>“]
— &G [ [1Fr).[F(r),{p) ]

X(1/rp)drdr, . (4.9)

Let us verify briefly that the SDE’s (4.5) or, equivalent-
ly, (4.7) follow from the construction (4.1)-(4.4) of
QMUDL. To see this connection, we introduce the
Fourier representation of the mass density:

=73 fie™ =3 (g tigyle™ .
K K

(4.10)

The normalization volume has been set, by convention, to
1; g, and gy, stand for the real and imaginary parts of
the Fourier component f,, respectively. Using the
discrete series of variables gy, instead of the distribution
function f(r), Egs. (4.2) of density localization can be
rewritten as

V—exp [—ta > 4rGk ™ (4.11)

k.

Z(aku _qku )2 ] v,

and the random variables g, possess the joint probability
distribution

(4.12)

P(g)=const X <exp —a > 4rGk ™ T )’

k,p

(qk;t

Equations (4.1), (4.11), (4.12), and (4.4) reformulate
QMUDL in terms of the localization of the Hermitian
quantities §y,. By comparing these equations to Egs.
(3.1)—(3.4), one recognizes their mathematical similarity.
One is led, therefore, to the SDE’s (3.5) and (3.6), which
now, mutatis mutandis, read as

dv= [ —iﬁ“%KGEMTk Gy, — <qk“) dt
k,p
+ 3 Quu =G 2y, |V (4.13)
k.p

The scalar Wiener processes &y, satisfy the following It6
algebra:

< dgku >st =
d gk‘ud gk',u' =

Let us return now to the spatial representation. Define
the scalar Wiener process £(r) by its Fourier coefficients
as follows:

(4.14a)

7;<G4¢rk 2848, dE (4.14b)

e
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Er)=13 (& +ige™® +e.c. (4.15)
k

In the SDE (4.13), as well as in Egs. (4.14), perform the

transformation (4.10) and (4.15). The results will be just

identical to the SDE (4.5) and to the It algebra (4.6), re-

spectively.

B. Macroscopic phenomenology from QMUDL

It is obvious from the construction of QMUDL that
the violation of ordinary QM depends, first of all, on the
gravitational energies represented by the given state of
the system. In the case of microsystems we thus expect
that the violation of QM can be neglected, while we hope
for explicit classical behavior in the macroscopic proper-
ties, instead of QM.

The second RHS term of the basic SDE (4.5) of
QMUDL yields an estimation for the time scale 7, at
which localization breaks QM:

=i/ F—(PNE ) =A/ (A, (4.16)

where the Planck constant has been restored. It is impor-
tant to observe that the G-norm-squared density fluctua-
tion (Agf)* is the quantity that QMUDL cuts down, in
contrast to the ordinary quantum dynamics. Formally,
(A;f)? is measured by the expectation value of the
difference between the gravitational interaction Hamil-
tonian and of its semiclassical (or mean-field) approxima-
tion, 1.e.,

(A P= =N =(—UF,HH+UFAF)I)
(4.17)

[cf. the definition (4.2b) and (4.2¢) of the G norm].

For a system of several constituents (e.g., electrons, nu-
clei) of masses about m =10 %-10"?* g and size
r=~10"" cm, a safe upper estimate of the RHS of Eq.
(4.17) can be given by the quantity Gm?/r =10~ %-10"%3
erg. Via Eq. (4.16) we obtain 7, =10'°-10?* s. This huge
result means that in the microscopic properties QM will
not be violated at all and QMUDL therefore reduces to
the ordinary QM. In particular, the microscopic degrees
of freedom of a macroscopic object will obey pure QM.

We should deal with more massive objects when we
hunt special QMUDL effects. Consider, e.g., a macro-
scopic object of size R =1 cm, of mass M =1 g, and of
position spread AQ also about 1 cm. From Eq. (4.17), the
corresponding density fluctuation (A f)? can be estimat-
ed by G g2/cm=~10 "% erg which yields, via Eq. (4.16),
TLle‘lg s. This result shows that typical QMUDL
effects may strongly modify the usual quantum dynamics
of macroscopic degrees of freedom, while microscopic de-
grees of freedom remain unaffected.

This latter fact enables us to integrate the QMUDL
equations over the microscopic degrees of freedom,
which we are going to exploit in the case of rigid macro-
scopic objects.

