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Motivated by recent mean-field theories of the structural glass transition and of the Potts glass
model we formulate a scaling and droplet picture of an assumed ideal structural glass transition.
The phase transition is a random first-order phase transition where the supercooled-liquid phase is
composed of glassy clusters separated by interfaces or domain walls. Because of entropic driving
forces the glassy clusters are continually being created and destroyed. As the ideal transition tem-
perature is approached the entropic driving force vanishes and the size of the glassy clusters
diverges with an exponent of v=2/d. All long-time dynamical processes are activated and the
Vogel-Fulcher law is obtained for the liquid-state relaxation time.

I. INTRODUCTION

It is exceedingly tempting to try to relate the dramatic
changes in various properties of a liquid undergoing a
glass transition in the laboratory at finite cooling rates to
an underlying ideal structural glass (STG) transition
which would occur (at least in good glass formers) at a
finite temperature upon infinitely slow cooling.! Many
scenarios of this kind have been constructed over the
years.!”7 Recently, we have developed a picture of an
ideal STG transition based on mean-field theories of the
STG transition® ' and on the mean-field theory of the
random Potts glass!""!? (PG) and related p-spin models."?
Having given in to the temptation of assuming an ideal
STG transition, one is forced to consider what the scaling
arguments used for equilibrium phase transitions might
say about such an ideal glass transition and, perhaps,
about laboratory glass transitions. In this paper we will
further explore the concept of an ideal STG transition us-
ing scaling notions together with concepts arising from
our earlier investigations of mean-field theories of
structural glasses and of mean-field spin-glass models
without reflection symmetry.

Due to the heuristic nature of our arguments, their
range of validity and to what glass forming systems they
apply is not clear. Our arguments always assume the
liquid state is close to (metastable) equilibrium and conse-
quently our ideas most naturally apply to generic-glass-
forming materials and not to, say, metallic glasses which
are formed by very rapid quenching from the melt and
hence are systems far from equilibrium.' In addition,
some of our arguments are based on large-scale droplet
(or glassy clusters) ideas. Near the laboratory glass-
transition temperature, T, (which depends on the cooling
rate), this is problematic because the size of these drop-
lets (if they exist) is not very large. One of the main prob-
lems in constructing a theory for the glass transition is
that if the laboratory glass transition is controlled by an
ideal glass transition then one must come to grips with
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the fact that T, is never asymptotically close to the ideal
transition temperature which we call Tx. The main point
is that because dynamics is controlled by activated pro-
cesses even small correlation lengths lead to relaxation
times that exceed typical experimental times. Even in the
most favorable cases (say, o-terphenyl) the distance from
an assumed ideal glass transition can be estimated to be
t=(T,—Tg)/Tx>0.1."" Nevertheless, we take the
point of view here that the observed glassy phenomenol-
ogy is controlled by an ideal transition, with, possibly,
crossover effects playing a major role. We also point out
that with minor modifications, our scenario is also valid if
it turns out that the ideal glass transition is rounded by,
for example, frustration effects. This is discussed further
below.

The organization of this paper is as follows. In Sec. II
we present the phenomenology relevant for our purposes.
To motivate the scaling theory we also review our previ-
ous mean-field results. These considerations lead us to
argue that an ideal glass transition would be a random
first-order phase transition. In Sec. III we discuss the na-
ture of the driving force for activated transport in viscous
liquids. In Sec. IV we discuss the (finite-size) scaling ex-
ponents for a random first-order phase transition. In Sec.
V we combine the ideas presented in Secs. II-IV with
scaling ideas and derive the Vogel-Fulcher (VF) law for
transport in a viscous liquid. In Sec. VI we discuss some
of the other experimental consequences of our picture
and conclude with some additional remarks.

II. REVIEW OF RELEVANT PHENOMENOLOGY
AND MEAN-FIELD THEORY

The most obvious mystery of glassy behavior is the
strongly non-Arrhenius slowing down of transport prop-
erties as the temperature is lowered. In the usual liquid
regime above the melting point the isochoric activation
energies are very small but the apparent activation ener-
gies grow dramatically in the supercooled regime. The
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viscosity for at least fragile glasses is often fit by the
Vogel-Fulcher equation:'

n=mneexp[ A /(T—T,)] . (2.1
At the lowest temperatures a weaker divergence is often
(but not always) reported.'” This may be due in some
cases to nonequilibrium effects but a true equilibrium
crossover may sometimes be valid.

In general, at Tg there is no observed latent heat or
change in volume. On the other hand the heat capacity
and other susceptibilities change very rapidly in a nearly
discontinuous manner."!® The laboratory transition is a
dynamic phenomenona dependent on the time scale of
measurement and on the cooling rates. If the VF equa-
tion were to remain valid at low temperature the motions
responsible for transport must freeze out at T, and the
glass transition would be independent of the experimental
time scale. Naively, we might expect this ideal glass tran-
sition to have the limiting characteristics of the laborato-
ry transition—no latent heat but discontinuous suscepti-
bilities. Generally the larger the discontinuities in heat
capacity, etc., the more dramatic is the deviation from
Arrhenius behavior.

