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Uncovering spectral repulsion in extended quasienergy states

JULY 15, 1989

W. A. Lin and L. E. Reichl
Ilya Prigogine Center for Statistical Mechanics, University of Texas, Austin, Texas 787I2

(Received 3 February 1989)

We study classical and quantum mechanics of a rotor in the presence of two interacting nonlinear
resonances. Quasienergy states and quasienergies are computed. The widths of the quasienergy
states in the representation of the unperturbed angular-momentum levels are found to be closely as-
sociated with the classical dynamics. The widths of many resonant quasienergy states are found to
be extended by the quantum-resonance overlap when the perturbation is increased. Spectral repul-
sion is present in these extended states.

I. INTRODUCTION II. CLASSICAL TRAJECTORIES

The ubiquity of chaos in classical nonintegrable sys-
tems has tempted many researchers to look for its quan-
tum counterpart. While no sensitive dependence on ini-
tial conditions has been obtained, there exist similarities
between classical and quantum dynamics. At the classi-
cal level, it has been well established' that, for near-
integrable Harniltonian systems with two degrees of free-
dom, transition to global chaos occurs in regions of phase
space where primary resonance zones overlap. Such a
transition is signified by a sudden increase in the region of
phase space that can be explored by the trajectories at the
chaotic separatrix layers of the primary resonances as the
sizes of the resonance zones are increased. The quantum
manifestation of this phenomenon ' is a sudden increase
in the region of Hilbert space that can be effectively ex-
plored by the wave function due to overlap of quantum-
resonance zones.

Classically, resonance overlap leads to the destruction
of Kolmogorov-Arnold-Moser (KAM) tori, which is
equivalent to the destruction of a local constant of the
motion. We have shown that the quantum manifestation
of such a phenomenon appears to be the destruction of a
local quantum number through quantum-resonance over-
lap, accompanied by the emergence of the spectral repul-
sion ' as well as the long-range spectral rigidity.

Quantum-resonance overlap and the consequent
spreading of the wave function suggest that the widths of
quasienergy states (for the case of a time periodic Hamil-
tonian) in a proper representation will be extended by the
overlap. The destruction of a local quantum number,
which appears to accompany quantum-resonance over-
lap, then suggests that spectral repulsion and rigidity
might be associated with these extended states. The aim
of this paper is to demonstrate these two points.

We begin in Sec. II with a description of the model and
computation of classical trajectories in phase space. In
Sec. III, we compute the quasienergy states and quasien-
ergies of the corresponding quantum system and compare
them with the classical phase-space structure. In Sec. IV
the quasienergy states are divided into different classes.
The spectral statistics for each class is then computed. In
Sec. V we make some concluding remarks.

We consider the Hamiltonian of a free rotor in the
presence of two interacting nonlinear resonances,

J2
H = +A. cos(P —coot )+A, cos(3$ coot ), —

2mI'
(2.1)

where J-is the angular momentum, P is the angle of rota-
tion, m is the mass, r is the radius of rotation, A. and coo

are the amplitude and angular frequency of the rotating
waves, respectively, and t is the time. Let us define
Q=iri/2mr . For convenience, we make a canonical
transformation, with the new Hamiltonian H'=H/A'0,
the new canonical momentum I =J/fi, and the new time
t'=At, together with co'=coo/0 and Q =A, /2RQ,

H'=I +2Q cos(P co't')+2Q —c s(o3$ co't') —. (2.2)

All quantities are now dimensionless.
Each cosine wave in Eq. (2.2) gives rise to a primary

resonance zone. For Q small enough, the two zones will
be well separated and we can use a single-resonance ap-
proximation to describe the location and width of each of
the two zones. The first cosine wave gives rise to a
period-one primary resonance zone centered at I=co'/2
with width 4&Q, and the second cosine wave gives rise
to a period-three primar~ resonance zone centered at
I=co'/6 with width 4&Q. Throughout our computa-
tions, we have chosen co'=120. Thus by the overlap cri-
terion, the two zones overlap at Q = 100.

In Fig. 1 we have plotted numerically computed trajec-
tories in the phase plane (Q, I) for the Poincare surface of
section computed at times t' = n ~', where n is an integer
and r' ( =2ir/co') is the period of the waves. We give our
results for a range of different Q's. At Q=50, the ex-
istence of KAM tori between the two primary resonance
zones is evident. The transition to global chaos occurs
between Q =80 and 90. For larger values of Q, we see a
diminishing in the size of the period-one stable island
with increasing Q. At Q =800, it is totally wiped out.
On the other hand, the period-three stable islands behave
quite differently. -These are never totally destroyed and
are smallest at Q =400. Q=400 is the value of Q at
which the separatrix of one resonance zone touches the
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center of the other when using the single-resonance ap-
proximation. Beyond that we see the growth of the stable
islands but with fluctuations such as the one at Q =800.
A further increase in Q to 1600 does not help to reduce

the sizes of the stable islands. For the nonresonant tra-
jectories, the closer they are to the resonance zones, the
larger the variations in action.
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F1G. 1. Trajectories of Eq. (2.2) at Poincare sections. (a) Q =50; (b) Q =120; (c) Q =400; (d) Q =600; (e) Q =800, the bla«ened
chaotic areas and the rest of the chaotic sea is a single trajectory; (1) Q = 1600.
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III. QUASIENERGY STATES

