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Quantum wave packets on Kepler elliptic orbits
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Wave-packet solutions of the Schrodinger equation for the Coulomb potential are obtained that
travel along classical elliptic orbits of fixed mean eccentricity and angular momentum. These
wave packets are coherent states that have minimal quantum fluctuations in the noncommuting
components of the Lenz vector in the plane of the orbit. For large quantum numbers the asymp-
totic form of the wave packet and the classical equations of the orbit are obtained analytically.

A fundamental problem in physics is to understand the
transition from quantum to classical mechanics. Since
Schrodinger's pioneering work, ' it has been known that
coherent states are optimal quantum-mechanical states to
describe the classical limit. While there has been
widespread application of these states to many physical
systems, it is surprising that for the Coulomb potential
the evaluation of coherent states traveling along Keplerian
elliptic orbits, which was first attempted by Schrodinger,
has not been successfully carried out yet. Following the
work of Brown on circular wave packets, Mostowski
gave a formal solution for elliptic coherent states by ap-
plying the general theory of coherent states developed by
Barut and Perelomov. However, the superposition of
energy eigenstates given by this theory does not lead to
a classical limit for the Coulomb case. Moreover, some
incorrect conclusions have been reached regarding the
long-time behavior of superpositions of energy eigen-
states, which will be discussed in this paper. Another con-
struction, based on the mapping of the Coulomb Hamil-
tonian to a four-dimensional harmonic-oscillator Hamil-
tonian, gives wave packets which spread out asymptoti-
cally into a circular ring.

Recently, interest in this problem has been revived due
to the experimental study of Rydberg atoms in external
fields. ' Such studies also provide an arena to explore
the manifestations of classical chaos in quantum mechan-
ics. '' In particular, Gay and his collaborators' ' have
evaluated numerically the coherent energy eigenstates
erst discussed by Mostowski, and proposed experimental
methods to create these states in Rydberg atoms in
crossed electric and magnetic field. An angularly local-
ized wave packet in atomic sodium has been excited by a
pulsed laser, and observed experimentally to exhibit clas-
sical behavior. '

In this paper we construct and evaluate the most gen-
eral time-dependent localized wave packets which travel
along a Kepler elliptical orbit for all times The physical.
principle which leads to these coherent wave packets is the
requirement that the two noncommuting components of
the Lenz vector in the plane of the orbit have minimal
quantum fluctuations independent of time This lea. ds
directly to an analytic solution for the coefficients of the
expansion of coherent energy eigenstates in terms of the
conventional angular momentum eigenstates of the
Coulomb Hamiltonian. For large quantum numbers we

where H p /2 —I/r. For d 3, the corresponding sym-
metry group of H is O(4), ' ' but the same O(3) sub-
group is the relevant group for this problem.

In order to obtain appropriate quantum states with a
given mean value of the eccentricity, the direction of the
major axis, and the angular momentum which corre-
sponds asymptotically to the classical case, we will show
that it is sufficient to find states which minimize the prod-
uct of the quantum fluctuations hM and hM~ of the
Lenz vector. The commutation relations, Eq. (I), lead to
the uncertainty relation

(2)

where () indicates the mean value in a given state. The
required quantum states are the solutions of 0 pertaining
to the equality sign in Eq. (2). These states are deter-
mined by the eigenfunction equation

(M„+ibM~) ttl ritir, (3)

where 8 is a real parameter which will be related to the ec-
centricity e, and g is an eigenvalue of the non-Hermitian

obtain a Gaussian linear superposition of these eigenstates
with mean angular momentum corresponding to the clas-
sical value, and dispersion proportional to the eccentricity
and to the square root of the principal quantum number of
the state. For simplicity we con6ne our discussion to the
Coulomb problem in two dimensions which contains the
essential physical ideas, and then give the extension to the
three-dimensional case.

