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Generalized canonical transformations and path integrals
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Some time-dependent physical systems do not admit, in the general case, either an invariant or
auxiliary equation. The study of these systems is then in general made easier by space-time transfor-
mation of coordinates. This is true for the case for a rectangular well with a moving wall, which

generalized canonical transformations reduce, in the path-integral formalism, to the case of a
variable-frequency oscillator with fixed walls. The variable-frequency harmonic oscillator is an ex-

ample where the invariant and the auxiliary equations can be calculated. All calculations are done
in phase space.

I. INTRODUCTION

It is well known that an exact and analytical solution
of the Schrodinger equation can only be found for a limit-
ed number of potentials. If the potentials are, in addi-
tion, time dependent, it is very rare to be able to find ex-
act solutions, as the Schrodinger equation then becomes a
partial-derivative equation with two variables. Thus, for
example, for the variable-frequency harmonic oscillator,
one can find an analytical solution through different
methods, among which the invariant approach. '

The variable frequency or variables mass oscillator, as
well as an infinite rectangular potential well of variable
width, belong to the class of potentials which can be
resolved through the generalized canonical transforma-
tions (GCT) method. These canonical transformations,
followed by a time transformation, are defined as

x =Qp(tlt„),

p =&/p(tlt„),

lation which exists between the propagators when one
change the coordinate system via the GCT. This relation
is valid for all time-dependent potentials.

The calculations are made within the framework of a
path-integral approach which avoids the use of any auxi-
liary equations (Sec. II). The simple case of a variable-
frequency harmonic oscillator is then treated as an exam-
ple. The invariant and the auxiliary equation are
rigorously established (Sec. III) and not admitted from
the beginning, as in other formalisms. '

Finally, the variable-width rectangular wall is analyzed
for the first time, as far as we known, in the framework of
a path-integral approach. For an arbitrary law of motion
of the moving wall there is neither an invariant nor an
auxiliary equation. For certain particular motions, the
GCT transforms this case with time-dependent boundary
conditions into a problem with constant boundary condi-
tions (Sec. IV).

In all the following equations we use the notation as
follows:

ds
2(

dt
(2) s t

p p p
tp tp

dp ~ dp
d(tlt, )

' d(sit„) '

where p(tlto) is an arbitrary function without dimen-
sions, and t p the time unit.

The subject of this paper is the study of certain time-
dependent physical systems which do not admit, in the
general case, either invariant or auxiliary equations.
When the coordinates of such a system are submitted to
the space-time transformations (I) and (2), the exact
analytical, perturbative, or numerical description, is
made easier. This is the case of a particle in a rectangular
well with variable width, where the boundary conditions
are thus time dependent. Through the space-time trans-
formations (I) and (2), this system becomes equivalent to
a variable-frequency harmonic oscillator which has to
move on a segment with constant boundaries.

Through a merely classical calculation, utilizing the
Hamiltonian formalism that is known to be well adapted
to canonical transformations, we establish the general re-

+9
2

II. PROPAGATOR FOR A TIME-DEPENDENT
POTENTIAL

In the canonical formulation of the path integrals, the
propagator is written formally as follows, in standard no-
tation,

K(x&, t&, x, , t, )
= fBx Bp exp —f (px —H)dt

I

Or, in a time-graded representation, and by using the
midpoint prescription-' in conformity with the Weyl
correspondence rules, "
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1V x +x. ) t +t
K(xf tf x, , t )= lim H dx, H dp exp —g p (x —x, ) —eH p,

j=1 j=1 j=] 2
'

2
(4)

where

x =x(t ), e=t —t

8 by the variations b, in Eqs. (5a). In the discrete version
and according to the midpoint prescription, we have the
following relations for the momenta:

x,
. = x(t, )= x(t 0), x/=x(ti)=x(tN) .