The Schrodinger equation for this system takes the fol-
lowing form:

i ', =[I +2Q cos(P co'—t'). 8 d(t'))
at'

+2Q cos(3$ c—o't')]lg(t')) . (3.1)

Due to the periodicity of the Hamiltonian, the general
solution of the above equation can be written as a line-
ar combination of quasienergy states,

l g@ (t') )
—i W,.

t'= lu& (t') )e ', where lu& (t') ) = lu& (t'+7') ), and
t t

6, (modes') is the quasienergy. ' Let us denote f'(t') as
the time development operator,

lq(t')&=&(t')lq(0)& .

Then we have'

(3.2)

T(r')ling. (0) & =e '

ling

(o) & . (3.3)

+e (j+xlq(t')&] . (3.4)

Matrix elements (j l
T(~')

l
k ) can be obtained from

Eq. (3.4) if we note that (j l
p(~') )

=g&(j lf'(r')lk )(klan(0)). If we now choose (klan(0))
=5&~, then we obtain (j lp(~')) =(j lP(~')l j'). There-
fore ( jig(r ) ) is obtained by numerically integrating Eq.
(3.4) with such initial conditions, from which we obtain
the matrix elements of T(~'). We can then compute the
eigenvalues and eigenvectors of this matrix numerically.
These eigenvectors are the quasienergy states

l g& (0) ) of
t

the system. We found that for this system (jig@ (0))
have finite extent. And therefore it is possible to truncate
the Hilbert space and obtain accurate results. The
quasienergy states thus obtained are only those which
will contribute significantly to the chosen part of Hilbert
space. For our purpose, the levels used cover the two
quantum-resonance zones, the region in between, as well
as parts of the adjacent nonresonant regions.

Figure 2 shows some of the l (j l p& (0) ) l terms so ob-

tained. From the many graphs of quasienergy states that
we obtained, we noticed the following general charac-
teristic. We can clearly distinguish the locations of the
resonance zones and the nonresonant regions. In the res-
onance zones, there are wider quasienergy states that are
much more perturbed away from the unperturbed eigen-
states as compared with those residing in the nonresonant
regions. In the nonresonant regions, the wider a quasien-
ergy state is, the closer it gets to the resonance zone.
This corresponds to a larger variation in I for a non-
resonant classical trajectory as it gets closer to a resonant

Let us work in the representation consisting of eigen-
states of I, lj ) (Ijl) =j lj ), j is an integer). In this repre-
sentation, the Schrodinger equation takes the form

"j'~")&='( lq(t )&at'

+Q y [e-' "(j—xlq(t )&
N=1, 3

zone. In a resonance zone, the widths of quasienergy
states vary from the most localized state with its peak lo-
cated nearly at the corresponding classical elliptic fixed
point, to wider states with their widths corresponding to
the variations in I of the corresponding classical trajec-
tories in the stable resonance islands, to widest states cor-
responding to the classical chaotic trajectories along the
separatrix layers.

For example, at Q =50 [Fig. 2(a)], the most localized
state in the period-one zone is peaked at near j =60, and
the most localized state in the period-three zone is
peaked at near j =20 [cf. Fig. 2(a), part (IV)]. It is evi-
dent that, from the corresponding classical figure [Fig.
1(a)], these are the locations of the elliptic fixed points. A
comparison of Figs. 1(a) and 2(a) part (V) and 2(a) part
(VI) shows that the widest state in period-one zone spans
a region approximately equal to the corresponding classi-
cal resonance zone and similarly for the widest state in
period-three zone. Obviously, the two zones have not
overlapped yet. Indeed, Fig. 2(a) part (III) shows one of
the widest states located in the nonresonant region be-
tween the two zones. The presence of localized states in
this region is a quantum manifestation of the existence of
KAM tori. "

Similar to the classical dynamics, the overlap of the
two zones appears to occur also near Q =90, where there
is a state with its appreciable amplitudes covering the en-
tire period-three zone and extends beyond j =60. At
Q = 100, the overlap definitely has occurred, where there
is a state covering the two overlapped resonance zones.
At Q = 120 [Fig. 2(b)], there are about ten fully extended
states covering the entire region of overlapped zones.
One of them is shown in Fig. 2(b) part (III).