In classical physics it is well known that the eccentricity
and direction of the major axis of the elliptical Kepler or-
bit is determined by the magnitude and direction of the
Lenz vector M. In quantum mechanics, the correspond-
ing symmetrized Hermitian operator, which commutes
with the Coulomb Hamiltonian, was introduced by Pau-
li' as M z (pxL —Lxp) —r/r (in units where
e m iz I), where p is momentum, L is the angular
momentum, and r is the coordinate of the electron. In two
dimensions the commutation relations for the two com-
ponents of M„,M~ of the Lenz vector and L„which are
the generators of the O(3) symmetry group of the
Coulomb Hamiltonian H for bound states (E (0), are
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operator M +i'~. The state y is also an eigenstate of
the Coulomb Hamiltonian 0with energy E„.

It can be readily shown for the solutions of Eq. (3) that

(4)

Further properties of this eigenvalue equation can be ob-
tained by introducing the ladder operators

(5)

FIG. I. The probability distribution for a coherent energy
eigenstate, Eq. (9), with principal quantum number i, =40 and

6 0.8, which correspond to eccentricity e =0.6 and mean angu-
lar momentum (L, ) =32.(6)

for 0~ 6 ~ 1. These operators give the additional solu-
tions AW((( of Eq. (3) with eigenvalues r(~m[ 2E„—
& (1 —8 ) ] 'i, where m is an integer. We find that the ei-
genvalue r( is real and corresponds to the mean value of
the eccentricity e of the elliptic orbit

Here m l„, l„—1, . . . , —l„, where l„ is an integer that is
related to the energy eigenvalue E„—1/2n, and
n i„+ 2 for d 2, while n i„+1 for d 3. Of particu-
lar interest to our discussion is the eigenstate y„of maxi-
mal eigenvalue m l„. This eigenstate satisfies the addi-
tional condition

A+pg 0, (7)

I Jn

and obtain for the coefficients c„~,
r ' 1/2 ~ I/2

(1 ~2) („('2 1+b

1 —8
c'-n, I

(10)

For large l„, these coefficients are approximated very well

and we label these solutions by the continuous parameter
8 and the principal quantum number e. In this case it can
be readily shown that (L,) bl„. It will be shown that this
corresponds to the classical value of the angular momen-
tum for a given eccentricity e and energy E„. Together
with Eq. (4), this result implies that the quantum fluctua-
tions AM„and hM~ are proportional to I/(i„)'(. For
large quantum numbers i„, it follows from Eq. (6) that
the eccentricity e for this coherent state depends only on 8
and is independent of i„. Hence a general linear superpo
sition of these states for large quantum number also
satisfies Eq. (3), and therefore has minimal quantum fluc-
tuations in M„and MJ. Furthermore, in this limit we ob-
tain for this state from Eq. (6) the classical relation for
the eccentricity,

(1 —$ ) '( = (1 —2E„(I,) 2) 'i2

We can readily solve Eqs. (3) and (7) by expanding yg(r)
in the conventional eigenfunctions y„((r) of the Coulomb
Hamiltonian 0 and the angular momentum I., for d 2
(and L with maximum eigenvalue of L, for d 3)

by a Gaussian distribution in I:
[/4

exp[ —(1 —Bl„)'/l„(1 —8') ] .

Similar expressions are obtained by expanding in the
eigenstates of the components M or M~ of the Lenz vec-
tor. Asymptotically the coefficients are approximated by
a Gaussian distribution in the corresponding eigenvalues,
with a dispersion and mean value given by Eqs. (4) and
(6), respectively. This coherent energy eigenstate ' '
has a spatial probability distribution strongly peaked
along the Kepler orbit with the corresponding eccentricity
e and major axis; see Fig. 1.

To obtain a localized wave packet we must take a su-
perposition of these coherent energy eigenstates,

y (r, t ) ga„y„(r)exp( —iE„t) .

