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We study the node-avoiding (NALF) and path-avoiding extensions of the Levy flights in terms of
the critical exponents v and y and the leading corrections to scaling, using Monte Carlo simulations
with enrichment as the main technique. We focus on the upper marginal dimensions of NALF as
predicted by the magnetic analogy where the renormalization-group results should be quantitatively
exact for NALF if the method is valid at all. Similarly, we also focus on the boundary between the
long-rar. ge and short-range behavior of NALF above four dimensions where the renormalization re-

sults should again be exact. Thus we investigate the self-avoiding Levy flights on hypercubic lattices
from d =2 to 6 dimensions and obtain behavior consistent with logarithmic corrections to scaling in

the moments of their end-to-end distance distributions. In addition, the effective Levy index p,z is

determined from the logarithmic averages of individual step sizes and compared for the two self-

avoiding extensions.

I. INTRODUCTION

Previously, two self-avoiding extensions were pro-
posed' in order to add excluded-volume effects to the
original random Levy flights of Mandelbrot. The ran-
dom Levy flights are the nonexcluded-volume random
walks with a variable step size whose probability distribu-
tion is a power law

P(l) ~ 1

where p &0 is called the Levy index. The two extensions
are termed node-avoiding (NALF) and path-avoiding
(PALF) Levy fiights, where the former do not visit the
same site on a lattice more than once and the latter addi-
tionally do not intersect themselves. These self-avoiding
walks are still characterized by the Levy index p, but the
actual step sizes are determined algorithmically by re-
moving forbidden configurations from the ensemble of
the random Levy flights, and thus, in the final ensemble,
they are not in general distributed as in (l) with the nomi-
nal index p but perhaps rather with an effective index p, ff.

In the off-lattice continuum, the former could be inter-
preted to describe a chain of negligible cross sections ex-
cept at turns where a finite-size bead is present; the latter
could describe, for example, a polymeric chain with the
excluded volume comparable to the monomer size
throughout its length.

The greatest motivation for our study is the intrinsic
interest in the complex structures of these walks. In par-
ticular, we wish to study if the idea of asymptotic scale
invariance is applicable and the associated results of
renormalization-group calculations are correct. We wish
to also find, e.g., how the fractal dimension is related to
p ff if they are indeed scale invariant. Ultimately, we
would like to contribute to relating step-size distributions
to the overall conformation for non-Markovian walks in
general.

However, the subject is not devoid of more practical

applications. Thus these problems are potentially
relevant to the statistics of various polymers whose per-
sistence length is broadly distributed. This might occur,
for example, when they are embedded in a medium which
is itself scale invariant or critical, that in turn imposes a
broad distribution of length scales on the polymers. The
case of a critical (or fractal) medium may apply also to
certain transport or networking problems as well. The
NALF extension was also discussed in relation to the
problem of polymer adsorption onto a solid surface.

The relationship between the two variants —the
NALF and the PALF—is not obvious and has been the
subject of some controversy. ' If p is so large that both
flights are essentially like the usual short-range self-
avoiding walk (SAW), then they must obviously behave
in the same way. Also, if there exists a minimum value

p, below which both behave as classical Levy flights, then
they should behave in the same way for p & p&. It seems
intuitively obvious that they should behave in the same
way for suSciently large spatial dimensionality d as well.
However, for general values of p and d, it is far from
clear whether they belong to the same universality class.
Indeed, for d = 1, analytic and numerical studies indicat-
ed that they have different asymptotic behavior for
—,
' ~ p ~ 1. Not only different, but surprisingly the NALF
with 1ess excluded volume turned out to be larger than
the PALF for d =1. The latter result is one of the
reasons why the intrinsic structures of these walks are
subjects of interest.

In this paper we mainly study the two critical ex-
ponents v and y for the asymptotic behavior for large
number of steps X. The exponent v is defined by the
end-to-end distance (Rg )' for sufficiently small x )0
as

(Rx )1/x g~v

while y is defined by the weighted number of ¹tep
flights Gz as
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G~-z ~N (3)
where each walk is weighted by the product of the proba-
bilities for the individual steps in the walk and z,& is the
effective coordination number of the lattice available to
the walk. This is a proper extension of the total number
of walks whose step sizes are fixed, as can be verified very
easily.

