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A theory for the spectral wings of collision-induced scattered light is presented. It differs
from previous theories in that realistic potentials and polarizabilities are employed. The line
shape at relatively low frequencies is determined largely by the effects of distant collisions.
At high frequencies it is determined primarily by the repulsive part of the interatomic potential.
At intermediate frequencies it is sensitive to both the attractive part of the potential and the
short-range part of the polarizability anisotropy. A technique in which the analytic behavior of
the trajectories in the complex time plane plays a key role is employed.

INTRODUCTION

Recent investigations of collision-induced optical
phenomena at low densities have revealed a close
connection between conventional molecular spectra,
and pressure-induced spectra. Corr esponding to
the infrared-allowed transitions of molecular spec-
troscopy there exists collision-induced absorption.
Isolated atoms are not able to absorb infrared ra-
diation via electric dipole transitions but hetero-
geneous pairs of atoms may. Corresponding to
vibrational or rotational transitions in a true mol-
ecule there exist translational (radial or tangential)
momentum changes. The analog of Raman scatter-
ing is collision-induced light scattering (CIS).
Whereas isolated atoms are not capable of changing
the polarization of incident light, interacting pairs
of atoms may do so. In analyzing pressure-induced
processes one may regard the pair of atoms as
forming a quasimolecule which lasts the duration
of a collision. In such a description the analogy
with molecular spectroscopy is apparent.

Theoretical studies of CIS spectra have been made
recently by Levine and Birnbaum'4 and Thibeau and

Oksengorn. In the Levine-Birnbaum analysis atten-
tion was focused on binary encounters. The de-
polarization of the incident radiation was shown to
stem from the transient polarizability anisotropy
of the quasimolecule. A model for the anisotropic
polarizability was invoked and the dynamics was
taken to be that of a free particle. They predicted
that the depolarized light would be scattered into
an exponential spectrum whose decay constant is
related to the inverse duration of a collision. In
the Thibeau-Oksengorn treatment attention was
directed to the scattering of light by a single atom.
A statistical analysis of the effect of perturber
atoms was carried out. Thus the incident field on
given atom was taken to be the sum of the externally
applied wave and a fluctuating environmental field.
The two theories bear a relationship to each other
reminiscent of that between dynamical and statistical

theories of line broadening.
Experimental studies of the spectrum by McTague

and Birnbaum3' have verified many of the theoretical
predictions. Recent experiments by Slusher,
Surko, and Strautins, ' however, have revealed a
somewhat puzzling character to the spectrum of
depolarized scattered light. The wings of the spec-
trum do not seem able to be fitted by a single ex-
ponential curve. Rather, if plotted semilogarith-
mically versus frequency, there is a gradually
curving slope —steep at low frequencies and less
steep at higher frequencies. The data of McTague
and Birnbaum also display a nonexponential char-
acter, although it is not clear from their work what
significance is to be attached to it. The object of
the present paper will be to try to understand, in
a quantitative manner, the meaning of this curious
feature.

Experiment indicates that the curving-slope
feature is not density dependent at low densities.
This would tend to rule out dimers as a possible
candidate for the effect. If rotational or vibrational
transitions in the dimer are involved, the linewidths
would depend on the lifetime of the dimer —a pres-
sure-dependent quantity. Similarly, the intercol-
lisional (constructive) interference effect proposed
by Lewis and Van Kranendonk has a bandwidth re-
lated to the inverse time between collisions and is
thus density dependent.

A clue to the origin of the effect could be had if
one considers hard-sphere collision trajectories
instead of straight-line paths. For those encounters
in which the spheres do not collide we have exactly
the situation envisaged by Levine and Birnbaum. '

For direct collisions, however, the radial coordi-
nate experiences a discontinuity in slope as a, func-
tion of time at the moment of impact. Since the
anisotropic part of the polarizability, 13, depends
on x, it also exhibits this behavior. The intensity
of the scattered radiation is proportional to the
square of the Fourier transform of P [viz. , Eq. (&)].
If we integrate by parts twice, we can express the
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intensity as the inverse fourth power of the fre-
quency shift multiplied by the Fourier transform
of the second derivative of P. This second deriva-.
tive contains a & function in time, so the Fourier
transform will have a part which is constant. Thus
in the far spectral wings the line shape will fall off
as a power and not exponentially. For a sharp
repulsive potential which is analytic we no longer
expect a power law but we do expect the wings to
be more extended than for the case with no poten-
tial at all. Thus we see the main progenitor of the
varying slope appearing, namely, the scattering
process. We shall see later that the short-range
part of P can also influence the slope of the spec-
trum.