Another mystery of the glass transition crucial to our
picture is the behavior of the configurational entropy of
the supercooled liquid.> It is important to note that, in
general, the configurational entropy of a liquid is not a
well-defined theoretical concept that different researchers
mean different things by it (cf. Secs. III and VI). As
pointed out by Simon'® and Kauzmann'® the extrapola-
tion of heat-capacity data for supercooled liquids sug-
gests that if a glass transition did not intervene the entro-
py of a supercooled liquid would be less than that of the
corresponding crystal, at a temperature Tk less than the
laboratory T,. Since the vibrational entropies should be
comparable for a crystal and a glass at these tempera-
tures, this suggests a vanishing of a configurational con-
tribution to the entropy at Tx. This temperature T is
generally believed to be close to the T, in the Vogel-
Fulcher equation and, as already remarked, we denote
the ideal glass-transition temperature in this paper by Tk.

In order to better appreciate our arguments leading to
Eq. (2.1) we give a qualitative description of the crucial
features of the free-energy surface in a viscous liquid.
Formally, the concept of a free-energy surface is not well
defined because it involves unjustified analytic continua-
tions. The surface we discuss can be viewed as the energy
surface of a coarse-grained Hamiltonian in terms of order
parameters. Because such a Hamiltonian contains entro-
pic contributions we refer to the energy surface as a free-
energy surface. Our picture is motivated by recent
mean-field theories of the STG transition and spin-glass
models without reflection symmetry.® 13

As a liquid is cooled (quenched) to low temperatures,
say, below its equilibrium crystallization temperature,
T, one intuitively expects a rough free-energy
landscape in a very high-dimensional order-parameter
space. The characterization of this high-dimensional
free-energy surface is difficult. We begin by describing
what some of the valleys on this surface are. By a state, s,
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we mean that set of configurations for the system as a
whole which connects to s. Note that implicit in this
definition of a state is a time scale argument. For infinite
times, there is probably only the crystal state. We believe
that this global thermodynamically stable phase is ir-
relevant to the glass-transition problem. It has been
shown that mean-field theory leads to a multivalley struc-
ture in which an infinite number of aperiodic crystal
phases can coexist, giving a finite “configuration” entro-
py above the ideal glass-transition temperature. For
models with finite-ranged interactions this entropy will
lead to an instability of the global mean-field states.!! A
state will break up into droplets. The resulting set of mo-
saic structures describes the liquid.

The main problem in glass formation is to understand
how and why the relaxation time, 7, in the supercooled-
liquid state grows so rapidly. As already mentioned, ex-
periments indicate that for certain glass-forming materi-
als 7 appears to diverge at a temperature T, (T, <T,)
and the divergence is exponential. Exponentially large
relaxation times are most naturally obtained by consider-
ing activated transitions between different mosaic states.
Just as in ordinary nucleation theory, glass dynamics can
be understood by using restricted statistical mechanics
for metastable states.

This can be done by introducing restricted phase-space
average: In statistical mechanical averages replace the
trace Tr by Tr—Tr’ where Tr’ means including only
those configurations belonging to the metastable glassy
state.” 13 The global metastable glassy states are essen-
tially frozen liquid states with nonzero Debye-Waller fac-
tors which indicates they have elastic properties. To de-
scribe them we introduce two related key ideas.'® First
we imagine an order-parameter description in terms of
frozen-density fluctuations, &n =n —n;. Here n is the
number density and n; is the liquid-state number density.
Other order parameters can be used but frozen-density
fluctuations are the simplest and most directly related to
the most trivial characterization of a solid: a nonzero
Debye-Waller factor. Since the glassy state is amorphous
or aperiodic the frozen-density order parameter is most
naturally specified by a (functional) probability measure
DP[dn]. Within a mean-field approach the glassy states
are characterized by the first and second moments of this
measure, '

57 (%) _1 _
5n(x)=fDP[Sn]Sn(x)——Vfdxﬁn(x)—O, (2.2a)
g=[8n(x)’= [ DP[8n][5n(x)]*

-':~1;fdx[f>n(x)]2 . (2.2b)

The final equalities in Egs. (2.2) assumes self-averaging
and from Eq. (2.2b) it follows that the zero in Eq. (2.2a) is
really a term of O(V ~!/2) with V the volume and the
bulk limit is always taken. The Edwards-Anderson order
parameter®° ¢ in Eq. (2.2b) is zero in the metastable liquid
phase and is nonzero in metastable glassy states. Some
features of this order parameter will be discussed below.
The second key notion we introduce is that, in general,
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one expects a large number of distinct glassy metastable
states. We denote a particular glassy state by the label s,
with the frozen-density field in that state given by
n,=n;+06n, and the free energy equal to F, [the density
fields in Eq. (2.1) should also be labeled by the index s].
Calculations indicate!®!! that below a temperature we
will call T 4, there are an extensive number (the number
of states scales like exp[aN ] for an N-particle system) of
global statistically similar incongruent metastable glassy
states. Statistically similar states have the same spatially
averaged correlation functions and incongruent states
have zero overlap:'%®2!

_ 1
qSS'ZSSS,q—7fdx—BnS(x)Snsr(x) : 2.3)

Note that because these states are statistically similar,
one cannot use an external field to pick out a particular
state. Consequently, the partition for the global metasta-
ble states is given by a sum over all 5:2!22

Z=Trexp(—BH)=7 exp(—pF,) . (2.4)

Technically Eq. (2.4) is correct (in the restricted ensemble
Tr’) if the barriers between states diverge in the bulk lim-
it. Physically it is a reasonable equation for a restricted
time interval if the barriers are large but finite. We argue
below that even in this doubly restricted ensemble, entro-
pic driving forces always lead to nucleation processes
which in turn lead to mosaic states rather than global
metastable glassy states. Nevertheless, the phase-space
decomposition given by Eq. (2.4) is a useful intermediate
step.