&F~(j )

pj=
F,(x, ,P, ;t, )

—F,(x, iP, ;F, )

Ax,

The dynamics of the physical system is governed by the
Hamiltonian H =p /2m+ V(x, t), in the space-time sys-
tem (x,p, t). In a space-time system (Q, P, t) the dynamics
is ruled by

P

p(rj /&, )

and the following equations for the coordinates:

(7a)

A(Q, P;t) = P
2mp

~ + V(pg, t),
to&

bF2(j ) F~(x, , P +, , t ) F2(x, , P—, ;t )

AP

which is easily deduced from the classical-mechanics
equations

p = F2(x, P;t), Q = F2(x,P;t),
r)x

' '
r)P

(5a)

BF . dF=H+, px H=PQ ——A+, F = Pg+F2—.
dt

'

(5b)

The generating function responsible for the transforma-
tion is

F~(x,P;t)=PQ =P x

P

Thus F =0. Let us show that through the transformation
(1) and (2) the measure is transformed according to the
law

2)x l)p=, X)g 2)P,1

( )
l /2

J

p(t, /t, )

But it is still easy to see that

4(P,P, —1) (P, +P, —1) (P, P, —1)

=(p, +p, , ) +O(e )

t +t.
=4lo +O(e ),

2to

and thus

P-
p,=, [1+O(e )] .

(S,P, -i)'"
The measure then becomes

1 1+0( )
' 1Hd, Hdp, =, H«H "P

= l J= 1
2~% (PNPO) 2 =1 J =1 2

(7b)

where p&=p(t&/to) and p, =p(t, /to). Let us first recall
that, according to Eq. (4), the particle is moving from the
position x, to the position x, in the time interval

[j—1,j], while its impulsion is constant and equal to p .

In the following time interval [j,j+1], the constant im-
pulsion of the particle will be p +]Xp . The trajectory
x (r) followed by the particle is thus a continuous broken
line, whereas its impulsion is discontinuous (piece-wise
continuous).

Let us then make the following remarks.
(i) If the impulsion is p in the interval [j—1,j], the

position of the particle is known only to the extent of an
uncertainty Ax =x —x

(ii) If, at a time t the position is x, it is the impulsion
which is indeterminate. One recognizes here
Heisenberg's uncertainty principle. In other words, the
variables x and p- are not really canonical coordinates.
Therefore it is not clear how to write, in a general
manner, the canonical transformations in their discre-
tized version. For the particular transformation (1) we

use the first principles by replacing the partial derivatives

and, at the limit where e~o (N~ oo ), we obtain the re-
sult we looked for (6). Expressed as a function of the new
variables (Q, P, t), the action is written as

px —H xp;t dt
I

P —,P;t dt
I

I / pg+ Pgp
toP

p2 + V(pg, t) dr .
2fPl p

(9a)

With the specific form of the transformation (1), we can
verify that the elementary action A (j,j —1) leading to
Eq. (9a) can be obtained directly by using Eqs. (7a) and
(7b),

3 (j,j —1)=p,bx, H(x, ,p, ;t, )bt, —

=P, bg, &(Q,P, ;t, )bt, .— (9b)

The limits j —1 and j of the time interval play the same
part. The evolution of the physical system is then de-
scribed in the coordinates (Q, P, t) by
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K(xf, tf, x, , t, )=, fl)Q2)P exp —f PQ+f' f' '' '
( )1/2 top

p2
—, + V(pg, t) dt

2mp

The utilization of the relations (7a) and (7b) has thus permitted us to obtain, for the measure and the propagator, ex-
pressions in which t, and tI play the same part.

Let us utilize the time transformation (2) in order to bring to a constant the mass appearing in the kinetic term
P2/2m p2

K(xf, tf, x, t, )=,
q~ f2)QX)P exp —f PQ-

(PfP, )' '
t

P P p +p V pQ, f p (o /to)der
2m top

ds

where

d O f do.

p (o/to) p (cr/to)

~, =P, —,0,~, g, =g,
to p 5 =5.

(12c)

At At
hs =s —s,= = (s /to) .

p(j)P(j —1) p
'

We notice at this stage that, because of the presence of
the additional term PQp/(top), the propagators (3) and

(12) do not have the same structure. As

The generating function F&(Q, P, s) responsible for the
transformation (Q, P, s)~(Q, P, s) is

mA 2p
F&(Q, P, s) =Pg +

2top

The particle movement in the system (Q, P, s) is ruled by
the new Hamiltonian

p2

2m
Pgp
top 2m

2

p mgp
top

2

mgp
top

(12a)

P'
.H'(Q, P, s ) = + —m Sl Q'

2m 2

+p'V pg, f p'(o /tn)do- (13a)

the additional term can be eliminated through the follow-
ing canonical transformation:

mgp
tOP

(12b)