The need for including collisional effects was
originally recognized in the Thibeau-Qksengorn
theory. The empha, sis of their paper was placed
mainly on low frequencies —as is evidenced by their
choice of a hard-sphere potential. As we shall
see, the slope of the high-frequency spectrum is
rather sensitive to the details of the potential. The
present work may thus be regarded as a generaliza-
tion of their work to a realistic potential.

While it is quite possible that quantum effects
might lead to some oscillatory structure in the
spectrum, these effects would probably be small and
will be neglected in this paper. Thus classical
trajectories will be employed. This would have the
effect of averaging out any quantum structure.

We will proceed in a stepwise manner, investigat-
ing the effects of various complications one at a
time. Thus we start with a simple form for P and
a purely repulsive potential. Afterwards an attrac-
tive potential is added and its effects discussed.
Finally th~ model for J3 is refined. A comparison
with existing experiments will not be made in this
paper. We shall assume throughout that the pres-
sure of the gas is low enough so that only binary
encounters need be considered.

THEORY

Lacking detailed molecular calculations describ-
ing the nature of the polarizability tensor, we are
somewhat in the dark as to where to start. We
shall begin with a very simple model, extract its
consequences, and then refine it. At large inter-
atomic separations the pair of atoms can be shown
to give rise to an anisotropy~

Using elementary relations, the rate of collision-
induced light scattering due to binary encounters
can be written as

~4I ~2
'

2

do e""-"o"u (t) dt

(2)
We have taken the incident bea.m of intensity I, and
frequency &0 to propagate along the x axis with po-
larization directed along the z axis. The scattered
radiation is observed along the z axis without regard
for polarization. The frequency of the scattered
light has been denoted by ~. The density of atoms
in ~ and the relative velocity is v. After a suitable
average over all orientations of the collision plane
has been made this reduces to

1 ao 2
et 'I@I-410) t P(~) e1),ID dt (2 )

~go

The collision plane has been chosen as the 8 = 0
plane. The trajectory is then described by the ra-
dial coordinate )" and the azimuthal coordinate P.

The key to the problem is to evaluate the scatter-
ing integral

I,= 1 P() )e" ""' dt,
~ 00

where & = —+0 is the frequency shift from line
center. We are particularly interested in the far
wings of the line, where & is large. Thus we shall
make an asymptotic expansion of I~ in powers of
1/&. Before this can be accomplished, however,
the dynamics of the problem must be introduced.
While, in principle, we could integrate Newton's
equations of motion to obtain the trajectory, we shall
adopt a simpler approach. The high-frequency
wings of I, will be sensitive to the sharpest features
in the scattering process. These occur near the
turning point of the trajectory. Not only is the tra-
jectory varying most rapidly there, but the function

P is peaking most rapidly also. Thus all we really
need to know is the behavior of the trajectory near
the turning point.

The turning point is the positive root ro of the
equation

p= 6n'/r' . —,'mv'(i — '/br', ) —V(~,) = 0, (4)

Since for the rare gases chemical effects are un-
important, one does not expect a major redistribu-
tion of charge in the interacting atoms and so the
polarizability should not differ very much from the
above expression. This model differs from that
employed by Levine and Birnbaum, ' who chose a
Gaussian-like form.

where b is the impact parameter, V(x) is the po-
tential, and —,'mv is the reduced kinetic energy.
We have in mind, for the present, a repulsive po-
tential, so that Eq. (4) has only one positive root.
The trajectory is now expanded in the neighborhood
of the turning point. From the symmetry of an
orbit in a central field it follows that r and Q are
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even and odd series, respectively. Thus

r =ro+ro ,'t +—=ro+Fot/2m+ ~ ~ ~

&j& = Jot+ ' ' ' = vbt/r o+ ' '

where

I 0 is the sum of the interatomic and centrifugal
forces acting at the turning point. Equation (5b)
follows directly from angular momentum conserva-
tion.

Equations (5a) and (5b) are not appropriate for
our use a,s they stand. To cast them into a more
useful form one must consider the analytic behavior
of r and P. For each trajectory there exist two
possible directions to traverse it: the forward way
and the time-reversed way. This implies that x
and P should be double-branched functions in time.
We would like to rewrite Eqs. (5a) and (5b) in a
manner which would reflect this property. To order

we have the equations

= o[1+(Fo/ )t']'"=( /(o)(t'+5'o)'" (7 )

P(r) = Z. P.(I/r'"'),
with

p&-6n 2

Equation (9) can then be written as

I) =&n P.«&"',

with

(IOa.)