We assume the state vector of a given solid in the se-
parable form ¥ =¥ ,® Vg® V¥;, where ¥, Vg, and W, are
state vectors concerning the center-of-mass, rotational,
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and internal motions, respectively. (The vector ©
parametrizes the rotation. The solid is meant to be rotat-
ed by an angle |©| around the axis parallel to ©.)

As we have noticed above, QMUDL will practically
not alter W;. This feature allows one to approximate the
mass density operator f(r) by its partial expectation
value

Foy=tr,[p,f(0],

where p; E\I/,-\Vj and tr; stands for tracing over the inter-
nal degreeAs of freedom. In the approximation (4.18), the
operator f(r) depends only on Q and © but not on the
internal variables. Hence, the basic QMUDL equation
(4.5) splits into two separate equations for V,o=¥,8 Vg
and for W, respectively.

The first equation governs the translational and rota-
tional motion

(4.18)

AW o= [[—%if’z/M — 13 ) Tkl = (|3 e

+ [[F )= (Fe)ldendr (W,  (4.19)

where J stands_for the angular momentum canonically
conjugated to O, IézRéloné is the tensor of inertia
in the c.m.s, and Rg denotes the 3 X3 matrix of rotation
by ©.

The second equation, governing W¥,, turns out to be
identical to the ordinary Schrodinger equation with a
Hamiltonian of the internal degrees of freedom. Let the
state \V; be the ground state which is stationary; hence,
the RHS of Eq. (4.18) takes a simple form

F()=F(Rg(r—Q)), (4.20)
where F(r) is the ‘‘gravitational” form factor (i.e., the
mass density) of the ground state.

The form factor F(r) is a definite characteristic of the
given solid, calculable by means of solid-state theory. It
is built up mainly from the contributions of the nuclei
separated from each other by = 1078 cm. In the ground
state (i.e., at zero temperature) the position spread of a
given nucleus inside the solid is typically about 107" cm
(cf. Ref. 30). Recall that the extension of a nucleus is less
by two to three orders of magnitude. The details of nu-
clear structure thus become irrelevant.

Now we may ask what happens to the SDE (4.19) if we
wash out the microstructure of F(r): we replace F(r) by
the macroscopic mass distribution of the solid, which is
much easier to calculate. By heuristical arguments, we
expect this macroscopic F(r) to work correctly, provided
microscopic structures (of scales 1078 cm or less) were
not present in the wave function W, either.

Consequently, the SDE (4.19) with the smoothed mass
distribution, instead of F(r) in (4.20), is the general
QMUDL equation for the macroscopic translational and
rotational motion of rigid objects. One expects that the
above equation describes the suppression of MQF of the
coordinates Q and © so the classical motion is always re-
stored. Since the rotational motion is more difficult to
discuss, '* we choose the translation for further study.
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C. Ballistics and trajectories

Take a rigid spherical ball of radius R and of mass M,
and assume it is macroscopically homogeneous. Let us
approximate its form factor by that of a completely
homogeneous sphere:

F(r)=(M/Vg)O(R —|rl) 4.21)

where ¥z =+7R? and © is the step function. Thus, in
approximation (4.20), we obtain

fin= —1r—Q)) . (4.22)

Since f(r) is now independent of 9, the basic SDE (4.19)
yields a closed SDE for the macroscopic translation of
the ball

(M/Vg)O

dv [[—1 (P2/2M)— k|| f = (F)||3 1dt

+ [ —(fn) (4.23)

In what follows, we assume that the quantum uncer-
tainty AQ of the position is much smaller than the size of
the ball. This allows one to use the Taylor expansion of

the density (4.22) around Q = Q) yielding

F—(f(r)
=(M/Vg)8(R

Y1dE(r)dr Y, .

(Q))/R ,
4.24)

—Ir={(QYr—{(Q))(Q—

where terms of the order of (AQ /R)? have been neglect-
ed.

The coefficient of the specific nonlinear term of the
SDE (4.23) can be approximated by

17— <P =(GM2/R)Q—(Q) ),

which follows from Eq. (4.2b), (4.2¢), and (4.24). In the
same approximation, the stochastic term of the SDE
(4.23) can be rewritten as well:

J U —(F(r)déndrv =
where we have defined a vectorial Wiener process by
E=(M/Vp)R ' [8(R —|r|)r&(r)dr

Inserting Egs. (4.25) and (4.26) into the SDE (4.23) one
obtains the phenomenological SDE (2.5). Of course, the
validity of the It6 algebra (2.6) also has to be checked by
using Egs. (4.6) and (4.27). The effective localization
strength of the ball position turns out to be

=(kG /H)IM?*/R*=(47xGp /3H)M =~ 10"°M

(4.25)

(Q—(Q))dew, , 4.26)

(4.27)

(4.28)

(in cgs units),
gem .