‘Xlgl Eq. (2.4) one can define a canonical free ener-
gy,

1
F.=——InZ
B

and a component averaged free energy for the global
metastable states,

F=3 PF,

(2.5a)

(2.5b)

with P, the probability of being in the s component,

P;=%eqx—ﬁﬂ). (2.5¢)

F!" and F are related by?!

F,=F+kyT 3 PInP,=F—TI . (2.6)

Here I is usually called the complexity, but we will argue
it can also be interpreted as a state entropy which is
bounded from above by a configurational entropy in
non-mean-field models. In general ] is related to the solu-
tion degeneracy and it is extensive (and F.#F) if there
are an exponentially large number of states. Note that
the physical free energy, if the barriers are infinite, is F
because the term, —7T7 in Eq. (2.6) is a entropy term
which is a measure of parts of state space not probed in a
finite amount of time. Since a physical entropy should
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only be associated with accessible configurations it fol-
lows that F, is not the physically meaningful free energy
of the global glassy metastable states.

If we ignore the nonperturbative droplet (cf. below)
fluctuations that lead to the mosaic states then a mean-
field-like calculation gives the following.!°® (1) For
T <T, there exist an extensive number of statistically
similar incongruent global glassy metastable states. For
T=T], q drops discontinuously to zero and the restrict-
ed ensemble Z’ is no longer physical meaningful for
higher temperatures. The only global state is the liquid
state. (2) For T'<T,, F. is identically equal to the
liquid-state free energy, F;, and F—FL =TI~ O(V), for
all temperatures such that (defining Tx) Tx <T <T,.
This indicates that in this temperature range the glassy
states are metastable with respect to the liquid phase. (3)
At Tk, F=F 1, and the complexity vanishes (or becomes
nonextensive). The glassy states are then thermodynami-
cally preferred to the liquid state. We identify T, with
an ideal STG transition temperature. It will be interpret-
ed further below. (4) A mean-field dynamical theory
leads to a glassy freezing for all T < T ,. Physically this
is because the extensive solution degeneracy implies that
with probability one the initial configuration of the sys-
tem will be in a global glassy metastable state. Because
nucleation out of a metastable state is a nonperturbative
fluctuation effect that is ignored in a mean-field dynami-
cal theory the system will stay in a particular metastable
forever. Note that the equality of F.' and F; is consistent
with this result. The canonical free energy of all the
glassy states is equal to the liquid-state free energy be-
cause of the entropy or complexity term in Eq. (2.6).
Conceptually the existence of a temperature (region) T,
is important because it indicates (cf. Sec. III) that for all
T <T 4, long-time dynamical processes are activated.

III. ENTROPIC DRIVING FORCES
FOR ACTIVATED TRANSPORT

In this section we give a preliminary discussion of the
expected nonperturbative droplet or domain-wall dynam-
ics for Ty <T <T,. The scenario given here will set the
stage for the more refined arguments given in the subse-
quent sections of this paper. It should be pointed out
that because the equation for the saddle point for the field
theory we have proposed for the structural glass transi-
tion,'® has multiple solutions, fluctuation effects cannot
be accounted for by self-consistent variational (or pertur-
bative) schemes. What is needed is to compute the in-
stanton contributions and physically this corresponds to
the large-scale droplets considered here. Crucial to our
arguments is the nature of the entropic driving force for
activated transport.” We first discuss this driving force
and then we will use it in a naive way to obtain some pre-
liminary results.

The relevant entropy!'! for our scenario is associated
with the multiplicity of disjoint ergodic states above Tk.
In several exactly soluble models!!"!32® this entropy does
vanish at a temperature Ty, where a random first-order
phase transition occurs. We assume a similar behavior
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for structural glasses. We shall refer to this entropy as
the state entropy S; since it is a measure of the number of
disjoint (at least in mean-field theory) ergoidc states. A
precise discussion about the meaning of S; can be given
by considering the model problem of the Potts glass in
the mean-field limit.'"!? For this model both the canoni-
cal free energy, F., and the component-averaged free en-
ergy, F, can be exactly computed and written as

Fc=—éln > exp( _BFS)]
:_élandfeN[a<f>—Bf] (3.1a)
and
F=3 PF, = [df fe¥ter o, (3.16)

Here f=F/N is an intensive free-energy variable and
g(f)=exp[Na(f)]is the density of free-energy states. In
the thermodynamic limit, the integrals in Eq. (3.1) can be
evaluated by saddle-point methods and one gets

N -
; alf),
with a(f)#0 for Ty <T <T,. Here f satisfies the rela-
tion S=0a(f)/df. Notice that the existence of F in
non-mean-field theories is hard to justify in the region
Ty <T<T, because the states being considered are
metastable. We have assumed that the relaxation times
are extremely long compared to the typical experimental
time scales and that one can calculate F; by considering
those configurations belonging to s. From Eq. (2.6) and
the discussion below it, the state entropy is

F,=F— (3.2a)

