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When the motion of the surrounding heat bath particles is a slow coordinate, a “system” particle
and its bath become dynamically coupled. A nonlinear Langevin (Fokker-Planck) equation is re-
quired to describe the stochastic process. In general, the steady-state distribution is not canonical.
The rapid-motion effect, in association with the dynamical coupling among multimodes of the sys-
tem, and the combined contributions from nonlinear and non-Markovian processes, cause a break-
down of the conventional Brownian motion theory. The discussion given in this paper puts previ-
ous computer-simulation results on a better theoretical foundation.

I. INTRODUCTION

Most theorists have addressed the dynamical problem
of a particle having internal degrees of freedom (such as a
molecule) in a condensed surrounding phase through use
of a linear phenomenological Langevin (or Fokker-
Planck) equation based on the Brownian motion mod-
el.'7® According to this model, the particle (“system”)
changes its configuration so slowly that the surrounding
phase (“bath”) can always readjust its positions and mo-
menta to reach perfect thermal equilibrium with every
configuration of the system. Recent computer
molecular-dynamics (MD) simulations’ ~!! have shown
that the Brownian motion model may not give a correct
description for particle dynamics that take place on a
time scale short relative to the bath motions. This situa-
tion arises naturally in “barrier-crossing” problems’
where the particle of interest is subjected to the influences
of steep potentials from sources other than those from the
bath. In such “reversed time scale” situations, nonlinear
effects become important. To shed more light on this
problem and to put the previous MD results on more
solid theoretical ground, we further discuss the dynamics
from a classical statistical-mechanics point of view. To
present a balanced perspective, Sec. II briefly reviews the
modern Brownian motion model of Okuyama and Oxto-
by. In Sec. III we give a qualitative outline of an ultrafast
motion model for the dynamics. Section IV introduces a
detailed Hamiltonian portrait of the problem, Sec. V
shows how this Hamiltonian can lead to a modified
Langevin equation of motion for the particle, while Sec.
VI presents a method for calculating the bipartite distri-
bution functions through an associated Fokker-Planck-
type equation. A summary of our conclusions is given in
Sec. VII.

II. BROWNIAN MOTION MODEL

It is well known'? that the mean-square velocity in any
degree of freedom of a “free”” Brownian particle, which is
large and heavy, tends to the equipartition value,

(1)) =kpT/M+[{v%0))—kzT/Mle 2/, (1)
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where 7 is the correlation time of the particle velocity.
Such a system will eventually reach equilibrium, and,
once attained, has a natural tendency to stay there.

Okuyama and Oxtoby!? have extended Eq. (1) to the
more general non-Markovian, nevertheless Brownian, sit-
uation for free diffusion:

(vU1)) =k T/M+[{vX0))—kzT/MIxXt), (2

where

1
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Here &(s) is the friction in frequency space and £ !
denotes the inverse Laplace transform. Both Egs. (1) and
(2) show how the Brownian particle reaches the equilibri-
um stationary state. The relaxation of the Brownian par-
ticle is caused by the weak deflection of its trajectories in
its collisions with the surrounding bath which is at equi-
librium. '

x()=L"!

III. ULTRAFAST MOTION MODEL

In contrast to the Brownian motion model, and corre-
sponding MD methods that initiate the trajectories by
fixing the system in a given configuration then equilibrat-
ing the surrounding bath,'> we have used full MD calcu-
lations void of these approximations to simulate the
system-bath dynamics in a correct and natural way. The
resulting dynamical effects include the fact that, for non-
Brownian or reversed time scale problems, the bath ex-
periences a lag time in trying to reach equilibrium with
each new configuration of the rapidly evolving system.

Non-Boltzmann situations may occur if the ratio of the
time related to the duration of the interactions with
respect to the time related to the relaxation process can
no longer be neglected.'® Probably the most important
feature of the dynamical system under consideration,
which distinguishes it from the Brownian motion prob-
lem, is the existence of internal structure. The reduced
mass, shape, size, and internal energy of the system may
all change during the dynamical process. The bath re-
quires a finite time to equilibrate around each new
configuration of the system. If the reduced mass of the
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system is small in comparison with the masses of the bath
particles, or if the intramolecular barrier is steep in a cer-
tain region, the system changes its configuration so rapid-
ly that the surrounding bath can no longer keep up with
this rapid motion. As a result, both the system and the
bath remain locally out of equilibrium with each other.
This results in a temperature gradient along the dynami-
cal barrier-crossing coordinate, and noncanonical distri-
butions persist.>%!!