At Q =400 [Fig. 2(c)], for the states in the overlapped
zones, there is only one localized state. It is confined in a
region corresponding to the classical period-one stable is-
land, as seen in the right state in Fig. 2(c) part (II). There
are also three localized states confined in a region corre-
sponding to the classical period-three stable islands. One
of them is seen as the left one of Fig. 2(c) part (II). For
the rest of the resonant states, a total of 103, most of
them are fully extended states covering a region approxi-
mately equal to that of the corresponding classical chaot-
ic trajectories. Only a few are less extended but still with
appreciable amplitudes going beyond the borders of the
classical stable islands I =0 and 85.

At Q =600 [Fig. 2(d)], there is no localized state which
can be associated with the classical period-one stable is-
land. The number of localized states which are basically
confined within the boundaries of classical period-three
stable islands, I= —10 to 61, is 11. The remaining of the
resonant states, a total of 106, are mostly fully extended.

At Q =800 [Fig. 2(e)], similarly, we do not find any lo-
calized state that can be associated with the correspond-
ing classical period-one stable island. But there are about
16 period-three localized states with appreciable ampli-
tudes confined within the interval [—18,69]. It appears
that these cannot all be associated with the classical
stable islands, since the total phase-space area is smaller
than the case with Q =600. But Fig. 1(e) suggests the
presence of cantori, ' ' separating the blackened part of
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FIG. 2. Selected quasienergy states. Each quasienergy state is labeled according to the class of spectrum to which it belongs. In
addition to the ones explicitly shown, all states also belong to the C =6 class. C =1 and 3 states also belong to the C =4 class. So,
or C =1, it also means C = l, 4, 6. For C =3, it also means C =3,4, 6. For C =2, it also means C =2,6. For C =2, 7, it also means
C=2, 7, 6. Note that in some cases we have included two different eigenstates on a single plot [for example, (a) parts (I), (II), and
(Ip)]. (a) Q =$Q; (I) and (II): states in the nonresonant regions; (III): a state in the nonresonant region between th«wo resonance
zones; {IV):the most localized states in the period-one zone (right) and the period-three zone (left); (V): the widest state in period-one
zone; (&I): the widest state in period-three zone. (b) Q =12Q; (I): nonresonant states; (II): the most localized states in the two reso-
nance zones; (III): a fully extended state. (c) Q =4QQ; (I): nonresonant states; (II): the most localized states in the two resonance
zones; (III): a fully extended state. (d) Q = 6QQ; (I) nonresonant states; (II) and (III): localized states in the period-three zone; (I&): a
fully extended state. (e) Q =gQQ; (I): nonresonant states; (II): the most localized state in the period-three zones; (III) and (IV): fully
extended states.



&059N IN EXTENDEDTRAL REPULSIOUNCOVERING SPECTR

sis of a state initially occupying

f the Fourier ana y ',le unpertur e ro e

fth 1

space.
ed many intervals o

ro er unfold-f he external field times

s ec
'

n anon-
in was necessary.

f s ectral repulsion,e the amount o specTo measure
d is used toares met olinear least-squ

the Bro yd distribution,distr' ibution with

1+qP (x)==( I+q)8 (q)x exp[—8(q—)x q],

+ )),xls he spacing in
is the Brody parame-units of local average spa

'

Q=20, 30, 40, 50 0=90, 100, 110,120

99 Ol

O

q=-0. 134 q=-0. 09O

p ~
O

Cl

0

40

aotic te trajectory in the cha3

initially starts at (3.1The trajectory ini ia
time to escape in o

' h'biti th a ation o pro a
' '-

d by the cantori is ides. The area bounde y
he period-three sta e

states. An example o
t (II). It is peaked arounin

ose to t e
vince our-

ci

perio-

d. A m, h
0 [f114, o tlstates,s a total o

clear y extendedclearly see that the exromt ea
m-res onanc

f Fi s. 1 and 2 shows t at
ull extende s a

~ p g
and oca

hdin classical c ao icb the corresponding c as

SPECTRAL STATISTICSIV. SPK
OF THE QUASIENE

O

2. 0 3.00. 0 4. 0 5.0 0. 0 1. 0 2. 0

'
ution of nearest-neighborutet edst b o op

ths
gy

III we know th
th fo

d in Sec.
an divide t ece zones,

eir spec rup p
ach Q, the quasienergy states a mto t eFor each, r s

d in the non-'a = those states located in e
s - sideofperiod-t reere

s those s a 1o
ne.of eriod-one r

C=11 tdi bt
we alsodd t'o to thre ions. In a i ian d 3 nonresonant reg'

all states in
e

11 states in
the ex-

h dfi''
hichb tofth to

fC=6 Wu b tofthesetoturn is a su se
uting statis ic,d 3 tates for compC=l an s
b our trunca

'
h se states a6'ecte yliminated those s a

hich are too co

e m four
gedges o

we eim rove statistics,
distribution. We

To impr
Q ute the spacing dis rrb 's to compute

sets of Q's:u tistics for five se s
90 100 110 120, (

ted the sta i

) =770, 0,
Q p'

n class. T is is
'shavet es

obtain the quasienergy

C)

P O

N=113

q=-0. 248
O

v)

O

N=96

0 043

Oo0 1. 0
T

2. 0 3.0 4. 0 5. 0
\

1.0 2.0 3.0
j

p. l

N=216

q=-0. 365

C=4

n
~ '

O

N=156

=-0.201

0.0 0 40 5010 20 3.