In this work we restrict our attention mostly to the
values of d and p which satisfy either

d =2p (1 ~d ~4),
or

proach can be extended very easily, since the relevant
fixed points are the Gaussian long-range and short-range
ones. Thus, in region I of Fig. 1, the relevant corrections
to scaling exponents are

b, , =(d 2p—)/p, , 5,=(2 p. )—/p, ,

where 6, is associated with the quartic (or excluded-
volume) term in the corresponding spin-model Hamil-
tonian, while h2 is associated with the term k", which
gives rise to a long-range propagator. From these and
the leading relevant exponent values of v= 1/p in region
I and v= —,

' in region III, we find that

d ~4, p=2, v=1/2, 8=1/2 (d )4, p=2) . (10)

or

d =4, p~2.
These points are sketched in Fig. 1, which also shows the
division of the parameter space (d, p) into four qualita-
tively diff'erent regions. Equation (4) corresponds to the
upper marginal dimensions for the NALF according to
the extensions' to n ~0 of the renormalization-group
predictions of the long-range n-vector-model spin Ham-
iltonian. Equation (5), on the other hand, corresponds to
the boundary for the NALF between classical Levy be-
havior and ordinary (short-range) random-walk behavior,
and Eq. (6) corresponds to the boundary between the
SAW and random-walk behaviors of the NALF. %'e re-
strict this study mostly to these points because the results
of renormalization-group theory for the NALF must be
exact there if the method is valid and because it allows us
to concentrate on a manageably small parameter space to
explore. In addition, the asymptotic behavior of the ran-
dom Levy Aights at p=2 is known exactly.

In Sec. II, known theoretical results are reviewed and
some additional results are given. Section III gives the
results of our Monte, Carlo calculations for the exponents
v and y as well as for the corrections to scaling, while
Sec. IV focuses on the comparison between the NALF
and the PALF. Section V gives a discussion and a sum-
mary of our findings. Details of the simulation algorithm
and the parameters used are given in Appendixes A and
B.

This logarithmic power —, is in good agreement with the
exact calculation of Hughes et a/. for the nonexcluded-
volume Levy Aight at p=2 in arbitrary dimensions.

Along the boundary between regions II and IV, the
corrections to scaling have not been evaluated theoreti-
cally, since the expansions of the exponents in powers of
e' =2 —

gsR
—p, the distance from the boundary (SR

refers to "short range"), are not available. However, ex-
pansions in powers of e—:2p —d from the boundary be-
tween regions I and II are available ' and the correction
exponent in this expansion associated with the long-range
term (k") is found to have a prefactor proportional to e'.
If we assume that this expansion can be applied at the
boundary in question (between regions II and IV), the
correction exponent would vanish there and introduce a
multiplicative logarithmic correction.

Thus, along the boundaries of Eqs. (4) and (6), the loga-
rithmic corrections are due to the excluded-volume term
in the n-vector Hamiltonian, while along the boundary of
Eq. (5) and that between regions II and IV, they are due
to the long-range propagator term. Note that a
conAuence of these lagarithmic corrections occurs at
points d =4 and p= 2. Because these are essentially or-
thogonal corrections, we expect the net result at the in-

II. THEORETICAL RESULTS

A. Node-avoiding Levy Sight

In the segment (4) of d, p space, the renormalization-
group results for the long-range n-vector mode1 fer-
romagnet should apply for the NALF with n~0. The
prediction for the end-to-end distance is of the form

(1nR&) =vln[N(lnN) ~']+. . . ,

where
00

ALF

v= 1/p, 8=1/(4p) (d =2p, 1 ~d &4) (8)

For the segment (6) with p) 2, 2 should be substituted
for p in Eq. (8).

For the NALF in the segment of (5), the same ap-

FIG. 1. Phase diagram in d, p space for the node-avoiding
Levy flight. Four different regimes are shown: I, classical Levy
flight (CLF); II, node-avoiding Levy flight (NALF); III, random
walk (RW); IV, self-avoiding walk (SAW).
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tersection to be additive. Accordingly we may expect a
singular change in the apparent correction power ob-
served in a numerical result at d =4, @=2. This is the
first case of such conAuence in critical phenomena that
we are aware of.