To model this ultrafast motion analytically, we notice
that the ensemble average of the coupling Hamiltonian
between the system and heat bath is not only a function
of the dynamical coordinate, an aspect which lies within
the conventional Brownian motion model, but is also a
function of the conjugate momentum (Ref. 11, also cf.
Sec. IV). The Brownian motion model is based on the as-
sumption that the surroundings respond extremely rapid-
ly to the motion of the particle of interest. On this time
scale, the Brownian particle can be treated as being
“clamped.” However, in the actual case, the dynamical
motion of the barrier-crossing system induces a perturba-
tion in the coupling Hamiltonian. The faster the system
moves, the more positive is the perturbative coupling
term. This additional contribution leads to mixed
position-momentum terms in the effective Hamiltonian,
and noncanonical distributions follow.

According to the classical theory of vibrations,
Brownian motion is similar to oscillations about equilibri-
um, while rapid unstable barrier crossing is similar to os-
cillations in a moving frame. In the latter case, both the
center of mass and the reduced mass of the oscillator can
be considered to be time dependent, giving rise to mixed
position-momentum terms in the effective Hamiltonian.
Because of dynamical coupling between the system and
the bath, and among the multimodes of the system, the
barrier-crossing coordinate, while a normal coordinate
for the free molecule, is generally not a normal coordi-
nate when the system is immersed in the bath. Neither
can it be transformed to a normal coordinate by a point
transformation.'’

IV. SYSTEM-BATH INTERACTIONS

A. One-dimensional model

Let us first consider the one-dimensional problem,
where the system particle is a diatomic molecule.
Newton’s laws of motion are

d2

m;t—§=f,+f2, (3)
d’R dU(Q)

My == ST @
d’R, 3U(Q)

z’gthza—QQ—fz. (5)

In these equations, m is the mass of an approaching parti-
cle, M, and M, are the masses of the particles compris-
ing the diatomic molecule; , R, and R, correspond to
their positions; f; and f, are forces from interactions of
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the particle m with M, and M,: and U(Q) is the in-
tramolecular potential with Q =R, —R,. For simplicity,
assume the diatomic particles 1 and 2 are identical.
Equations (3)—(5) can then be rewritten as

2
c

d[2 =—'f1_f2, (6)
d? oU
d2
A;‘zi=f1+f2, (8)

where M=M,+M,, 1/A=1/m+1/M, 1/u=1/M,
+1/M2, Rcz(M1R1+M2R2)/(M1+M2) iS the pOSi-
tion of the center of mass of the diatomic molecule, and
g =r—R,.. Expanding the interactions f; (i=1or2)ina
power series
fi=3 ar—R)" ©)
v=1

one can write Eq.
coeflicients

(8) in terms of the expansion

2

k%t—g=2alq+a2(2q2+Q2/2)+ cee (10)
It is clear from Eq. (10) that in the one-dimensional prob-
lem, if interactions between the pair of colliding particles
are linear (@, =0 for v=2), one may treat the diatomic
molecule as a single particle M located at the center of
mass. Particle m vibrates harmonically with respect to
particle M. This motion is not disturbed at all by the
internal vibrational motion of the diatomic molecule. In
other words, the collision occurs adiabatically. This pic-
ture also holds if we investigate a number of particles sur-
rounding the diatomic molecule, the motions of these
particles are all independent of the molecule’s internal de-
grees of freedom, giving the conventional Brownian
motion picture.!® In this situation the bath remains at
equilibrium no matter how rapidly the diatomic molecule
vibrates. On the other hand, when the coupling Hamil-
tonian contains anharmonicity, the colliding molecules
become dynamically coupled. In the special case where
the internal vibrational motion is very slow relative to the
collision event, a perturbation approach can be used.'

Formally integrating Eq. (10), we find that g depends
on the history of the internal motion of the diatomic mol-
ecule. The collision becomes inelastic and nonadiabatic.
In this situation, one obtains nonequilibrium solva-
tion.?%2! The effective system-bath interaction is not a
potential function of a conservative force.

One may divide the system-bath ensemble into a num-
ber of subsystems. Each contains a group of bath parti-
cles surrounding a certain configuration of the system.
At steady state, the net energy flux from the system to
the bath equals zero. However, when the dynamical pro-
cesses of the system are rapid in comparison with the
bath motion, energy exchange between the system and
bath becomes inefficient. Depending on its specific state,
energy balance is not necessarily preserved for every sub-
system. The dynamical system gains kinetic energy in



40 BREAKDOWN OF THE BROWNIAN MOTION MODELIN . ..

some subsystems, while in others it loses energy. As far
as an individual subsystem is concerned, the conditional
distributions®? are not canonical. A dynamical process
involving a specific state of a subsystem can then occur
from an abnormal distribution.

