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Electric microfield distribution at an ion in the classical multicomponent plasma
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A physically motivated criterion for the validity of the Gaussian approximation for the electric
microfield distribution at an arbitrary ion in the general multicomponent classical plasma is present-
ed. The exact second moment is obtained from the Onsager proper energy for a unit dipole at the
center of a cavity, of radius equal to the ion-sphere radius, embedded in a uniform conducting fluid.

A connection between scaling behaviors of the plasma-mixture thermodynamics and its electric
microfield distribution is pointed out.

Many recent advances' " in the calculation of the
electric microfield distribution in strongly coupled plas-
mas are based on the Morita-Iglesias formulation' of the
problem. The electric microfield distribution W(e),
namely, the probability density of finding an electric field
F. = ~E~ equal to e at some point, is equivalent to finding
the pair distribution function of a classical fluid interac-
tion through a complex pair potential. This motivated
two semiempirical types of approximations that are re-
markably accurate also for strongly coupled plasmas,
especially for W(e) at a charged point. The first type
originates from the adjustable parameter exponential ap-
proximation, dubbed APEX. The second, the integral
equation approach, ' solves the modified hypernetted-
chain equation' for the structure of the complex-
interaction Auid, by employing a judicious guess for the
form of the bridge function. ' This form is suggested by
the exact analytic solution of the mean-spherical model
equations for the complex potential. The distribution
W(e) as obtained from the mean-spherical model equa-
tions is always Gaussian. " It features the exact second
moment when applied to evaluate W(e) at a charged
point in classical plasmas. The Gaussian approximation
with the exact second moment must be a1so the exact
strong-coupling limit result upon using the hypernetted-
chain integral equation for the structure of the complex-
interaction fluid. '

In this Brief Report I present a criterion for the validi-
ty of the Gaussian approximation for the electric
microfield distribution at an arbitrarily charged point in
the general multicomponent plasma. It has a very simple
physical interpretation in terms of the Onsager self-
energy of a dipole at the center of a hard sphere with con-
ducting boundary conditions. ' In particular, I find that
the Gaussian behavior of W(e) at a relatively highly
charged ion in a predominantly low-Z plasma may ex-
tend to relatively high fields e even for a weakly coupled,
experimentally accessible, plasma. The intimate connec-
tion between scaling behaviors of the plasma-mixture
thermodynamics and its electric microfield distribution is
demonstrated. The Gaussian form as the high-density
limiting form was derived by Gans' and Jackson. '

Consider a D-dimensional classical multicomponent
plasma, consisting of positive point ions of charges Z;e

and relative concentrations g;, of total number density
n =N/V and temperature T, embedded in a rigid, uni-
form, neutralizing background charge of density

pb =(g,.(,Z, e)N/V= &Z)ne U.sing the Wigner-Seitz
radius a as the unit of length, define the dimensionless
coupling parameter I o=e a /k&T, and let ea' be
the electric field unit. From both thermodynamic and
structural point of view, ' the behavior of the strongly
coupled plasma is governed by the "confined-atom" (ion-
sphere) picture. Specifically, when for any particular
charged particle in the plasma, of charge Z,-, we have

& Z ) 1
—2/DZ 1 +2/D » 1

then the charge Z, can be viewed (on the average) as "sit-
ting" at the center of its own (effective hard-core) ion
sphere of the background charge density, of radius

R; =a(Z, /&Z ) )' ro(i, ft),

where ro(l, s) 51 varies slowly with the plasma condi-
tions. It is important to note that as long as the particu-
lar charge Z, obeys (1), i.e., y; »1, then this ion-sphere
picture for its vicinity holds even when the plasma is
overall weakly coupled, namely, when I',s=g.g y ( l.
This property can be observed from the analysis' of the
hypernetted-chain equation for the multicomponent plas-
ma structure, for which royal in the limits of I o~ ~ or
Z,.~ oo. I 0(l,s) can be estimated from the variational
hard-sphere theory or the "soft" mean-spherical approxi-
mation, ' ' and is about —,

' even for I,&=1.
The self-energy of the ion sphere, containing the point

charge and its background, is given by

Qi CXD Pi

where aD is the ion-sphere Madelung constant (e.g. ,
aD= —

—,'„for D =3). When the condition (1) is met for
all the charges in the plasma, then the potential energy
per ion of the system is tightly bound from below by the
ion-sphere (Onsager) lower bound' given by

& u ) =yg, U, =a, yg, y, =a, r, & Z ) '-" &
Z'+ "D),

(4)
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and holds remarkably accurately even down to I,&-1.
Here fp(I p) is the one-component-plasma (OCP) excess
free energy. This holds for the Quid plasma despite the
fact that the heat capacity ei, =I pBfp(I p)/BI p is
markedly different from D/2 which is the expected har-
monic ion-sphere picture. The ion-sphere picture and the
scaling variables y, are equally useful for the description
of the electric microfield distribution at the charge Z;.