Remember that the QMUPL theory also led to the
effective macroscopic SDE (2.5); moreover, the order of
magnitude of the QMUPL value (3.11) of I' almost coin-
cides numerically with I' (4.28) in the QMUDL theory.
Hence we see that, at least for the macroscopic transla-
tion of rigid (or rigid enough) macroscopic objects, our
parameter-free QMUDL theory becomes similar to the

provided the ball density p is about 1
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QMUPL theory, including its parametrization suggested
by Ghirardi et al.,'® after careful phenomenological ar-
guments.

However, the validity of the SDE (2.5) is restricted due
to the approximations we applied before. For example,
the width AQ of the wave function W, must fulfill the
conditions

1078 cm<<AQ <<R . (4.29)

The lower bound is necessary because the choice (4.21) is
not suitable when the wave function contains microstruc-
ture. The higher bound comes from the Taylor expan-
sion (4.24).

Let us now turn to the trajectorylike solutions (see Sec.
I1C) of the SDE (2.5) with localization strength (4.28).
Equation (2.14) yields the stationary width of the center-
of-mass wave function:

o.,.=87kGp/3#) V4*M V=107 1"M 12 . (4.30)

The anomalous Brownian motion, as shown by Egs.
(2.17) and (2.18) leads to the following spread of the coor-
dinate (in cgs units);

(AQ)e=10"""M 121+ (1 /1) + (2 /1y)?

+ L1 /15)*1, (4.31)
where t,=(8mkGp/3)"1/*~10°-10° s. It is interesting
to note that the time scale ¢, of the anomalous Brownian
motion depends only on the Newton constant and on the
mass density of the ball; the Planck constant has can-
celed.

Inserting o, (4.30) in place of AQ, the conditions
(4.29) leads to unpleasant restrictions, i.e., 107 *<<R
<< 1072 cm, which, unfortunately, excludes all sizes but
the R =107 3 cm range. For such small balls, Egs. (4.30)
yields o ,=~10"7-10"® cm. The anomalous Brownian
motion (4.31) would produce further statistical elongation
of position (e.g., 1073 in about a day) if the isolation
of the ball were not unattainable.

It would be desirable, of course, if we were able to
derive classical trajectories from QMUDL for larger
balls, too. For larger balls (R >>107% cm), Eq. (4.30) pre-
dicts o, of subatomic scale. We know that the SDE
(4.23) pushes the wave-function width AQ down towards
its stationary value o _,. When AQ has already become
smaller than 1078 cm, our SDE is not reliable anymore.
One can, nevertheless, conclude that the stationary width
of the wave function (if it exists) as well as the scales of
the anomalous Brownian motion are strongly microscop-
ic and, presumably, unobservable in practice. For a more
detailed description, which is a future task, one should
calculate the complete microscopic form factor F(r) of
the given ball.

D. Reduction of MQF

In this section we wish to concentrate on the mecha-
nism reducing the MQF of the density. Therefore we will
completely neglect the Hamiltonian term in the SDE
(4.5); this choice will be verified later.
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Let us consider a macroscopic (or, maybe, mesoscopic)
system which is assumed to be in a superposition

V=Sc, b, Sci= (4.32)

4 4
of a certain number of normalized states ¢,
(4=1,2,3,...). Exploting gauge freedom, each ampli-

tude ¢, can be made real. Introducing the notation
¢4\f¢A = (f)A, we assume that the expectation values
(flr))y, (f(r) )2 (f(r )73, ..., are much different from
each other as compared to the density fluctuations A f
belonging to the component states ¢ ,. Consequently, the
superposition ¥ (4.32) may represent MQF of the density
(i.e., large Ay f), while the fluctuations in the component
states ¢ , will be neglected. Heuristically, one is then al-
lowed to consider the set {¢ ,} as the orthonormal set of
the approximate eigenstates of the mass density operator

Fd ,={F () b, » (4.33a)
Sbp=54p - (4.33b)

[A rigorous formulation of the above approximation
would be based on the G norm (4.2b) and (4.2¢) as the
measure of distances in the space of mass density func-
tions.]

Using the approximation (4.33), the substltutlon of the
ansatz (4.32) into the SDE (4.5) (recall H=0) yields the
closed SDE for the amplitudes ¢ ,:

dey= |~ 4Kl (F) a= (D) lde
+ (A, —(Fir) JdEndr |c

Remember that (f)=3 ,c%(f),, provided the ap-
proximation (4.33) holds.