S,=kzNa(F), (3.2b)

i.e., S, is related to the number of free-energy states. In
the droplet arguments given below we shall assume that
S, is the important driving force for large-scale domain
dynamics and when S;0, there is liquid-like relaxation.
Note that S, is not precisely the configurational entropy,
S,, considered in the Adams-Gibbs® picture of the glass
transition. The distinction between S; and S, can be seen
in several ways. First, as already mentioned in Sec. II, S
(there called the complexity) is not a physically meaning-
ful entropy in mean-field theory. However, even in this
case, in a given ergodic component one would imagine
that both a vibrational and a configurational entropy ex-
ist. The configurational entropy would be associated
with different defect arrangements in a particular ergo-
dic state. In non-mean-field models S; would become a
physical entropy!! because domains of a distinct glassy
state inside an original glassy state are allowed if droplet
fluctuations are taken into account. Within each droplet
there will again be vibrational and configurational entro-
py. These arguments indicate that the total
configurational entropy as is usually discussed is greater
than or equal to the state entropy, S,. Physically, we im-
agine that the distinction between the configurational en-
tropy associated with defects and the ‘“‘configurational”

entropy associated with states is related to length scales.
The configurational entropy associated with defects
should lead to motion involving only a few particles be-
cause that is all it does in the crystal phase and conse-
quently it does not lead to liquid-like relaxation. We ar-
gue below, on the other hand, that S, leads to large-scale
liquid-like transport involving many particles.

Assuming that S; is an entropic driving force for ac-
tivated transport we next give a preliminary argument on
the expected behavior of the liquid-state relaxation time
as S, decreases.!! Consider a region of size L in a single
glassy state and estimate the probability of a different
glassy state forming inside this region. Because the
different glassy states have roughly the same free energy
the driving force for droplet formation is entropic: Nu-
cleation of a new state occurs because there are so many
states to escape to. The effective free-energy driving
force for this process is of magnitude Ts,L¢ Here s, is
the state entropy per unit volume. Opposing the droplet
formation is a surface free energy cost, F ... For large
L, F .. can scale at most as o L¢ ™!, with o the surface
tension between two different glassy states. Comparing
these two forces one sees that at large enough L a droplet
will always form. Repeating this argument for every fluid
region leads to the mosaic state already discussed. With
this argument the typical size of a glassy cluster will be of
order L*~0oT/s; and the free-energy barriers for ac-
tivated transport are of order AF* ~(a T /s;)* ~'. Note
that this picture predicts a divergent length scale, L*,
and a divergent relaxation time, 7~exp(BAF*), as the
ideal STG transition at Ty [s,(T=Tg)=0] is ap-
proached. Also note that if we consider transitions into
the liquid state then the picture is unchanged because the
free-energy driving force for this process is also
F—F,=F—F!=TI=TS,. In fact, because the forma-
tion and destruction of the glassy clusters will continu-
ously occur, the mosaic state for Ty <T <T, is also a
liquid state.

These considerations lead to the following picture of a
viscous liquid at low temperatures (well below T ,). First
the liquid consists of glassy clusters or amorphons
separated by interfaces or domain walls. As the tempera-
ture is decreased the size of the glassy clusters, L *=¢, in-
creases and the coherence length of the clusters, &,
diverges st an ideal STG transition. Secondly, the long-
time dynamics is controlled by activated processes where
the glassy clusters are destroyed and created. The time
scale for these processes diverges exponentially as the
ideal STG transition is approached. Motivated by the
appearance of the divergent coherence length, &, we use
scaling ideas in the following sections to refine these
ideas.

We stress the dynamical picture given above is very
different than the nucleation and growth picture near a
usual first-order phase transition.?* The glassy clusters
we consider remain small (on a scale given below) because
once a droplet nucleates, another droplet can nucleate in-
side the previous one (because of the entropic driving
force) and consequently the system will consist of many
percolating domains. Thus the kinetics is both controlled
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and limited by fluctuation effects. In usual nucleation
theory the growth is exponentially fast immediately sub-
sequent to nucleation and it is not controlled by fluctua-
tions. These arguments also suggest that unlike usual
first-order phase transitions, fluctuations are very impor-
tant in the droplet picture of the glass transition and the
physics should be controlled by a single divergent length
scale £ ~t ¥, with v a correlation or coherence length ex-
ponent. Because a domain within domain picture makes
sense only on scales greater than or equal to £, we expect
£ is the typical size of a glassy cluster. In general we can
also argue that because the driving forces for activated
transport scale as

Fdriving"’ _TssLd~ _tLd"’ _zng _tl_Vd ’

the activation barriers for critical transport near T must
scale as

AF* —gl™vd | (3.3)

Here t =(T —Tg )/ Tk and we assume s, vanishes linearly
at Tg. If one prefers throughout this paper one could
write s; where t=(T—Tg)/Tg occurs. This may be
preferable if one looks at variations with other parame-
ters other than the temperature such as pressure or if the
transition really eventually becomes rounded. If the tran-
sition is rounded, our physical picture still makes sense,
as long as large (but finite in this case) amorphous clus-
ters determine transport in the glass-transition region and
these clusters increase in size as temperature is decreased.

IV. SCALING EXPONENTS NEAR RANDOM
FIRST-ORDER PHASE TRANSITIONS

As already mentioned we imagine an ideal STG transi-
tion that is in part characterized by glassy clusters whose
typical size & is assumed to diverge as the ideal transition
temperature is approached. The following arguments, as
well as earlier ones by others, give estimates of the corre-
lated volumes as containing 50-500 particles at the labo-
ratory glass transition. In general, this indicates that T,
is a considerable distance from a possible ideal STG tran-
sition. In fact, (T, —Tx)/Ty is typically estimated to be
>0.1. All of this implies that droplet arguments based
on large length scales are somewhat problematic near the
experimental T,. With this caveat in mind, we now
proceed to investigate the supposed ideal STG transition.