N=451

O

0 ~ 08.0 7. 0 1.0 2. 0

P
o'

(

q=-0. 194

C=6

O

0. 0 1. 0 2. 0 5.0

O

4. 0 5.. 0 6, 0 7. 0 8.0

N=231

q=-0. 149

.0 2. 00. 0

024

3.0.0 4 0 5. 0

N=281

0

0 ~ 0 1.0 2. 0 3 ~ 0 4. 0 5. 0 0. 0 1.0 2.0 3.0 4.0 5, 0

-nei hbor spacings forof the nearest-3. Distribution o
In this figure and ig.

FIG. . o

arameter.d i th B oder of spacings and q isp
(Column 1): Q =20, 30,4,



1060 W. A. LIN AND L. E. REICHL

ter. When q &0 there is spectral attraction and when

q )0 there is spectral repulsion.
Our results for the spacing distributions are shown in

Figs. 3 and 4. From these figures, we can see clearly that

the spectral repulsion emerges when quantum-resonance
zones overlap and it is dominantly associated with the ex-
tended states. Such repulsion is made much more visible
by isolating the cause. Otherwise, as in the case of C =6
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spectra, it is immersed in the C =4 spectra and harder to
see.

We next compute the h3 statistics of Dyson and Meh-
21

63(n, b')= min I [F(6')—A, A' —Az] dh .
nD ~, , ~,

(4.2)

The interval [6', 8+nD] contains n spacings, D is the
average spacing over the interval, and F(C) is the stair-
case function of an unfolded spectrum. A, and A2 are
chosen to minimize the integral. For each Q, a spectral
averaged h3 statistic is computed for a given class of
spectrum. An average from the four nearby Q's is com-
puted. The result is shown in Fig. 5. Our results are con-
sistent with those for the spacing distribution (short-
range spectral property). The long-range rigidity is in-
creased by the presence of extended states.

V. DISCUSSIONS AND CONCLUSION

(b)

C4

lO

C)

C)

8. o O. 5 1. 0 2. 0 &10

FIG. 5. Spectral averaged b,, statistic; squares: Q =20,30,
40,50; circles Q =90,100,110,120; triangles: Q =370,380,390,
400; pulses: Q =570, 580, 590, 600; Xs: Q =770, 780, 790, 800;
diamonds: CxOE; line: n/15. (a) C =4; (b) C =6; (c) C=2.

The computations of quantum dynamics shows an ex-
treme similarity with the corresponding classical dynam-
ics and presents further evidence for a "quantum non-
linear dynamics. " There are nonresonant localized
states corresponding to the classical nonresonant trajec-
tories. There are wider resonant as well as narrower reso-
nant states in the resonance zones similar to the trajec-
tories in the classical resonance zones. At larger Q's, we
see the destruction of period-one localized states and the
persistence of period-three localized states, And there are
extended states, which are the classical analog of chaot-
ic trajectories wandering throughout the region covered
by the overlapped resonance zones. They emerge as the
quantum-resonance zones overlap. Associated with these
extended states is the presence of spectral repulsion.
These are the ones which appear to have lost a quantum
number.

The degree of spectral repulsion that we obtained,
however, is small compared with Gaussian orthogonal
ensemble (GOE) results for which q =1. There could be
two possible reasons for this. One is the inclusion of
some not quite fully extended states in the C=7 spec-
trum. The other reason is that the regime we are in is
fully quantal. There has been a great deal of work in
which a large degree of spectral repulsion (q = 1) was ob-
tained either in the semiclassical regime or when highly
excited levels are involved. ' Our results suggest that
there might be deviations from GOE in the fully quantal
regime. The work of Berman et al. also shows a small
amount of spectral repulsion. Further work is required
to resolve these matters.

The computations of classical dynamics reveals the fol-
lowing questions. Why does the period-one island get
destroyed while the period-three islands persist when Q is
increased'? Is there a point, when Q is increased, beyond
which the period-three islands are also totally destroyed?
Although considerable efforts have been put into predict-
ing the border of transition to global chaos, relatively less
work has been done in understanding the regime beyond
the transition. Without understanding this regime our
knowledge about resonance overlap will not be complete.
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