Replacing again the partial derivatives of Eq. (5) by finite
variations, a midpoint discretization of the transforma-
tion (12a) yields

where

P 2 E
2to P . P

2

p p
2to

Taking into account the invariance of the measure,

Sg l)P =Ag SP,
the propagator is written

(13b)

1
'

imE(xf tf x, , t, )=, 'exp
(p p )

i 2%to
' fSg APexp —f [Pg —&'(Q, P, s)]ds

I

(14)

Relation (14) needs to be commented upon. A naive
description of the transformation p~P would be, ac-
cording to (1),pj Pj /p(tj /tp) in this case, the extremity

j of the time interval [j —1,j I would have a preferential
part. This post-point discretization would then give us a
new measure

Xlx 2)p = X)Q2)P .
1

pg

A second choice, not much less naive would be to take

p o- [P /p{ t
&
/t„) ], since p and P are constants on

]j—1,j [, the extremity (j —1) now having a preferential
part. This prepoint discretization would lead to the mea-
sure

2)x Xlp =—DQ2)P .
1,

pi

In both cases t, and t& do not have the same part in the
propagator. More precisely, we would then obtain
through symmetrization of the measure, two diA'erent

propagators:
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K, =—,, f DQ X)Pexp S,
(p, p/ )' fi

(1 sa)
AI. ,'( j)

P
AQ,

which correspond to two complex actions in the (Q, P, t)
coordinate system

2i dt 2ito &, p

Performing the time transformation (2), these complex
actions will be written in the (Q, P, s) coordinate system
as

F', (Q, , '/, ;s ) F—,'(Q. .. '/, ;s, )

Q,
—

Q,

=/', + —'-0, &
t() P

=P, +
Io

AF', ( j)

For the PQ ordering,

F', (Q, , P, +, ;s, ) F', (—Q, , '/, ;s, )

~j+1 ~j

p
(16a)

S. = 'd, p —P+P p
2m t„p

—p & pQ, f p (a/t(1)der

+ — — = ds P —H,
' top

(15b)

AF', (j)

='l, +
to

SF', (j)
J

Q, , +
p 5=5.

F', (Q, P)+, , s, ) F', (Q, ,
—'P, ; s)

~j+1

F!(Q
/,
'l;; s, , ) F,'(Q—, , P, ;s, , )

Q,
—

Q, -1

(16b)

The elementary actions belonging to the [j —1,j] inter-
val,

Exchanging Pj for

P, + "
~Q, &

o 'p
S+(j,j —1)=P 5Q, —H (P, Q, ;s )As

S (j,j —1)=P,bQ, —H (P, , Q, .
, ;s), )As, ,

(15c)

(15d)

in (15c) and P for

correspond to the QP and PQ ordering, respectively.
Using again the definitions of the derivatives in (7), we

get the following discretized version of the canonical
transformation (12b): For the QP ordering,

21() p

in (15d), in order to get the expressions !16a) and (16b),
and using (12b), yields in the (Q, P, s) coordinate system
(the measure being invariant),

p/ . p(

pt

1 irn
exp

(p .p. ) 2f1t() p/

X li Q dQ, Q d'/', — —. p
—Q ('/, AQ, —//', As, ) (16c)

where

'//'. As, =/X'(/ „Q,;.s, )bs, +—
21 ()

{b,Q )
——A.:.j nl

'-/
p

(16d)

'//"' As, = //'(P), , Q, ,;s, )b,s, ——(AQ~ )- ——-As)
2to ' m '

p

/f' being given by (13a).
When As 0, then

(

((QQ)-') = f f d'/ d (b, Q) —(AQ)-exp —— 'l'b, Q
———As

(

ih -As .
In

Clearly, the expression (13a) is the limit of the discretized quantity (16d) as As approaches zero. Thus K =E =K
[see Eq. (14)], and the expression (14) is independent ot' the discretization (4) (equivalence of discretizations).

By changing P- into P in Eqs. (16), we finally obtain the propagator
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1 im Pg 2 Pt
K(xf tf, x, , t, )=,&2'exp Qf

—
Q;

(pfp. ) 2 to Pf Pi
f BQ 'DPexp f [PQ H—'(Q, P;s)]ds

I

(17)

where

P2 I12 2

H'(Q, P;s)= + +P V pQ, f p (o /to)do.
2m 2

is the final Hamiltonian governing the dynamics of the
system with variables ( Q, P, s). A comparison between
the propagators (3) and (17) shows that the space-time
transformations (1) and (2), has resulted in the appear-
ance of a phase and a quadratic term —t m Il Q, which are
both potential independent but depend solely on the
GCT.