We are also interested in the asymptotic behavior of
the attrition rate characterized by the exponent y. When
there is a logarithmic correction to the asymptotic behav-
ior Eq. (3), the weighted total number of walks is expect-
ed to be modified so that

2y —d, /}M =0, (17)

and with Eqs. (14) and (15), this gives

ponent v because the excluded-volume effect should arise
from all monomers along the chain.

In this crude argument, the upper marginal dimensions
can be obtained by substituting the classical result
R =N' " in (16), and locating the boundary where the re-
sulting I';„, is asymptotically small. Here this gives

(G ) =, N '(1 N)~+. . . . d, =2@ (p~ 1),
(11)

but
For NALF at (4), the E expansion by renorrnalization
group for the exponent y is known, ' and the excluded-
volume correction-to-scaling exponent can be shown to
have the first-order term in e equal to e/p From. this we
see that

y= 1, P= —,
' (d =2@, 1&d &4), (12)

all along (4). Similarly, at the boundary of (5), the Gauss-
ian predictions are

y=l, /=0 (d &4, p, =2), (13)

i.e., no logarithmic correction there. A logarithmic term
with P= —,

' is expected for the segment (6) (d =4, p&2)
from the known SAW results as well.

and

v=1/p (d =1,@&1) (14)

v= 1 (d =1, p) 1), (15)

with a logarithmic correction of 0=1 only at p=1. The
value of y is always 1 because there is no attrition once a
direction is determined; there is no logarithmic correc-
tion there, i.e., /=0.

However, for any higher d, very little can be stated.
Here we first give a crude Flory-type argument" for the
upper marginal dimensions and then describe an
equivalent n-vector model Hamiltonian due to Woods
Halley. '

Flory-type arguments have been given for the NALF
previously, ' ' which showed the upper marginal dimen-
sions to be d, =2@, in agreement with the renormal-
ization-group theories. ' In such arguments, the Flory
free energy is estimated as the sum of the interaction part
F;„,and the entropic (or elastic) part F,&. For the NALF,
F;„, is taken to be N /R" and F„ is taken as (R "/N)",
where x =1 or x =1/(}M—1) depending on the theory. '

For the PALP, F,&
is presumably unchanged but I';„t

should be changed to

(16)

where y is taken to be the one-dimensional PALF ex-

B. Path-avoiding Levy flight

The theoretical situation for the PALF is much less
clear. In one dimension, the PALF is essentially exactly
solved ' because of its simplicity unique to d =1. Thus
for d = 1, the values of v are

PH= g—K;.
ti, j] (I,m ) e(i,j)

(si sm) (20)

where the sum is over all pairs of sites separated in one of
the coordinate directions, the product is over all nearest-
neighbor pairs within the line segment from site i to j,
and

(21)

As usual, s is an n-component classical spin of length
v'n, and the limit n ~0 is to be taken after the calcula-
tion of the correlation function, critical exponents, etc.
The basic correspondence is between the two-point corre-
lation function of (20) and the PALF generating function
in the same manner as for the NALF or the SAW. '

III. MONTE CARLO SIMULATION

We performed Monte Carlo simulations of both the
NALF and the PALF on hypercubic lattices for a set of
points (d, p)-parameter space lying along the boundaries
of regions I and II, I and III, and III and IV in Fig. 1
with d =2, 3,4, 5, 6 and p=1,1.5,2.0,2.5,3.0. Each walk
consists of up to 400 steps and for each (d, p) we obtained
80000 to 460000 400-step walks in total, which are gen-
erated in batches of the same size. Although the attrition
due to the self-avoiding constraints in these dimensions is
much less than in one dimension, the cumulative attrition
rate for 400 steps turns out to be still enormous and the
use of an enrichment technique' is essential for keeping
computing time reasonable. Only some of the high-
dimensional PALF could have been simulated in reason-
able numbers without the use of enrichments. Details
about the attrition rate and the enrichment parameters
along with the computing time are discussed in Appendix
A.

d, =2 (p&1) .