From the SDE (4.34) one can obtain an equivalent
closed SDE introducing the normalized probability distri-
bution p 4 instead of the amplitudes c 4:

PAE‘Tin Spa=1.
A

(4.34)

(4.35)

Let us substitute Eq. (4.34) into the Itd identity

dp 4 =2c 4dc ,+(dc 4 )% The It6 equations (4.6) will lead
to the following equations:
(dp4?4=0 (4.36a)
dp 4dpp
=—2Kp 4Pp
X S prpsUST) 4= Py p: A F Yy —(Fhsrdr
o (4.36)

where we applied the definition (4.2b) and (4.2¢) of the G
norm.

Such probabilistic equations, with phenomenologlcal
constant coefficients in place of U({f) ,—{(f )z,
(/Yg—(F)s), are well known from the theory of con-
tinuous state reduction.

As a special application, we are going to show that
Eqgs. (4.36) describe the reduction of distant macroscopic
superpositions. For simplicity’s sake, let the components
¢ 4 of the superposition (4.32) represent the same quan-

tum state ¢ translated into various distant positions in
space. For example, ¢ 4 belongs to the Ath position of a
pointer of a given measuring device. If the spatial separa-
tions between different pointer positions are much larger
than the thickness of the pointer, then

UF) (o) p)=8 3 UKFY ()

is a good approximation and Egs. (4.36) take the form

(4.37)

(dp 4)4=0, (4.382)
dpAde:ZKU((f>¢,<f>d))
Xpapp [845—Pa—Ppt 3Pk
R
(4.38b)

These two equations are mathematically equivalent to
Gisin’s continuous reduction model.'”?! As can be
shown, for times

15>/ U(F) o () g) (4.39)

each probability p ,(¢) will approach zero, except for a
single one (e.g., the Kth) which becomes unity. In con-
tinuous reduction models the probability of the Kth out-
come must be equal to the initial probability p,(0). Re-
calling Eq. (4.35), this would mean that the superposition
(4.32) will be reduced to one of the component states, e.g.,
to ¢, with the proper quantum-mechanical probability
Ci-

The semiclassical energy U ({f),{f),) of a typical
macroscopic object (e.g., a pointer) of mass M =1 g, of
size R =1 cm and of quantum uncertainty AQ <<1 cm, is
about GM?/R =10 % erg. The distant superposition of
such states would be reduced after a period of the order
of /10 ¥ erg=10"'" s [see Eq. (4.39)]. This period is
much shorter than the time scale of any nonrelativistic
quantum evolution and, consequently, the above distant
macroscopic superposition could not even come into ex-
istence. Causality forbids formation of a configuration of
1 cm within 107" s. Needless to say, the neglect of the
Hamiltonian motion during the reduction period has
been justified as well.

For lighter objects, the reduction time becomes more
realistic. If, eg., R= 1072 ¢cm, M=~10"° g, then
GM?/R =108 erg and, consequently, the reduction
time is of the order of /10 ¥ erg=~10"’s

E. Quantum SDE versus master equation

It is well known in the ordinary QM that, in pure
quantum states p= \Il\I/f the measurable quantities are of
the form tr(Op) Y OW=(0), where O is an arbitrary
Hermitian operator. According to the notations of our
paper, the density operator has been denoted by (P
where p stands for the pure-state prOJector W' The
general form of a measurable quantlty in a mixed quan-
tum state takes the form tr(O{p),)=((0) ). If we de-
clare the above set of measurable quantities for QMUDL,
too (it is not necessary, see later), then the state vector W
becomes redundant, since the density operator
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(ﬁ)s,z(\ll\lf*)st will account for all measurable quanti-
ties. Furthermore, the density operator will satisfy the
closed master (Liouville) equation (4.9). Hence the
surprising result comes: the master equation (4.9) is com-
pletely equivalent to the SDE (4.5), if only measurable
predictions are concerned.?’ Of course, analogous mas-
ter equations exist in cases in QMUPL found in Sec. III,
and of Ghirardi’s theory, '° too

It is natural to ask why people prefer the complicated
nonlinear SDE instead of the linear and deterministic
master equation (cf. Joos’s criticism®' on Ghirardi’s
theory'?). To demonstrate the reasons, consider the
reduction process shown in Sec. IVD. In the final state,
the density operator is given by 3 , p ¢ 4 ¢A and con-
tains the full measurable physical information on the sys-
tem. For example, the double expectation value

AN =S p(Fr)) (4.40)
A

is measurable, but the terms (f(r))A of its decomposi-
ti(,)\n are not. Now recall that the mass distributions
(f(r)) , were chosen to be macroscopically different,
and there may be a certain request for a formalism that
automatically reflects the obvious decomposition (4.40).