The result of Eq. (17) is independent of the discretiza-
tion. It describes the evolution of a physical system of
which the space-time coordinates were submitted to a

generalized canonical transformation. This result (17)
seems important to us and also really interesting through
its relative simplicity. Let us illustrate the usage one can
make of this equation (17), with two applications of real
epistemological interest: the variable-frequency harmon-
ic oscillator and the rectangular well with moving wall
(nonquadratical potential).

III. APPLICATION TO THE VARIABLE
FREQUENCY HARMONIC OSCILLATOR

The variable-frequency harmonic oscillator V(x, t)
=rnto'(t)X2/2 is a continued subject of interest because
of its simplicity. The propagator (17) is written, in this
particular case,

1K(xf tf X' t )&r2 expI &&/2 im

2Atp
Q Q2

pj pt

X fBQ BPexp —f PQ—
t

L

2

2m 2
+—[Il +co (s)p ]Q (18)

In order to be able to utilize the well-known result of
Feynman and Hibbs, " with respect to the constant-
frequency harmonic oscillator, let us set the global time-
dependent frequency appearing in Eq. (18) equal to a con-
stant:

2
COp

$1 +co (s)p =, =const,
tp

which amounts to imposing a constraint on p. As

p p
2

tp

where (t»t)=to~(t), which is the well-known auxiliary
equation. '

It is also easy to obtain the invariant. The Hamiltoni-
an,

7
p2 m Cu,

H'(Q, P;s)= +, Q2m 2 to dS to2

(21)

expressed as a function of x and t, is then exactly the in-
variant'

2

Eq. (19) then becomes (toxp —xp) +no
2to p

(22)

p+tu' (t)p=
p

(20) Finally, the propagator for the potential V(x, t)
=mt~2(t)x2/2 is given by

K(x~, t~, x, , t, )=
1/2

m ~p/t p
exp

2&rt fipf p, s&n[(ceo/to )(sf —s, ) ]

im

2htp
Pf, Pr

f' i

pg pt

Im &p/t p
X exp —

I (Qf + Q, )cos[(r&0/t„)(sf —s, )]—2Qf Q, (2' sin[(coo/to)(sf —s, )]
(23)
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with

xfP=P'P gf =
pf

x;

pt

doS- S;=
(o /to)

any instant t, the position of the moving wall is x =Lp,
where L represents the position of the moving wall at the
initial instant. We suppose that p(0)=1 and s =0 if
t =0. This potential well, defined by

This equation (23) completely resolves the problem of the
variable harmonic oscillator.

0, for 0(x (LpVxt)='
oo, elsewhere

IV. APPLICATION TO THE INFINITE
POTENTIAL WELL WITH MOVING WALL

One wall is supposed fixed at the origin, the other is
submitted to an arbitrary time-dependent movement. At

thus has boundary conditions which are time dependent.
Let us first notice that if xf or x, are outside of the inter-
val [O, Lp], the propagator (3) is null, V being infinite.
Then, if xf and x, &[0,Lp], the propagator (17) is writ-
ten as

1K (xf tf x' t ) 'i~2 exp? ? ?? ?

(

im Pf 2 pi
2 Ittp pf p;

'K(gf, sf, g, , s, ),

with

K(gf, sf, g, , s, )
= fBg X)Pexp —f PQ—

I

1

+—A, Q ds.
?

2m 2
(24)

where Qf and Q, E [O, L].
Thus the computation of the propagator (3) for this infinite well with variable width amounts to the determination of

the propagator (24), with the quadratic term —,'mII Q added, but with the constant boundary conditions. In the gen-
eral case, the expression (24) is not calculable, analytically. Let us thus take into consideration specific movements.

A. The particular case with 0=0
1. The propagator, for 0=0

If II=p=O, the movement of the wall is uniform. Its position x =Lp=L [1+(tlto)] depends linearly on time, t be-
ing related to s through s = t l( I + t It„ ), t H [0, oo ], s E [0,to]. In order to calculate the propagator, we make use of the
transformation

L LQ= B, P= Pii, —
and of the following equation deduced from the rigid rotator, submitted to the constraint a =L/~,

fSBX)P&exp ' —f P&B
P A'(n ——)

2ma 2ma sin 0
ds

oc (1+n + —,
'

) fi
exp

2ma' (sf —s, ) (l + n + —,
'

)
'
(sinBf sinB, ) Pt+"„(cosBf)P, +"„(cosB,) .