This is consistent with the absence of logarithmic correc-
tions in d =1 the PALF at p= —,

' for example. While we
could calculate v in this approximation, such values are
much less trustworthy. Also, since this discussion
focuses on the exponent v only, it really does not contain
enough information on other exponents such as y.

Now we describe an exact mapping' to an n-vector
spin Hamiltonian in a way very similar to the NALF, in
the hope that this would stimulate interest and eventually
an analytic solution would be found. Thus the appropri-
ate Hamiltonian for a hypercubic lattice is
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P (I)=pl (22)

hence

(23)

In one dimension, the PALP's are relatively simple be-
cause each segment of the walk is extended in the same
direction with no overlaps, while the NALF's ar
eral, comp ex with many overlaps. In higher dimensioensions,

owever, the PALF is algorithmically more complex
than the NALF due to the stricter constraint. The way
to check for path avoidance is first to check whether the
newly made segment and each of the previous ones form
a two-dimensional plane or both lie on a strai ht 1

then if
raig ine;

en i either is the case, to pick those subspaces out of
the hypercubic lattice and finally to check if the two line
segments intersect each other. We will discuss more
about this algorithm later in Appendix B.

Each individual step is completely specified by two ran-
dom numbers, one for the step size, the other for the
direction along the orthogonal coordinate axes. Given a
random number r between 0 and 1, the step size can be
assigned according to relation dr=P(l)dl, where P(l) is

Eq. (1) with a normalizing factor p, that is,

exp((lnR~ ) ) =N'[ A (lnN) +B + CN +. . . ],
if either 6, =0 or 62=0, or

(27)

exp( ( InR& ) ) =N'[ A
~
(lnN ) '+

A 2(lnN ) '+B +. . .],
(28)

if' =6 =2=0. The least-squares fits to these are calculat-
ed using the predicted values of the exponents such as
Eqs. (8) and (10). We then compute what v~ would be
with these exponents and the fitted coefficients using Eq.
(24), with N being treated as a continuous variable, i.e.,

the denominator of the equation being approximated as

I exp((lnR ) )dx .

large that the first two terms in these equations are
sufficient by themselves.

Even though it is for this reason unfeasible to indepen-
dently and accurately extract from our data the predicted
exponents of the renormalization-group theory, it is pos-
sible to see how well those predictions agree with our
Monte Carlo data. To do this we use the behavior of

InR~) (Fig. 3) for fitting the coefficients in the general
form of Eq. (7):

and then l is replaced by a nearest integer since we are
constrained to a discrete lat tice. The directions are
chosen randomly along one of the coordinate axes.

To investigate the exponent v and the corrections to
scaling, we define the effective exponent vN~

This last step yields an excellent test of whether the fits
are good because the effective exponents are very sensi-
tive to the corrections to scaling.

The following is our result of fitting the coefficients in
the above equations:

VN

N exp( ( lnR~ ) )

X —1

—,
' [exp( ( InR, ) ) +exp( ( R~ ) ) ]+ g exp( ( lnR; ) )

1=2

(24) l.O- d=2 p= I

The asymptotic behavior of vN for large X is then

VN —V+ + 0 +.
lnN (v+ 1)(lnN )

if there is a logarithmic correction, or

VN=V+CN + X + &. . .
C2

(25)

(26)

0.8-

0.7

0.6

d=3 g-=l. 5

d=4, 5,6 p = 2

I ~

d = 4 ~=2.5

if the correction is a power law (and 0 & 6 & —').
2

Figure 2 shows the effective exponents from our Monte
Carlo simulation of the NALF computed from the
definition, Eq. (24), where the error bars indicate the
standard deviations among 8 —16 different batches of the
same size for each (d, p). To fit for the v~, however, Eqs.
(25) or (26) could not be directly used with our data. In
fact, an effective exponent defined in this way is con-
venient to see if a fit is good or not, but it is, in general,
not suitable for computing the fit from, unless X is so

d=4 p=3

0.5
0.00 0.02 0.04 0.06 0.08 O. IO

I/N

FIG. 2. Effective exponent v& defined by Eq. (24) and calcu-
lated from our Monte Carlo simulation of the NALF. The solid
curves are from the best-fitted coefficients in Eq. (28) for d =4
@=2, and Eq. (27) for the rest. Error bars are the standard de-
viation among 8 —16 batches of the same size for each d, p.
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defined algorithmically as

p& =— lim (30)

where A, is the number of successful i-step walks ob-
tained from the computer simulation.