B. Multidimensional model

We now consider a two-dimensional model. Defining 6
as the angle of inclination of the molecular axis with
respect to g, we rewrite Eq. (10),

d’q
)»W=a,[(q2+Q2/4—-qQ cosf)!”?

+(g*+Q?/4+qQ cosh)'"?]
+a,(2¢*+Q%/2)+ -+ - . (11

This more complicated form is a consequence of the cou-
pling between the relevant dynamical modes, i.e., the bar-
rier crossing coordinate (Q), and other internal modes of
the system (e.g., rotational motion about 6). Evidently,
even for a linear interaction, the motion of particle m is
continuously interrupted by the internal vibrations of the
system. One again obtains nonequilibrium solvation.
This conclusion is clearly valid for a three-dimensional
model, and consequently, for any real system.

In summary, we conclude that when a dynamical sys-
tem possesses internal degrees of freedom, the bath
motion is disturbed by the internal motions of the system.
Conversely, the internal motions of the system are in the
same way influenced by the bath motions. The
configurational and velocity distributions of the neighbor-
ing bath particles are generally not canonical, except for
motions where changes of the state of the dynamical sys-
tem can be neglected during the course of collision. If
the relevant frequency of the system dynamics is high,
this influence also includes feedback from the previous
dynamical behavior, another type of nonlinear effect.

C. Effective couplings

As discussed above, when anharmonicity exists in a
one-dimensional model, or even when only linear interac-
tions exist in a multidimensional model, the system and
bath may depart locally from equilibrium. Deviations
from the equilibrium state depend on the time scale of the
dynamical motion of the system relative to that of the
bath relaxation. The collisional process becomes nonadi-
abatic.?

Before introducing the concept of effective coupling,
let us consider the one-dimensional classical Hamiltoni-
an,

H=P*/2u+U(Q)+MR 2 /2

N
+ Z[USB(qi,RC,Q)+p,-2/2m ]+ 2 UBB(qi '_qj)

i=1 i<j
(12)
of the interactive system plus bath. Here, (Q,P) denotes

a set of position coordinates and conjugate momenta of
the system, and (g;,p;) (i=1,2,...,N) represent the
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same parameters for the bath. The system-bath interac-
tion Hamiltonian in Eq. (12) does not contain the system
momentum P explicitly. However, in the nonquilibrated
bath, the position and momentum coordinates of its con-
stituent particles are interrupted continuously by the sys-
tem motion [cf. Eq. (10)], slow system motion and fast
system motion having different effects. Consequently, the
coordinate and momentum distribution functions of the
nearby bath have dependencies on the system parameters.
It is sometimes convenient to treat the heat bath as if it
had a small finite number of degrees of freedom,?* in par-
ticular, as a single “particle” interacting with the system
through the ensemble averaged force, or the effective in-
teraction. In the rapid-motion model, this effective in-
teraction is not a potential function of a conservative
force, but rather is a function of both the coordinates and
the conjugate momenta of the system. This type of cou-
pling leads to a nonlinear Langevin equation (cf. Sec. V).
To explain the problem more specifically, we split the
system-bath coupling Hamiltonian into a static part,

N
HS:: 2 [USB(qI_RC—Q/2)+ USB(ql_RC+Q/2)]

i=1

and a dynamical part,

N
H;= 3 [Usg(Ag;—R.—Q/2)

i=1
+USB(Aq1—Rc+Q/2)]+ Lt

Here g, describe the positions that the bath particles
would occupy if they were in perfect thermal equilibrium
with the system, while Ag; are deviations from g; caused
by the local nonequilibrium dynamics. The static part of
the coupling is a genuine potential function and is no
different from the coupling terms found by Lindenberg
and co-workers!® for an equlibrated bath, and used by
others? in applications of the Brownian motion model to
chemical reaction dynamics. This static portion may be
determined by clamping the system in a certain
configuration, then equilibrating the surrounding bath.
On the other hand, the dynamical portion constitutes a
correction term derived from the actual motion of the
system, and from the rapid variations of its reduced mass,
size, and shape. Inclusion of this dynamical contribution
should give rise to important improvements in the
theoretical assessment of ultrafast dynamical processes in
solids and liquids. This part of the coupling Hamiltoni-
an, being a function of both Q and P, leads as expected to
a nonlinear Langevin equation.