Independent of the details of the spherically symmetric
average distribution of ions around th'e (central) ion Z, ,

the electric field (excluding that due to Z, itself), inside

any spherical cavity around Z, in which there are no oth-
er ions, is given by (using the Newton-Gauss theorem for
the enclosed background charge),

E= —(Z)x . (6)

Here x= r/a is a vector from the central charge Z; and E
is in units of ea' . The energy cost for a relatively
small (see below) fiuctuation of the charge distribution
around Z, such that Z, is displaced from its central posi-
tion by x is given by

5u;/kiiT= ZE—x/2k. iiT=~x l(Z) =~E, (7)

where

(8)

The probability density for the charge Z; to be acted
upon by an electric field E is thus given by the Boltzmann
factor

W'(E)= exp( —fiu, /kii T)= exp( —~E E) . (9)

It is interesting to note that ~ as obtained above from the
cavity assumption connects well with an exact sum rule:
Assuming that (9) holds for all E then the (normalized)
probability for a field magnitude e =E is

P(e) =2' eD ' exp( —ae )/I (D/2),

with a second moment

(e ) = f e P(e)de=D/2~=D(z ) /roZ,

(10)

which is identical to the exact second moment of the elec-
tric microfield distribution. In other words, the derived
result (10) is identical to the Gaussian distribution
tailored to satisfy the exact second moment. The cavity
picture leading to (9) automatically limits its validity to
fields sma1ler than the maximal field inside the cavity e„
i.e., using (2) and (6), we obtain

«&, = (Z )(Z; /(Z ) )' rp(r, ff )

which for the OCP with Z = 1 takes the form

(12a)

where (Z")=g,.g;Z;". Although formally holding when

I,~)) 1, the validity of the parameters y,- as the
"correct" scaling variables is manifested by, e.g. , the
linear law' for the excess free energy. Defining
f =F'"/NkT, it reads

f;.=&ufo(y;)

E (6 =rp(rp) (12b)

It should be kept in mind that the physical picture lead-
ing to this criterion is tied to the validity of (1), namely,
to y; »1 for (12a) and I p»1 for (12b). In order to esti-
mate what is "large" y; in this context, (e, ) should be
compared to (11). The criterion (12) is valid as long as

e, /eM -ro(re—ff) f y; l(D —1)]' (14)

Indeed, the Zo =10, D =3 results in Fig. 2 of Ref. 4, and
the D =2 results of Fig. 4 in Ref. 5, corresponding to
y, =49.68 and 32, respectively, are almost perfect Gauss-
ians despite the weak-coupling nature (I,ff=1.56, 2, re-
spectively), of these plasmas. For the OCP with I o=10
(Ref. 3) the ratio (14) is about 1.8, covering almost the full
peak. For smaller y, when (13) does not hold then the
criterion (12) is less accurate but still provides a useful es-
timate. On the other hand, we see from (12a) and (12b)
that P(e) becomes strictly Gaussian in the formal limit

y, ~ (x). In analogy with the ion-sphere potential energy
[Eqs. (3) and (4)] we obtain the Gaussian distribution as
the natural leading contribution in a strong-coupling ex-
pansion for W(e).

Since the ion-sphere picture for any charge Z, is an ex-
act asymptotic strong-coupling limit (y;~ ~ ) of the
hypernetted-chain and mean-spherical theories, then the
Gaussian approximation must be their corresponding ex-
act strong-coupling limit. The fact that the mean-
spherical approximation maintains its Gaussian asymp-
totic result at all values of the plasma coupling parameter
is an additional feature of this model. " The physical
mechanism leading to (7) represents a fiuctuation that
creates a dipole at the test particle. This picture is mani-
fested by the integral equation approach to the Morita-
Iglesias formalism, provided we apply directly the On-
sager description of the strong-coupling limit.