In this section we provide two different arguments for
the value of the exponent v which characterizes the
divergence of & near Tx. The first argument is heuristic
and is based on an approximate use of the fluctuation for-
mula. The argument was originally hinted at by Donth.?’
We assume that the correlated volumes are large enough
that they can be treated as independent thermodynamic
systems. Because of our belief that an ideal glass transi-
tion exists, the correlation length becomes anamolously
large near T and hence for ¢t << 1, such an assumption is
valid. The temperature fluctuation in a correlated
volume is given by?®

8T2=kyT2/NC , (4.1a)

where N is the number of particles in a correlated volume
of dimension &, C is the specific heat per particle, and the
difference between constant volume and constant pres-
sure density is ignored. Let the mean temperature of a
correlated volume be T'=Tx(1+¢) with t <<1. We now
assume that mean-temperature fluctuation 87 is less than
the deviation of T from T, i.e., 8T <tTy. The rationale
for this is that the temperature fluctuation is related to
entropy fluctuation and this implies that if 87 is large
then there is sufficient entropic driving force at
T=Tg(1+1¢t) for relaxation. Since, ¢ <<1 this is not very
probable. This assumption allows us to write Eq. (4.1a)
as

ky/NC<t? . (4.1b)

The number of particles N scales like £9~1*¢ and using
this in Eq. (3.1b) we get the inequality,

vd+a>2, (4.2a)

or

vz2/d . (4.2b)

In obtaining Eq. (4.2b) we have assumed that the
specific-heat exponent a=0. The specific heat at T=T,
for most glass-forming materials is discontinuous at
T=T, and presumably it is also discontinuous at T=Tk.
This allows one to estimate ¢ =0. Note that the equality
form of Eq. (4.2) is just a hyperscaling law.?’” This con-
nection justifies our assumption that 8T <¢T for T near
Tx. Notice that Donth applied the fluctuation formula
at T=T,. His expression for the mean size of the
domain £ involves the experimental decrease in specific
heat at constant pressure and T},.

The second argument that leads to v=2/d is more for-
mal. Mean-field calculations based on a model Hamil-
tonian written in terms of density fields, indicate that at
the ideal STG transition temperature, T, the Edwards-
Anderson order parameter [Eq. (2.2)] is discontinuous.
Because g is a second moment of a probability measure
we call such a transition a random first-order phase tran-
sition. We also expect that, in general, there is a discon-
tinuity in g at Tx. As a liquid is cooled above Ty (and
above T,) it is well documented that at finite time or fre-
quency scales there exist solidlike behavior, e.g., shear
waves. This effectively implies the presence of finite-
frequency elastic coefficients, or a finite-frequency
Debye-Waller factor. It would seem that any reasonable
dynamical scaling law which contains solid behavior at
short times and liquid behavior at long times will imply a
discontinuous Debye-Waller factor as the relaxation time
diverges. This, in turn, implies a discontinuous g at T'.

Scaling exponents for regular first-order phase transi-
tions and their interpretation have been discussed before
by many authors. Here we generalize the finite-size-
scaling arguments of Fisher and Berker®® to random
first-order phase transitions. We first give the argument
and then interpret the results.

In a finite system of size L 9=V there can be no sharp
phase transition. To describe the growth of a sharp ran-
dom first-order phase transition as L — o0, we assume a
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finite-size-scaling hypothesis. We again use a density or-
der parameter. For the conjugate field we use a chemical
potential h =u(T,p)—u(Tk,pg). Here we allow for the
fact that, in general, an ideal STG transition will depend
on both the temperature T and the pressure p. We postu-
late that the scaling part of the free-energy density
behaves as

f(h,L)~L ™ °Z(L/E)=L*Y(hL®), (4.3)

where £ (the finite-size correlation or coherence length) is
the length scale where finite-size rounding takes place.
The last equality in Eq. (3.1) follows from the definition
E~|h|™" (where ¥ is the finite-size-coherence-length ex-
ponent) and 6=1/%. The exponents ¥ and { can be
determined from the scaling ansatz given by Eq. (3.3) and

Egs. (2.2) with g discontinuous at Tx. We first consider

Sf
h

2=—Llﬂ [ Jaxontx) |’

~L g ~L %291y (hLO)]? . (4.4a)

Using the discontinuity of g at T this implies the equali-
ty
d
0—¢=——.
6 2
Another equality can be obtained by considering the sus-
ceptibility squared. Following Fisher and Berker?® we
obtain the equality

(4.4b)

20—£=0. (4.4c)
Combining these equations yields
v=1/0=%, t=d . 4.5)

The corresponding result for a regular first-order phase
transition is ¥=1/d. The difference arises because the
conjugate field for the Edwards-Anderson order parame-
ter is effectively ~h2 If we identify ¥=2/d with the
correlation-length exponent v and use hyperscaling
a=2—wvd, then we conclude that at T there is no latent
heat and the specific heat is discontinuous (or perhaps
logarithmically divergent). We remark the first-order-
like phase transitions with these properties are somewhat
unusual. However, there are several exactly soluble
random-spin models with precisely these properties: the
random-energy model,”> mean-field p-spin-interaction
spin-glass models,'? and mean-field Potts glass models."!