Still, this request is completely subjective, since, as a
matter of fact, { ) , is not measurable in itself. The only
objective reason that may support the SDE formalism is a
guess?’ that a certain (still unknown) physical mechanism
will modify the set of measurable quantities and, by
means of this mechanism, the terms of the decomposition
(4.40) will be distinguished.

Let us present a simple example. In this paper we did
not consider the back reaction of the mass density f(r)
on the Newtonian gravitational potential ®(r). For the
sake of the example assume that ® is classical and the
mean-field equation32 is exact. There are, however, two
possibilities:

O(r)=47G{({f(r))) 4.41a)

or

AD(r)=47G{f(r)) . (4.41b)

The source term of Eq. (4.41a) has been assumed to be a
measurable quantity, i.e., it is calculable from the density
operator. It is, however, not sensitive to the reduction
process described in Sec. IV D, as we can seen from Egq.
(4.40). We should therefore choose the second version
(4.41b) of the mean-field equations. Since now the
measurable Newton potential couples to the quantum ex-
pectation value () of the mass distribution, this latter
has become measurable, too. Of course, the equivalence
of the master equation with the SDE disappears, since
(f) is not calculable from the density operator but from
the state vector.

Of course, the basic SDE (4.5) of the QMUDL has to
be added by a Hamiltonian term [ ®(r)f(r)dr corre-
sponding to gravitational interactions. Such a theory
may be considered as the naive prototype of a “quantum

field theory without observers” suggested by Bell. 3?

V. DISCUSSION

We have presented two models, QMUPL and
QMUDL, both of which tend, by construction, to local-
ize unwanted MQF. QMUPL is a slightly modified ver-
sion of the theory of Ghirardi et al.; it contains one free
physical parameter. In the case of QMUDL, a definite
gravitational measure has been postulated for the reduc-
tion of the MQF of mass densities and only a single di-
mensionless number has to be fixed by hand. This kind of
modification of the ordinary dynamics seems to eliminate
certain paradoxical features of QM and a unified descrip-
tion of the micro- and macroscopic properties becomes
possible. In particular, we have pointed out that
QMUDL eliminates the “monstrous quantum states®* of
macroscopic objects” so rapidly (e.g., in 107! s) that
even the formation of such states becomes practically for-
bidden.

Despite these conceptual successes, one should look for
nontrivial applications of such unified theories. Conse-
quently, one has to investigate the transient region be-
tween the quantum and the classical world. In this re-
gion the localization effects, postulated in QMUPL or
QMUDL, will compete with the ordinary Hamiltonian
dynamics, especially with the interaction due to the envi-
ronment.

We think that, first of all, the QMUPL or QMUDL
models have to be tested against supercurrent and
superfluid effects. Special attention should be paid to
Leggett’s experiments®> with macroscopic quantum su-
perposition of supercurrents. Karolyhazy et al.'>!® have
carefully discussed the possibility of observing the anom-
alous Brownian motion, in the context of their reduction
theory, which is similar to QMUDL. Their proposal is
an experiment aboard a satellite. Its adaption to
QMUDL, if possible, would be desirable.

As an outlook, we notice the following possibility. At
the present stage of its elaboration, QMUDL may have
no characteristic experimental predictions other than
marginal effects. Even though, this model suggests a cer-
tain deep connection between nonrelativistic quantum
and gravity theories. If this connection exists in some
way that is similar to QMUDL, then, in a more
developed form, QMUDL will shed light on characteris-
tic new effects.

After the completion of this work, two related papers
have been brought to my attention. In Pearle’s work®® a
certain SDE is proposed which incorporates the main
points of the theory'® of Ghirardi et al. This SDE con-
tains two independent parameters @ and A. It would be
interesting to see if Pearle’s SDE is equivalent to our
QMUPL in the limit (3.4), in some proper way. In a new
paper,3’” Ghirardi et al. extends their theory'® to systems
of identical particles in order to preserve the symmetry or
antisymmetry properties of the wave function. We note
that this problem is inherently solved in our QMUDL.
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