V. NONLINEAR LANGEVIN EQUATION

By using a classical model of coupled harmonic oscilla-
tors and assuming the system-bath interaction to be static
and linear in the bath coordinates, Lindenberg and her
co-workers'® have derived a quasilinear Langevin equa-
tion (LE) in which the memory kernel and the random
forces have a dependence on the position coordinates of
the system. This equation, though non-Markovian, still
lies within the framework of equilibrium solvation ideas.

The specific form of the system-bath interaction affects
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dramatically both the potential terms and the dissipation
terms in the final LE.?® Including anharmonicity in the
bath oscillators, treating the nonlinearities perturbatively,
and using the adiabatic elimination technique,?’” Mar-
chesoni?® found that both the modified potential and the
dissipation depend on the environmental temperature ex-
plicitly. By use of a “renormalization” procedure,’ this
temperature dependence is equivalent to a dependence on
barrier height. These effects were also discovered in MD
calculations.®~!! Similar conclusions have been drawn
analytically by Grigolini.® However, the analytical
treatments were based on an equilibrium solvation view,
which takes into account static system-bath coupling
only. To extend these results, we notice that, in the none-
quilibrium solvation regime, the distribution functions of
the surrounding bath particles depend on the system
motion. Thus the ensemble averages of random variables
are functions of both the barrier-crossing coordinate and
the corresponding momentum of the system. In this
nonequilibrium case, the fluctuation-dissipation relation
is generally not applicable, reminiscent of the case where
a liquid is subjected to a rapidly oscillatory external
field®® or to a rapidly moving surface.’! An alternative
approach uses the concept of the effective coupling,
which will be described in the following.

The locally nonequilibrated one-dimensional system
and bath particles are modeled by the Hamiltonian

H=P2/2u(Q)+U(Q)+p?/2m +mw’q?/2— A(Q,P)q .
(13)

The last term is seen to represent dynamical coupling,
and it is to be noted that the reduced mass of the system
W is, in general, a function of Q. For simplicity in manip-
ulation, but without loss of generality, the interaction has
been assumed to be linear in the bath particle coordinate.
The Hamiltonian (13) is then similar to the IO
(independent-oscillator) model of Ford, Lewis, and
O’Connell.*> One now writes the equations of motion,

5 04(Q,P) 9 2

P 50 aQ[U(Q>+P 20O, (14)
s _ 34(Q,P)

O=P/uQ—="—2"q , (15)
p=A(Q,P)—w’q, (16)
i=p . 17

Formally integrating the bath coordinates and substitut-
ing the results into Eq. (14) yields the nonlinear LE

5y aU(Q,P)

P % —fod»rg(Q,P;t—T)P(T)=7(Q7P;’) :

(18)
In Eq. (18), the effective barrier potential is

U(Q,P)=U(Q)+P2/2u(Q)— A(Q,P) /20>,  (19)

the memory kernel is
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s y_0A4[Q(1),P(1)] 04[Q(7),P(7)]
5Q,P;t—1) 20 20
_ aU(Q)/90Q cosw(t —7)
a[P?/2u(Q)]/3Q ?
(20)
and the random force is
_\_3A4(Q,P) A(Qo,Py)
7(Q,P,t)—-——a-é~— q(0)———5—— |coswt
+ 229 e 3
@

This is, of course, not a rigorous derivation since we have
merely asserted the form of the coupling A(Q,P). In
general, Egs. (20) and (21) do not connect through the
fluctuation-dissipation relation. Fluctuations in non-
linear systems can produce order.>> They propagate un-
stable barrier dynamics to other regimes and transfer in-
formation from short- to long-time dynamics.>*

The key points we want to make here are the following.
(1) The rapid dynamical motions of the system cause the
effective coupling Hamiltonian to take on a mixed form
in P and Q. (2) This Hamiltonian further leads to a non-
linearity in the LE. (3) Inclusion of anharmonicity in the
bath oscillator causes additional nonlinearity. (4) The
effective barrier potential, and consequently entropy
effects, depends not only on Q but also on P. (5) The vari-
ation of reduced mass with respect to the coordinate Q
gives rise to an additional contribution to the effective
barrier potential, a nonlinear effect first described in Ref.
10. (6) Another nonlinear effect concerns the memory
kernel, which, from Eq. (20), itself depends on the system
parameters including the barrier potential.®!!