There is another way of looking at this scaling physi-
cally.!! Above T, the state entropy per particle is finite
and the number of thermally accessible states grows
linearly with the volume of the region. Below Ty the
state entropy per particle vanishes yet the number of
thermally accessible state is not one for a macroscopic
sample. Rather it is a large but finite number diverging
at Ty from below. There will be a characteristic size
V* ~ &% where we will be able to distinguish these two be-
haviors, that is, below T the number of states will in-
crease exponentially with size until ¥* is reached and
saturation observed. Using the scaling ansatz above and

below the transition then gives &£'~(T—Tg) ? and
hence leads to the exponent v=2/d. In obtaining this re-
sult we have assumed that for T > Tk, S; ~ V¢, and that
for T<Tg, S,~V°t|~!. The exponent for the diver-
gence of S; below Ty has been taken from a mean-field
calculation.!! Above the transition, V* will be the size
after which exponential growth of the number of states
clearly applies.

We also note that these exponents are consistent with
the observed phenomenology at the laboratory glass tran-
sition where a latent heat is not found but there is fairly
sharp (at least in fragile glass formers) discontinuity in
the specific heat.! In fact the scaling exponent a=0 (and
by hyperscaling v=2/d) follows phenomenologically if
we naively assume that the ideal STG transition has the
limiting characteristics of the laboratory glass transition.
This assumption is actually more reasonable than it prob-
ably appears at first glance. In both the ideal and labora-
tory transitions the crucial physical picture is the
(effective) vanishing of the configurational entropy: The
system gets trapped in a region of phase space. In the
ideal transition there is a real phase transition because
the number of liquid states becomes nonextensive and be-
cause the global glassy state is free energetically preferred
to the liquid state. In the laboratory transition the
effective number of liquid states become nonextensive be-
cause other states are not accessible on the experimental
time scale. The similarity of these transitions is also indi-
cated by the fact that glass transitions observed in com-
puter simulations are similar to laboratory glass transi-
tions.

Finally, we note that if the starting STG Hamiltonian
has a random part in it and if the STG transition was due
to this randomness then the rigorous inequality v=2/d
must be obeyed.”’® The equality v=2/d is most natu-
rally associated with a random first-order phase
transition.?® It is not clear, however, whether these ar-
guments are relevant for the STG transition where the
randomness is self-generated. Within our picture, howev-
er, the equality, v=2/d, is however necessary to give re-
laxation times in accord with the Vogel-Fulcher law.
Thus, insofar as the experimental fits to viscosity data
obeys the VF equation, it seems that the STG transition
mimics the behavior seen in systems where the transition
is random first order.

V. SCALING AND ACTIVATED TRANSPORT

In this section we combine the physical picture set up
in Sec. II with the scaling ideas given in Sec. III, to ob-
tain an expression for the relaxation time in.the liquid
state. The fundamental assumption is that there are
glassy domains that are metastable, and consequently
they continuously undergo transitions with a characteris-
tic relaxation time which determines transport in the
viscous liquid. For large scale domains, we first argue
that this notion automatically implies that the free energy
opposing the transition must scale as

F gpposing =¥ L° (5.1a)

with
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6=—(vd—1), (5.1b)

v
or 0=d/2 if v=2/d. In Eq. (5.1a), ¥ is a positive con-
stant. The inequality given by Eq. (5.1b) can be rational-
ized by the following argument. In general, for
Tx <T<<T,, we expect the driving force of activated
transport in a volume of size L to be entropic and of or-
der

Faciving~—Ts,L%~—1AL? . (5.2a)

Here t =(T —Tg)/Tg and we have assumed that s, van-
ishes linearly at Ty and A4 is a positive constant. If the
typical size of a glassy cluster scales like L ~&~t " then
Eq. (5.2a) becomes

Fdriving"-‘_At’—(Vd_l) . (5.2b)
Similarly, Eq. (5.1a) scales as Fopposing~yt_ve. There-
fore, in order for the droplets to be unstable at large
enough scales, the inequality given by Eq. (5.1b) must be
satisfied.

We next give two arguments for the expected behavior
of the liquid-state relaxation time near Tx. The most
naive argument is as follows. If the typical size of a
glassy cluster behaves like L ~£~t~Y~t 2/ then Eq.
(3.3) implies that the free-energy barriers for activated
transport must behave like

AF* —p~vd=D _ =1 (5.3a)

This immediately leads to a relaxation time of order,

T~70eXpl DT /(T —Tg)] . (5.3b)
Here 7, is a microscopic relaxation time, D is a positive
constant and we note that Eq. (5.3) is just the Vogel-
Fulcher law. Also note that this is a consistent result
only if the free-energy force opposing activated transport
scales as

F yL?, (5.4)

opposing =~

with y a positive constant. This should be contrasted
with the ansatz Fyygace = Fopposing ~L ¢ ' used in Sec. IIL.

We next give a more careful discussion of the free-
energy forces which oppose activated transport. We gen-
eralize an argument due to Villian® for the random-field
Ising model (RFIM) to the structural glass problem. Our
main conclusion will be that the surface forces which op-
pose activated transport do scale as Eq. (5.4) for the
length scales of interest. Equations (5.1a) and (5.4) then
independently of Sec. IV lead to Eq. (5.3) and all of our
arguments are consistent with each other. Our argu-
ments also lead to other features which are of experimen-
tal consequence which we discuss in Sec. VI and else-
where.