Now let us define the local survivability S& of the ¹h
step:

TABLE I. Exponent y and the ratio z,&/z for the NALF and
the PALF. The y were obtained from the least-squares fit
without logarithmic correction. For the NALF in d =2, 3,4
and the PALF in d =4, where the logarithmic correction P= 4

is expected, the error indicates the underestimation of y from
its classical value 1 obtained from a fit including the logarithmic
term with P= —' fixed. The error for z,~/z is less than 0.1% for
all d. Data were taken for X =20—400.

A pN

PN —1

NALF PALF
N

5~ —— 1im~ QO

S, = 1 ~ (31)

The logarithm of Sz shows an asymptotic behavior

in' =ln +(y —1)—+ +0er 1 P 1

z X 1nN
(32)

O.OO
NAL F

d=-0.05 - /

-0.to-
PALF

4'4 i ~ ~

+4 ~ ~ ~ ~

'14' ~ 4 ~ ~ ~

d=2

~ J ~ ~

~ ~ ~ ~ ~ ~

-0.15- 1=4 p, = 2

-0.20

-0,25-

'0 ~I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

d =$ pg. =/ 5

-0.35 . d=P p, =)
~ ~

I ~ ~

11

~ ~

I l" 0.0O 0.0~ 0.Os
I /8

ogarithm o«he local sur ivahility as defined jn
(3 1 ), plotted against 1 /N. The slope at 1 /N ~0 gives y —1 and
SQ ~z ff /z as X~~ . See Eq. (32) and Table I for details.

for large N. Thus one can estimate the values of y, P,
and z,z from the lnS& versus 1/N plot (Fig. 5). Table I
shows the values of y and z,& along the three segments of
( d, p, ) space estimated by use of the least-squares fit,
without the logarithmic correction term, taking the data
for X =20—400.

We also tried fitting for P for d =2, 3,4 in various
ways. Fixing P= —,

' always produces an underestimation
of y by an amount comparable to the overestimation
made from the simple nonlogarithrnic fitting. The errors
of y in Table I are the deviation of y obtained this way
from the known classical value (which is 1). On the other
hand, fixing y = 1 or fitting for both y and P as free pa-
rameters give much smaller P than the theoretical predic-
tion (mostly, between 0.03 and 0.13). However, z,z seems
to vary little in any case and the fit error is less than
0.1 %%uo.

%'e especially note that y for the PALP for
d =2, p = 1 suggests a short-range behavior. This value

(d, p) z,g /z

d =2,
d =3,
d =4,
d =4,
d =4,
d =5,
d =6,

p= 1

p= 1.5
p —2

p =2.5

p, = 3
p=2
@=2

1 .05+0.03
1 .02+0.06
1 .01 +0.07
1 .02+0.06
1 .02+0.06
1 .00+0.00
1 .00+0.00

0.92
0.93
0.94
0.93
0.91

0.95
0.96

1 .38+0.00
1 .07+0.00
1.01+0.06
1 .02+0.05
1 .03+0.05
0.99+0.03
1 .00+0.00

0.67
0.81
0.86
0.86
0.86
0.89
0.9 1

is to be compared with the SA%' values ' of y of approxi-
mately —, in two dimensions. This is a strong indication
that at least at d =2, p = 1, the PALF is not classical and
quite different from the NALF.

IV. COMPARISONS BETWEEN THE NALF
AND THE PALF

One surprising result of the one-dimensional self-
avoiding Levy flight is that the end-to-end distance of the
NALF is greater than that of the PALP, even if the back-
tracking is allowed for the NALF, while the PALF never
turns back once the direction is initially chosen.