The general results are reasonably independent of details
of the coeflicients a„-assuming that the distribution is
sharply peaked about some principal quantum number.
We have carried out calculations with a Gaussian super-
position,

a„-(2(ro') '("exp[ —(I„—i(()'/4o'],

and we have numerically evaluated the time dependence
of such wave packets in two and three space dimensions,
and recorded the results on video tape. In Figs. 2 and 3
we show contours of

~ y (r, t) ~
in two dimensions at

various times along an elliptic orbit with eccentricity
e 0.6 and angular momentum (L, ) 32 obtained by set-
ting b 0.8, lo 40, and o 3.0. Very similar results
were obtained for a wave packet in three dimensions for
the same parameters when observed in the plane of the
classical orbit, but there is an additional time-independent
Gaussian spread of the wave packet along the polar angle.
The wave packet turns around the orbit with the Kepler
period r 2(rl((. It has been launched at perihelion [Fig.
2(a)] and it slows down, contracts, and becomes steeper as
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FIG. 2. (a), (b) A wave packet with eccentricity e 0.6 and mean angular momentum (L,) 32 at t 0 and t 0.5r, where r is the
Kepler period of this orbit. For reference, the classical elliptic orbit for this eccentricity and angular momentum is drawn on the
plane.

it reaches aphelion [Fig. 2(b)]. This is the expected be-
havior from classical mechanics. As the wave packet re-
turns to perihelion it speeds up and spreads faster. The
overall spreading of the wave packet is of classical origin,
due to the initial uncertainty in position and momentum
demanded by Heisenberg's principle. However, important
quantum-mechanical interference effects occur when the
head of the wave packet catches up with its taiL This in-
terference leads to a nonuniform varying amplitude of the
wave packet along the ellipse (Fig. 3). This phenomenon
has been overlooked in the past, ' but it is important in

I

showing how quantum effects occur at long times in a
semiclassical regime. In fact, these interference effects
mark a breakdown of the semiclassical approximation at
long times, and should be important in experiments in
atomic physics in the semiclassical domain.

In the asymptotic regime of large principal quantum
numbers no= i p, the summation over angular momentum
states in Eq. (9) and energy eigenstates in Eq. (10) can be
carried out analytically, using the Wentzel-Kramers-
Brillouin approximation for the radial wave functions of
the hydrogen atom. We obtain for d 3,

2~o
(I) (r, 8,p, t) —=

apply)

)/2 r i [/4
Blp

exp [iSp(r) ] x
exp — 0——

2

blp

2

exp ibl p(&+ 2') —[p+ 22rtu (t)p(r)] 2—(1 —(I) 2)
p ~ —OO 2

exp — 8(to+2att —po(r)) — [t —to(r)] /2ao(r, t)1 1

[2xao(r, t)] '
l()

(l2)

where the classical action in radial coordinates is

So(r) „po(r')dr',
the mean radial momentum is

p )/2
lo 2po(r)- 2E„,— +

y

the classical relation for an ellipse corresponds to

as, (lp)t(o(r)- —,or r-
8lo

' (l+ecosp) '

and the classical time dependence along the orbit with the
Kepler period r 2z/n)p 2)rlo3 is given by

8$ptp(r)-
8E„

FIG. 3. The wave packet after completing two orbital
periods.
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where
S

F-n'

In conclusion, it has been shown that for large quantum
numbers, there exists coherent wave-packet solutions of

The summation over integers p in Eq. (12) comes from
applying the Poisson summation formula to Eq. (9), as re-
quired by the periodicity of tlt„ in the azimuthal angle p.
This sum accounts for the interference phenomena dis-
cussed previously when the wave packet has spread along
the elliptical orbit. The rate of spreading is determined by
the complex width

a p(r, t, B) = —i 3 +2fp(r)1

the time-dependent Schrodinger equation which travel
along Kepler elliptic orbits. Thus, it is expected that elec-
trons in excited hydrogenlike atoms can exhibit all the
classical phenomena associated with planetary motion for
a limited number of revolutions. Afterwards, quantum in-
terference phenomena set in which lead to important
quantum corrections. However, the initial state will recur
after a definite time. These results may also elucidate the
successes as well as limitations of recent applications of
classical physics to the study of manifestations of chaos in

atomic physics. ' '
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