In general in disordered phases one does not expect a
finite macroscopic surface energy. This implies that the
force opposing activated transport should be written
Fopposing~0(L)L“'_1 with o(L) meaningless beyond a
length scale related to £&. To understand the vanishing
surface tension we start with a small droplet with a finite
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surface tension and then use renormalization-group-like
ideas to determine the larger-scale behavior of o(L). The
basic idea is to note that a smooth domain wall can de-
crease its free energy, Fpw = Fgyifaces DY forming bumps
of a third glassy state (say 3) if the original smooth
domain wall separates two other glassy states (say, 1 and
2). Because there are an extensive number of different
glassy states they have a free-energy distribution that is
Gaussian and the typical free-energy difference between
any two states in a volume of size L? is of order +L%/2,
Thus the typical free-energy gain for a bump of radius r
and height § is

172

£

8F1 ~ —Hrd/z
r

(5.5a)

with H a positive constant. The free-energy loss due to
the additional surface tension o is (here ¢ is assumed to
be less than 7 and that the bump is not very rough)

2
e

8F2~Urd—l
r

(5.5b)

Finally, as for the bulk processes, there is also an entropic
driving force

8Fy~—tAri~1¢ . (5.5¢)

We avoid explicitly including 8F; by considering the sur-
face free energy at Ty where 8F; vanishes. If we assume
scaling, then these results will be shown to lead to Eq.
(5.3a). Minimizing 8Fpw =8F, +8F, with respect to £
yields

H 2/3
£ ‘__ p5=dis3 (5.6a)
o
and the resulting free-energy gain per unit area is
173
Slz‘i”f ~— pUd=2/3 (5.6b)
r o

Equation (5.6b) can be interpreted as a modification of
o due to the elimination of degrees of freedom of wave-
length of order r. In a renormalization-group spirit we
write Eq. (5.6b) in differential form as
173

dor=—k*’g |2 | ,2a-2nly 5
o r
with K a constant. Integrating Eq. (5.7) yields
o(r)~KH /r'd=272 (5.8)

In obtaining Eq. (5.8) we have imposed the boundary con-
dition o(r— ©)—0. At T=Ty this is required to ob-
tain a scale-invariant surface tension. With Eq. (5.8) and
using that r scales with L, the surface-free-energy oppos-
ing activated transport at T is

F ~o(L)LY ' ~KHL4"? | (5.9)

which is just Eq. (5.4). Note that Eq. (5.8) in Eq. (5.6a)
yields {~r.

opposing
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Using Eq. (5.9) and assuming scaling we write the sur-
face term opposing activated transport as F .o,
=L42h(L /&), where h(x) is a scaling function with
h (0) a constant. Minimizing F,ooing + Fariving then self-
consistently gives L*~£&~t2/%, We conclude that the
Vogel-Fulcher form, Eq. (5.3), is probably the asymptotic
relaxation time near T and that the typical size of the
cooperatively rearranging regions (CRR’s) diverges as
E~1t~%/4 a5 T is approached from above. Note that the
typical cluster size, £~t ~2/9, is less than that indicated
by the naive arguments of Sec. III for all d > 2.

Finally, it is easy to verify that if Eq. (5.5¢) is retained
then this picture is not changed. As already mentioned
Eq. (5.8) in Eq. (5.6a) yields {~r. As a consequence of
this 8F; can be interpreted as a renormalization of
F 4iving- We stress, that we have generalized only the sim-
plest of Villian’s arguments for the RFIM problem.*
More sophisticated arguments could lead to a more com-
plicated scaling behavior characterized by additional ex-
ponents. In particular, the bulk driving force could also
be renormalized in a nontrivial way. Physically, the main
conclusion we draw is that there are mechanisms that de-
creaie ll:he surface free energy from its naive behavior
~L*™ %

VI. DISCUSSION

The arguments we have put forward in this paper are
speculative and in some respects similar to previous qual-
itative pictures of the liquid-glass transition. Our picture
is, however, grounded in the study of some exactly
solved, albeit, mean-field models of random-phase transi-
tions which have transition characteristics bearing a
strong resemblance to observations on the glass transi-
tion. In this section we would like to highlight the con-
trasts between our picture and previous ones and discuss
experimental tests that might distinguish alternative hy-
potheses. There are several independent points that arise
in this consideration and they are enumerated below.

(1) One of the hallmarks of our picture is the presence
of a length scale diverging near Ty and that rearrange-
ments of regions of this size have barriers dependent on
that size. Such a divergent length connected with an im-
pending entropy crisis also plays a role in the Adams-
Gibbs-DiMarzio theory of the glass transition.® Diver-
gent or nearly divergent lengths unconnected with an en-
tropy crisis also enter into other theories of glass transi-
tions such as those for metallic glasses4 and, of course,
continue to be invoked in entirely qualitative accounts of
the glass transition. The divergence according to our
analysis, £~(T—Tg) 2/? is stronger than the Adams-
Gibbs-DiMarzio divergence £~(T—Tg) /9. The 1/d
exponent would ordinarily be associated with a tradition-
al first-order transition rather than a random one. Thus,
the Adams-Gibbs-DiMarzio exponent would give ex-
tremeley small connected clusters. On the other hand,
the 2/d exponent would, in favorable cases, give lengths
of several nanometers. Thus, experiments on glass for-
mation in confined geometries may give some insight.
Experiments along these lines are progress,’! although it
is clear that many complicating features can and do
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enter, such as surface effects and the difficulty of achiev-
ing a homogeneous distribution for confined systems.
Other direct probes of such length scales are also con-
ceivable. One important possibility is the use of the scan-
ning tunnel microscope or various tribiological experi-
ments>? on friction in ultrathin films where nonlinear
effects may be connected with phenomena at the correla-
tion length scale.