VI. STATIONARY DISTRIBUTION FUNCTION

A. Brownian motion

The general form of the Fokker-Planck equation (FPE)
reads

3 (Qa,tP;t) =3 T,p(Q,P;1), 22
r=0

where p(Q, P;t) represents the reduced distribution func-
tion in the relevant phase space of the system under
study, and I', denote the perturbation terms of order 7 in
the corresponding FP operator. Assuming the coupling
to be static and linear in the bath coordinates, Mar-
chesoni?® derived the FP operators for r=0, 1, and 2.
The Markovian assumption is implicit in the truncation
of the series to order »r=1. In this approximation, Eq.
(22) is sometimes called the Kramers-Fokker-Planck
equation. This leads to the ordinary LE.

At steady state, dp(Q,P;t)/9t=0. A particular solu-
tion of this steady-state FPE in lowest order is the canon-
ical distribution, which is valid only under the condition
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kT2 (aQ};P) +P/M=0. (23)

In other words, if the stable velocity distribution is
Maxwellian at every position of the system, the
configurational distribution must then be canonical re-
gardless of the friction. This conclusion is true even for
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the much more complicated second-order (r =2) FPE.
Keep in mind that Eq. (23) is obtained only when the
dynamical effects of the system motion can be neglected.

The one-dimensional diffusion problem of two interact-
ing Brownian particles in a periodic potential was investi-
gated by Vollmer.”> The probability distribution
p(Q,P,R_,P_;t) describing this stochastic process is a
solution of the FPE:

3p(Q,P,R,,P,;t) ) 3 3 9 U(Q)
+ R, _— _—
5 P./M~ C+P/ua apc(ch/u) ap |SP/nt 30
—&(P2/p) & (p? )—a2 P,R P ;t)=
/, ,P,R.,P;t)=0, (24
(P /1 op? (P /u 3p? p(Q ) (24)

where P, is the translational momentum of the diatomic
system. If Q and R, are normal coordinates, that is, if
the vibrational mode and the translational mode are not
dynamically coupled, the stationary solution of Eq. (24) is

p(Q,P,R.,P.)=c exp{—[P2/{P?)+P*/{P?)
+U(Q)/{TQN]} .

As expected, this is the Boltzmann distribution.

B. Ultrafast motion

In a recent paper, Masters®® reviewed the assumptions
made in the ordinary Langevin, Smoluchowski, and
lowest-order FPE’s, and found that the validity of these
reduced equations, which simply attempt to describe the
motion of the Brownian particle alone, relies on separa-
tions of time scales. In particular, the Smoluchowski
equation requires that 7, >> 7,, whereas the Fokker-
Planck and LE require that TQsTp >>Ty, where Tos Tp
and 7, represent, respectively, the correlation times for
the particle position, velocity, and total force exerted on
the particle by the bath. These conditions may not be
satisfied when large forces from sources other than those
from the bath are present.

Starting from the classical Hamiltonian in Eq. (12), Le-
bowitz and Rubin®’ have derived a FPE for a Brownian
particle,-

3p(Q,P;t) P3  3U(Q) 8
ot uoQ 30 oP
d? 1 d
— 2 A T .
c(p /,u>aP2+'u aPP
Xp(Q,P,t)=0(y%), (25)

where y=(m/M)'? is a measure of the dynamical

effects induced by the motion of the Brownian particle.
If the ratio y is not very small, the higher-order contribu-
tions of the dynamical motion of the system become
non-negligible, especially when there exists a position-
dependent external force field which causes spatial

nonuniformity.>® %’ Steady state is attained as a result of
the competition between the pumping process caused by
the external force (or the periodic variation of the inter-
nal energy of the system) and energy exchange through
system-bath interactions. One obtains noncanonical dis-
tributions in this case. By use of a perturbation method,
where the distribution function is split into an unper-
turbed (canonical) component and a perturbed com-
ponent, Lebowitz and Rubin®’ further found that the dis-
tortion of the canonical distribution caused by the
dynamical motion of the particle becomes larger when
the external force becomes larger and the bath friction
becomes lower. This is completely in accord with the
MD results.!! However, in the approach of Lebowitz and
Rubin, the position-dependent friction caused by the non-
linear system-bath interaction has not been taken into ac-
count. Influences of the variations of the reduced mass,
size, and shape on the dynamics have been ignored. The
process is purely Markovian.