We find that this is no longer true for all upper margin-
al dimensions greater than 1 . On the contrary, the end-
to-end distance of the PALF is always greater than that
of the NALF, if not by far, while the individual step sizes
of the NALF are still larger than those of the PALF.
This is not very straightforward. One possible explana-
tion is as follows. As the dimension becomes higher, the
node-avoiding constraint is more rapidly loosened than
the path-avoiding one. Thus the tendency of the NALF
to step aside from a previously occupied site is more easi-
ly neutralized by the easier backtracking in higher dimen-
sions than the tendency of the PALF to spread out to
avoid intersections altogether, right from d =2. But as
far as an individual step is concerned, it is intuitively
plausible that the longer the step the more diScult it is to
survive the path-avoiding constraints rather than the
node-avoiding ones; hence the larger steps for the NALF.

Figure 6 shows the comparisons for both the zeroth
moment of end-to-end distance (below the ratio 1) and
the individual step sizes (above the ratio 1). Another in-
teresting feature observed from this figure is that the
end-to-end distances of the NALF and the PALP are
very close to each other (within l%%uo) while their individu-
al step sizes are quite different, most prominently in d =2
(by 15%). Beyond d =2, however, the diff'erence in indi-
vidual step sizes drastically drops down to about S%%uo and
the ratio slowly approaches 1 as d increases.

We are also interested in the question: Is the step-size
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FIG. 6. Direct comparisons between node-avoiding and
path-avoiding Levy flights. The points in the upper part of the
diagram show the ratios of the individual step sizes and those in
the lower part show the ratios of the end-to-end distances.

distribution of both types of self-avoiding Levy flights
still a power law7 If this is the case, what is the effective
Levy index that characterizes the distribution? To see
this we collect the surviving steps for every 20th step of
both the NALF and the PALF in d =2, 3 and plot the
size distribution in log-log scale. The individual step
sizes are categorized by the range into which they fall,
which is delimited by integer powers of 2. If the actual
size distribution of the self-avoiding Levy flights is still a

~ca'power law, that is, Ps~(l) ~1 ', then the slope of the
log-log plot is related to the p,z. by

InPs~(l) = —(p,s+ 1)(ln2)log&i+const .

One might expect that the NALF for d =2@ would have
the power-law distribution, since the parameters (d, p, ) for
those are at the boundary of the classical Levy flight re-
gion. Our data strongly suggest that this is indeed true
for both the NALF and the PALF. This is all the more
remarkable because even at the upper marginal dimen-
sions, the attrition for these Levy flights is enormous at

300, unlike the classical Levy flights which, of
course, have no attrition at all. Some typical examples of
the actual size distributions are presented in Fig. 7 where
the log-log scale is used with different bases for conveni-
ence.

The values of p,z are also computed through the least-
squares fit: For d =2, the p,z of the NALF do not differ
from the original p ( = 1) by more than 2%, but those of
the PALF are 6—8% larger, and for d =3, p,z becomes
even closer to p ( = l. 5) for both cases. It should be not-
ed that the PALF's always have greater p,z than NALF,
which is consistent with the direct comparison of the in-
dividual step sizes.

FICx. 7. Some typical examples of the actual step-size distri-

bution for the NALF and the PALF. Natural logarithm is used

in the ordinate while the logarithm with base 2 is used in the

abscissa for convenience. If the step-size distribution of the
self-avoiding Levy flights is sti11 a power law, then the slope of
these plots gives —(p,,s+1)ln2 [Eq. (33)]. (a) NALF; d =2,
@=1; 360th step; p,g=0.999+0.001. (b) PALF; d =2, @=1,
361st step; p,&=1.076+0.01. (c) NALF; d =3, @=1.5; 360th

step; p,&=1.483+0.002. (d) PALF; d =3, p, =1.5; 361st step;

p,z= 1.493+0.002.

The question of how this p z. is related to other proper-
ties of the self-avoiding Levy flights seems to remain open
at this time. If the actual step size were distributed exact-
Iy as a power law with p,&; then the logarithmic moment
of a single step size would be simply equal to 1 ljM, tt,

' how-

ever, the power law is asymptotic at best, and also our
use of discrete lattice gets in the way of this type of
identification. While there appears to be asymptotic self-

similarity in step-size distribution with the dimensionality
of p,z, again it is unclear whether this should be identical
to the self-similarity in overall conformation of the chain
(whose Iractal dimension should be I /v).