In the Morita-Iglesias formalism one considers the
Fourier transform, W(k), of the electric microfield distri-
bution W(e), which can be expressed in the form

lnW(k)= —[F(A.) —F(K=O)]/k~T . (15)

Here F(k) denotes the configurational free energy of the
plasma when a "test" imaginary point dipole i A, is put at
the charged point of type j in question, and eventually
A, =(kiiT)k. The strong-coupling solution of the mean-

spherical and hypernetted-chain equations, is described
by the Onsager state in which the free-energy difterence
in (15) is given in terms of the self-energies of the Onsager

(13)

In three dimensions this corresponds roughly to y, ~ 10
(i.e., to I p 10 for the OCP), while in two dimensions the
range of validity of (12) extends roughly to y, & 6. We see
from (13) that as D increases then (12) is limited to higher
values of y;. This analysis is in full agreement with the
results in Refs. 3—5. To make the comparison easier note
that when (13) is satisfied then eM, the position of the
maximum of P(e), is well approximated by the Gaussian
maximum given by e,„G= [(D —1)(Z ) /I oZ, ]' so
that (for D & 1)
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"atoms. " For plasmas these are composed of the point
charges at the center of a neutralizing uniformly charged
sphere of the ion-sphere radius, with conducting bound-
ary conditions. All terms in (15) cancel out except the
contribution of the test particle with the dipole, leading
to

ln W(k)o„„s„=k~ Tu (A, , R& ),
where

(16a)

u(A, ,R)= —X /2R (16b)

is the self-energy of the Onsager object (its proper energy)
consisting of a point real dipole A, at the center of a
sphere of radius R with conducting boundary conditions,
i.e., it is the self-energy of the surface-induced charge.
Substituting A. = ( k~ T)k in (16), using the relation
1nW(k)= —(e)k /6 for the Gaussian distribution, and
recalling R~ from (2), we finally obtain

(e') =3k, T/R, ' (17)

in agreement with (11).
For any Anite value of y, there is a small but nonzero

probability for close encounters between ions. Thus, al-
though the cavity picture is valid for a semiquantitative
description of W(e) for e&e„the large fields are ob-
tained from nearest neighbors' with probability g (x )= exp( —I OZf Z;/x) for a field e=Zf /x, giving rise to
the form

P(e)-e exp[ —Z, (I Oe/Zf )' ]
which vanishes in the formal limit of y; ~ ~. As y; de-
creases then e, also decreases while the range of validity
of the large fields form (with appropriate screening
corrections' ) extends to lower fields. The transition
from the weak-coupling, Holtzmark regime, ' to the
strong-coupling, Gaussian, regime of the electric

microfield distribution is like the transition from Debye-
Huckel to ion-sphere thermodynamics. Both transitions
are gradually built up with increasing test charge and
coupling, respectively, by the correlation-hole effect [Eqs.
(1) and (2)] with the relevant length scale for the plasma
gradually changing from Debye length to pair-exclusion
(ion-sphere) radius.

The relevance of the thermodynamic scaling parameter
y; to the microfield distribution can be further demon-
strated. Let e „andP,„bethe position and value of
P(e) at its maximum, and let e,„Gand P,„Gbe the
corresponding values for the Gaussian approximation,
namely (e.g. , for D =2, 3),

e,„G=ir ', P,„G=(4/e)(~/n. )' (D =3)
(18)e,„G=(2~) ', P,„G=(2~/e)' (D =2) .

Consider the ratios y, =e,„/e,„G,y~ =Pm, „/Pm,„G
and let y, '(I o), y' '(I o) be the results for the one-
component plasma (Fig. 1 in Ref. 3). In analogy with the
linear law for the free energy (5), we expect that these
one-component-plasma functions will describe the gen-
eral case upon replacing I 0 b y,-,

(19)

Indeed for y, ) I all the simulation data for P(e) at a
charged point in both the one- and two-component plas-
mas (taken, e.g., from the figures in Refs. 3—5) obey re-
markably well the scaling relation (19). It should be not-
ed that y', '(I o) and y' '(I'0) take different forms in two
(Ref. 5) and three (Ref. 4) dimensions.
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