(l +2n)! . . in n-
l!

Let us first set n =
—,'. Then, the use of the formula'

j/2
sinvg

with v=l +12

m sing
P ~, ( I /2) ( cosg)——i /2

amounts to utilizing the image method'' in the system
(Q, P, s) and leads to the result

where

2 . l~ . l~K(gf sf Q, , s, )=—g sin gf sin Q.
L

Xexp ——
E& (sf s')

K (xf tf x;, t; ) The wave functions and the energy spectrum are given by

1 im pf 2 pi
exp

(pfp, )' 2%to Pf P

1/2
2

Q' '(Q) = sin g E' '=
L 2m L

2

XK(gf, sf,'g, ;s, ), (25) l=1,2, 3, . . . , ~ .
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2. The adiabatic approximation

In the case where the moving wall is moved very slowly (adiabatically) and linearly with respect to time,
x =L [1+a (t /to )], with a ((1, the following expression applies to the propagator (25):

K' (xf, tf, x;, t; )=
2i~A(tf t—

, )

r Lm, 2 Xf X;
exp ~ ( x —x; ) +41Lp p, lL +

2'(tf t,—) f i

—exp (x +x;) +4ILp p, lL—
2A(tf —t, ) f ' f '

pf
where the equation is obtained through the Poisson summation

+ oo + oo

f(l)= g I dy f(y)e' "~

I = —oo t7 = cd)

X;

pi

The quantity a being small, pf -p; -p, the propagator in the adiabatic approximation will thus be given by

K' (xf, tf, x, , t, )=
2i mR( tf t, ). —

1/2

exp
™

(x —x, +2lLp)
2A'( tf t,)—

—exp [x +x, —2lp]2'(tf t, )— (26)

which is the sum on all the classical paths. %'e can write
this equation (26) in the form

B. The general case, QAO

Case of small Q frequency
177 . I~

xf sin x,
Lp f Lp

00

K (xf tf x, , t, )= g sin
Lp

&

—i%I m
Xexp

2 z (tf t)'
mZ. 2p2

If the wall movements are such that the 0 frequency is
weak, the quadratic term mQ Q /2 can be treated as a
perturbation. The standard perturbation theory
amounts to calculating a series E =I( ' '+K"'+K' '+

.
, where K' ' is the propagator without perturbation

given by Eq. (25).

Pt (x)= 2

Lp
l~, d A l~

Sln X ~ F.l
p 2m Lp

Finally, for motions of the moving wall such as Q=O,
there is an auxiliary equation p=o. The system admits
thus an invariant

p2I = + V(Q)= + V(Q)=
2m 2

n2m~
2

otherwise

The wave functions, as well as the energies in the system
(x,p, t), are then given by

1/2

2. Case where 0 is not small

It is obvious that the analytical solution does not exist.
One can only consider a numerical solution. It is easier
to obtain this solution starting from Eq. (25) than from
the Eq. (3). In both cases 1 and 2 the system does not ad-
mit any auxiliary equation or invariant.

3. Case of constant frequency, 0,=const

In this case the system admits an auxiliary equation,

tp
2

p
— Q2

p'

or and an invariant,

2I=
2 (toxp —xp) + V

2tp p I = ( tox p —xp) + —,
' m A2 — + V

2tp p p

(toxp xp), 0~x ~�L-
p2t

otherwise .

For the propagator (23) relevant to a particle which is
bound to move harmonically on a segment (O,L), an
analytical solution is no longer possible. One can take
into consideration a numerical calculation.
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V. CONCLUSION

In this paper, we have calculated the propagator of a
time-dependent physical system when the space-time
variables describing this system were submitted to a
GCT. The calculation, which is done in phase space,
does not presuppose the existence of an invariant or the
knowledge of an auxilary equation.

The method was illustrated, in the case of a quadratic
potential, by the variable-frequency harmonic oscillator,
and in the case of a nonquadratic potential, by the rec-

tangular well with a moving wall, the resolution of which
had never been done, as far as we know, in the frame-
work of a path-integral approach. Of course, this method
can be applied to other problems of physics of similar na-
ture.
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