V. SUMMARY AND DISCUSSIGN

%'e have numerically tested the predictions of the
renormalization-group theory for the critical exponents
of the NALF, including the corrections to scaling, and
obtained a consistent result for all upper marginal dimen-
sions of the NALF. The PALF seems to be different
from the NALF, especially in two dimensions where it
shows a short-range behavior for y while the NALF does
not appear to, and the asymptotic behavior of v& is ap-
parently different from that of the NALF. This may
raise a question that d =2p, p ~ 2 might not be the right
boundary of the classical and excluded-volume regions of
the Levy fight with path-avoiding constraints. Never-
theless, for d ~ 4, p, ~ 2 our numerical result presents a
manifestation that the NALF and the PALF are of the
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same universality class.
The direct comparison between the two self-avoiding

Levy flights shows an interesting feature that the end-to-
end distance of the PALF is larger than that of the
NALF, contrary to the one-dimensional results, while the
individual step size is always smaller.

We have also shown that the actual step-size distribu-
tion of the two types of self-avoiding Levy Aights is still a
good power law characterized by an effective Levy index,
which is qualitatively consistent with the direct compar-
ison for the individual step sizes. These points again sug-
gest, as usual, that the global property of a non-
Markovian random walk depends in a complicated way
on the property of individual steps and the nature of glo-
bal constraints.
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should have been generated to obtain a single walk of 400
steps if enrichment were not used.

The parameters for a standard enrichment technique'
used in our Monte Carlo simulations of the NALF and
the PALF are shown in Tables II and III, respectively.
We used machines with 32-bit Fortran integers (ISI
68020 V24, DEC VAX 11/750, GOULD PN9080,
GOULD NP-l, and CCI 6/32 computers) for most of the
simulations and a machine with 48-bit Fortran integers
(Control Data Corporation Cyber 205 computer) for the
major part of the NALF in d =2, 3. The computing time
of the simulations varies from machine to machine and
also depends on the enrichment parameters as we11 as d
and p. The average CPU time to generate one successful
400-step walk with the 32-bit machines used was roughly
at least 10 sec for most of the d, p and we consumed over
4000 CPU h to get our simulation data from these
machines. On the other hand, the Cyber 205 super com-
puter took about 1 sec to generate one 400-step NALF
with d =2, @=1 and 1.5 sec for one with d =3, p=1.5
using appropriate enrichment parameters, and the total
CPU time on this machine was at least 16 h.

APPENDIX A: MONTE CARLO METHOD

In this appendix we present some details of our simula-
tions described in Sec. III. The existence of a certain
maximum step size that can be generated by a computer
is an inescapable limitation of simulations of this kind.
In particular, each individua1 step of the Levy Aight has
infinite mean step size if p 1, which is impossible to
realize by computer simulations. This is in fact the
reason why we take the zeroth moment of the end-to-end
distance (InR~), which is always finite no matter what
p. The limitations on the maximum step sizes, the ran-
dom number generations, and the truncation errors were
discussed in detail in the previous paper on the one-
dimensional Levy Bights.

In higher dimensions, the attrition due to the self-
avoiding constraints turns out to be still high, so that we
need to use an enrichment technique. For instance, in
two dimensions, each new step of the NALF survives the
self-avoiding constraint with a probability of 92%, which
means that roughly 1/0.92 = 10' random numbers

APPENDIX B: THE PALF ALGORITHM

%'e discuss here the loop-checking routine of the
PALF algorithm in more detail. Checking the node
avoidance is relatively simple because it is sufficient to
store only the end-point positions of the previous steps to
compare with the position of the currently attempted
step. For the path avoidance, however, all the lattice
sites between the successive end points, that is, the whole
segment of each step, should be taken care of. But our al-
gorithm checks this by keeping track of only the end-
point coordinates and the direction of each segment
without having to store every lattice site that the seg-
ments contain.