In a more general nonlinear, non-Markovian situation,
the effects of nonequilibrium solvation become
significant. One obtains a nonlinear FPE which is
equivalent to the nonliner LE (18). A rigorous derivation
seems not feasible. However, using the technique con-
structed by Novikov*' and by Miguel and Sancho,** one
may derive a generalized FPE. This generalized FPE
reduces to the Ito-Stratonivich*»** type of stochastic
differential equation in the Markovian limit, and further
reduces to the ordinary Kramers-Fokker-Planck equation
by omitting the nonlinearity. In linear, non-Markovian
dynamics, this then becomes equivalent to the general-
ized Smoluchowski equation derived by Okuyama and
Oxtoby.!3 It is evident that the steady-state solution of
the nonlinear FPE is generally not canonical. Its integra-
tion (e.g., the mean kinetic energy) cannot be a constant
along the barrier-crossing coordinate.

The above treatments are all limited to the one-
dimensional problem. On the other hand, almost every
dynamical process in the liquid state, even the simplest,
includes multimodes. The coupling among these modes
gives rise to additional contributions to the potential,
which then perturb the FPE.* In addition, since none-
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quilibrium solvation acts on the motions of each mode,
this coupling is generally dynamical (cf. Sec. IV). Be-
cause of these dynamical couplings, the modified coordi-
nates of the system are not normal coordinates.” More-
over, the internal structure, reduced mass, shape, and size
of the system vary during the dynamical process. These
extra complications further perturb the Fokker-Planck

S.-B. ZHU, SURIJIT SINGH, AND G. W. ROBINSON
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operator nonlinearly.

C. Boltzmann equation

Probably a better approach to such complicated prob-
lems is provided by the Boltzmann equation. The non-
linearity is embodied in the collision operator

(26)

a ’ ’ ’ ’ ’ ’
—a% =fd3q fd3pa(Q,P,Rc,PC;q,p|Q ,P',R.,P!;q",p")|P/m
col
~P./M|[p(Q",P';1)f(Q",P',q",p";t)—p(Q,P;t)f(Q,P,q,p;t)],
[
where o(Q,P,R.,P.;q,p|Q",P',R/,P/;q',p') is the

differential scattering cross section®® of the colliding pair
described in Sec. IV, and f(Q,P,q,p,t) represents the dis-
tribution function of the bath particles. These quantities
have mixed forms of the positions and momenta, since
the kinetic energy and the total momentum are not con-
served during the course of collision. As a result, devia-
tions from the canonical distribution become inevitable.
The collision operator may be linearized for certain pro-
cesses. For example, a system in which one particle is
very large and very heavy compared with others (i.e., a
Brownian particle) gives rise to a linear equation for this
particle.*® This equation then reduces to the ordinary
FPE.>*

VII. CONCLUSIONS

Because of its internal structure, a real particle is gen-
erally different from a Brownian particle. When the bath
motion becomes a slow coordinate, such as in the nonadi-
abatic frozen solvent situation,*® the system and the heat
bath become dynamically coupled. This is in addition to
the static coupling of ordinary Brownian motion theory.
In addition, couplings among the multimodes of the sys-
tem because of nonequilibrium solvation are also dynami-
cal.®® These dynamical aspects, in association with joint
contributions from nonlinear and non-Markovian effects,
cause a breakdown of the conventional Brownian motion
theory. Instead, the rapid-motion model introduced here
is demanded. The dynamical coupling Hamiltonian, hav-
ing a mixed P and Q dependence, leads to a nonlinear LE

and FPE. Application of these more general equations to
ultrafast dynamical processes in liquids or solids is essen-
tial. In fact, the rapid-motion model has successfully in-
terpreted all the phenomena thus far observed in MD cal-
culations of barrier crossing. For example, Eq. (19) indi-
cates a P-dependent effective barrier potential (more
rigorously, this is not a genuine potential since the corre-
sponding force is not conservative), as observed in Ref.
10. On the other hand, Eq. (20) shows that the memory
kernel itself is a function of P, in line with the discovery
in Ref. 8. Equations (25) (in particular with P-dependent
£) and (26) predict a locally noncanonical velocity distri-
bution. This is exactly what was found in Refs. 9 and 11
and more recently in Ref. 50. The rapid-motion should
also be applicable to various types of ultrafast dynamics
in the liquid state, including chemical reactions. The re-
sulting complications will include local nonequilibrium
and noncanonical distributions along the bare barrier-
crossing coordinate,’® the barrier potential dependences
of entropy effects, and the effects of system characteris-
tics on the time-dependent friction. These features have
been neglected in past work. They lie outside the frame-
work of the Brownian motion model and linear Langevin
or Fokker-Planck equations.
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