(2) An issue we have not addressed in our scenario is
the distribution of relaxation times. The problem of dis-
tributed relaxation times has attracted a great deal of at-
tention lately in the study of many systems. The droplet
scenario presented here puts great store in the random
parts of the free energies of different droplets. It there-
fore suggests a rather wide distribution of activation en-
ergies and, therefore, relaxation times. Although there is
a distribution of activation energies in glasses, others
have emphasized the relative narrowness of this distribu-
tion in their speculations on the glass transition. A calcu-
lation of the width in our picture requires assessing the
relative size of the renormalized surface energy and the
randomness energies themselves. They are dimensionally
the same but need not be numerically comparable. There
is some evidence that the distribution gets broader in fra-
gile glasses with decreasing temperature and this would
be consistent with our picture.’> Furthermore we have
not dealt with droplet interaction effects and/or the ques-
tion of the pinning of the walls in our so-called mosaic
states. An ad hoc explanation of a narrow relaxation-
time distribution would be a motional narrowing of the
randomness due to fluctuations of other droplets because
there is no quenched randomness in the glass Hamiltoni-
an. Such a phenomenon would be however outside the
scope of our single-droplet calculations and would re-
quire a complete dynamical analysis.

(3) It is worth emphasizing the distinction between
configurational entropy S, and the entropic driving force
we have considered here. As stated before these
differences become transparent by considering the mean-
field spin-glass models without reflection symmetry. In
these models, there is an Edwards-Anderson order pa-
rameter for T < Tx even though the thermodynamics of
this model is not frozen entirely below this transition
temperature. Hence, there are still relaxing degrees of
freedom, which can, for example, give a 8 relaxation.
These can be further frozen out by the time the system
reaches zero temperature. Any estimation of
configurational entropy in real glasses is also complicated
by the existence of additional relaxing degrees of freedom
below the laboratory glass-transition temperature. We
would agree with the recent observation’ that as usually
defined, the configurational entropy will not vanish in any
realistic model with finite-ranged forces. This is because
point defects are always present and they lead to a finite
contribution to what is usually called configurational en-
tropy.* Still, this in itself does not make a random first-
order phase transition impossible. Even in the case of a
crystalline solid, where we known there is a first-order
phase transition from liquid to solid, there is a finite
“configurational” entropy in the crystal phase associated
with point defects.
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(4) The remarks about the ambiguity of configurational
entropy (see Sec. III) must translate into some ambiguity
about the value of Tk or even its existence as a sharp
point. Suffice it to say that our arguments correlate the
impending vanishing of an entropy at Ty with the
Vogel-Fulcher behavior of the activation barriers. Thus,
even if some crossover to another type of phase transition
or if rounding of the transition were to occur below the
laboratory transition, we believe our arguments are
relevant to the temperature range usually studied. We
also point out, that for the exactly soluble spin models
which we considered previously,!! " !* Ty is a tempera-
ture where both S; vanishes and where the free energy of
the high-temperature phase is equal to the free energy of
the low-temperature glassy phase. Thus, within our pic-
ture, at T the liquid-state free energy is equal to the free
energy of a global glassy state. This is another indepen-
dent and less ambiguous condition for an ideal glass tran-
sition to occur.

In this regard, the connection of the glassy state and
the random-field Ising model alluded to in Sec. V (as well
as by others®) may conceal a deeper analogy. The
renormalization-group analysis of nonrandom Potts sys-
tems proceeds more readily with the introduction of new
Ising-like variables in addition to the original Potts vari-
ables.>> If such an analysis is applied to a random Potts
system with short-range interactions these Ising variables
attain both random and regular fields upon renormaliza-
tion.>® Thus, on longer length scales there may be a natu-
ral connection of the Potts glass and the random-field Is-
ing magnet. The presence of regular, as well as random
fields in this analogy should remind us of another possi-
bility. A random Ising model with an average field will
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probably only show a critical point when that field van-
ishes. In the glass analogy this is equivalent to having a
vanishing configurational entropy not along a line in the
temperature-pressure phase diagram but only at a point,
where the critical behavior will occur. We point out that
such a possibility allows one to accommodate in a simple
way deviations of the Prigogine-deFay ratio from unity.!
Such deviations, of course, can also be explained in a
variety of dynamical fashions at the laboratory, as op-
posed to the ideal glass transition.

(5) The role of crystallization in any scenario needs to
be addressed. First, macroscopic nucleation theory is
applicable if the critical embryo for the periodic crystal-
line phase is larger than the correlation length £. In this
case the growth of the critical nuclei is severely impeded
by the large value of viscosity.3” If the critical embryo is
smaller than £ then new considerations apply. In this
case nucleation is not strongly impeded by slow transport
but the thermodynamics of the transition is modified.
The situation would be like solid-in-solid nucleation. The
surface energies (barriers) for this situation are very large
and consequently these processes are not very likely.

Finally we remark that the basic ideas of the droplet
pictures require the existence of some sort of coherent
structure on a moderate length scale. Once simulations
on good glass formers are done on long length scales and
rather long times this may become more apparent.
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