Suppose we make steps in a d-dimensional hypercubic
lattice starting at the origin. Each step is viewed as a seg-
ment connecting the starting and the ending points and
can be represented by a vector along one of the orthogo-
nal axes, that is, for the ith segment,

TABLE II. The parameters used in the Monte Carlo simulations of the node-avoiding Levy Aights.
The number of walks generated is indicated at the erst and last steps, and the number of stages, length
of each stage, and the number of allowed trials per stage refer to the parameters of a standard enrich-
ment technique.

(d, p)
Number
of stages

Length
of stage

Number
of trials

per stage
Number of walks

First step Last step

d=2,
d=3,
d=4,
d=4,
d=4,
d=5,
d=6,

p= 1.0
p=1.5

p =2.0
@=2.5
@=3.0
p=2.0
@=2.0

20
40
40
40
40
50
50

20
10
10
10
10

8
8

5
17'
12
21'
35'
10
6

6 412 075
6 458 357
1 764 300
2 214 227
3 445 332
1 163 170
1 033 014

461 066
320 960
120 622
80 155
79 923
80 029
78 465

'Slightly dift'erent numbers were also tried for some batches.
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TABLE III. The parameters used in the Monte Carlo simulations of the path-avoiding Levy Bights.
The number of walks generated is indicated at the 6rst and last steps, and the number of stages, length
of each stage, and the number of allowed trials per stage refer to the parameters of a standard enrich-
ment technique.

(d,p)
Number
of stages

Length
of stage

Number
of trials

per stage
Number of walks

First step Last step

27

d=3
d=4,
d=4,
d=4,
d=5,
d=6,

@=1.0
p, =1.5
@=2.0
@=2.5
p= 3.0
p =2.0
@=2.0

20
100
100
100
100
200
200

20
4
4
4
4

2

8$

21
4
5
7'
4a

2

3 740 140
3 381 457

613 800
692 685
643 268
434 326
279 224

254 114
155 395
98 588
80 006
80 007
80 119
80 403

'Slightly different numbers were also tried for some batches.
A different set of parameters (50,8,5) was used for the Grst 5 out of 15 batches.

where ek is the unit vector along the k;th coordinate
l

axis, k, taking on one of the integers from 1 to d. The ab-
solute value of I" is determined by a random number, as
explained in Sec. III with Eq. (23), and the sign of I"and
k, by another random number. The position of the walk-
er after making N steps can also be represented by a vec-
tor,

x(N) (x(N) x(x) x(i)()
)

where X' ' is the origin and

N
X{ '=~~1"'e, k=1,Z, . . . , d .k ~ k~

i=1

Note that 1"starts at X' "ending at X", thus

X{i) X{i—1)+1{i)
7

that is,

~{i)—~{i—1) + I{i)
k,

X"=X' " for all krak; .

is that both 1" and 1' ' lie either in a two-dimensional
subspace (a plane) if k, Wkz or on a straight line if
k, =k~. This condition is easily checked to be true if

~x(N) x(i)
(

—p
k(Xk, , k~ )

where the summation is over all coordinates 1 to d, ex-
.cept for k, and Kz.

Now, if both 1" and 1' ' lie on a plane defined by ek
and ek, they cross if and only if

(x(x) x(i) )(x(N —1) x(i) ) (pkN kN kN kN

and

(x(i) x(N) )(x(i —1) x(N) ) (p

On the other hand, if the two segments lie on a straight
line, that is, k; =k =n, then they cross if and only if

max I
x"x' "x' ' x' "

In ~ n ~ n ~ n

In the actual program, we keep two separate arrays to
store the values of I" and k,- in addition to an array for
Xk" fOr all i and k.

Now suppose that we are about to make an Nth step
after N —1 successful steps. We generate 1' ' and wish to
check if this new segment crosses any of the previous seg-
ments. Let us take, say, the ith segment, 1" and check
for this condition. A necessary condition for intersection

—minIx"' x"-"x ' x' -"I ~ ~1"'~+ ~&' '~ .

The checking procedure is repeated for
i =1, . . . , N —3, and the Nth step is accepted if 1' ' is
found to be path avoiding. Otherwise, the attempt is a
failure and another walk is started either from the origin
for simple sampling or from the end of the previous stage
if the enrichment is being used. '
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