(lob)

may be distorted to wrap around the upper cut-
going from + i ~ —6 to + i~+ e' swinging beneath z(p.
Equation (3) becomes

f p(r) ei(at+le) dt (9)
C

We can already see the origin of the "exponential"
line shape in Eq. (9). Since the contour sta, rts at
f, = i(0 and extends upwards, an over-all factor e ~0

may be extracted. The remaining integral will be
a much smoother function of 4. For this reason
we see that the "exponential" shape is really quite
model independent.

To proceed further we introduce the specific form
for P(r) of Eq. (1). With an eye towards generaliza-
tion let us write'

sing = bvt/ror, (7b)

ef ( ht+XtIP )

IZ ——
&n+& At .r "' (12)

where $o= (mro/Fo)'~a. The quantity (, is a mea-
sure of the duration of a collision. In the free-
particle limit the turning radius becomes the im-
pact parameter, i. e. , r, - b Thu.s $, - b/v,
r-(b +v t )', and sing-vt/r These a.re just
what one would get for a, straight-line trajectory.
Equations (ta) and (Vb) form a "pseudodynamics"
which should be useful in a broad class of problems.

In the complex t plane, x has branch points at
t= ai$, . For a strongly repulsive potential $, can
be quite different from b/v but plays an analogous
role to it in determining the bandwidth of the scat-
tered radiation, as we shall see. The following
formulas (valid to the same degree of approxima-
tion) will be useful:

s ~

nay ba at 2/r Rr 2 (Sa)

cosa/ = bvt/r a, (gb)

sing cosp= (roa/r )[I+ t (1/$, —b v'/ro)] . (Bc)

These expressions also obey the abave-cited cor-
respondence principle when V-O.

The particular models that we will be looking at
have P(r) an analytic function of r everywhere ex-
cept at r= 0. ' Then P will be an analytic function
of t except on the cuts, which will be taken to run
from i$o to i~ and from —i$o to —i~ As I t I

-~.
in the upper half-plane, e' ' vanishes exponentially,
I3-0, and P - const. Thus an infinite semicircle
in the upper half-plane, taken as a contour, wouM
give no contribution. Consequently the trajectory

Employing Eq. (8), this becomes

«{n)
0 (13a)

«{n)
k2

X - —2 —- + —

2 dg 13b

Equation (13b) can be rewritten as

«(n) 1 2
~~ p &~ ~g) «(n)

«( +1)

0

For high frequencies this can be expressed as

I (n+ —,') 2&, r,

(for &to»l) (14')

Having evaluated the scattering integral, we are

The «pn' are expressible as modified Bessel func-
tions'0
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still faced with the integration over all impact pa-
rameters. It is convenient to transform the inte-
gration so it corresponds to an integration over
distances of closest approach. From Eqs. (4) and

(6) it follows that

do= 21/bdb= (21)roFo/mv ) dro .
The range of integration extends from so= a to

~, =~, where a is the root of

0=1 —(2/mv') V, (a) .

(16)

(16)

F,= (40m/o) (o/r, )"+ mv'/r, ,

a (8e /m v 2) 1 / 12o

b= r [1—(8e/mv')(a/r, )12]'/3 .
The scattered intensity may be written as

dI 3I„~ ' n2J
d 5 c m

(18a)

(18b)

(18c)

where J is defined by

Physically a corresponds to the distance of closest
approach for a head-on collision.

For the repulsive potential the truncated Lennard-
Jones form was adopted:

V(r) = 4e (o/r)" .
Then from Eqs. (4), (6), and (16) we obtain

cause the repulsion mechanism is suddenly switched
from being the centrifugal force to the repulsive
force. Thus the range of integration on ro may
split up into two disjoint segments. This is dis-
cussed further in Appendix A.

We now try to refine our model for P somewhat
beyond the asymptotic expression of Eq. (1). The
next term in the asymptotic series will be included
and the series will be truncated here. 9 Thus we
take

P= 6~'(1/r'+ p/r'),
where p is a number to be evaluated. We shall
compute the Kerr constant corresponding to Eq.
(22) and compare it with the experimental values
of Buckingham and Dunmur. ' They have evaluated
theoretical Kerr constants for the model of Eq. (1)
and found considerable disagreement between theory
and experiment. It is apparent that higher-order
terms, such as that included in Eq. (22), could re-
duce the discrepancy. By truncating the series we
are assuming that most of the deviation lies in the
second term.

The Kerr constant is given by

em% 2 2

405kT

=+ Pn Pmimn) (23)

(19b)

where

r t &-2n-2m e-V/kTd
~m& J (24)

If we mork in units such that e = o = m= 1, then J
will be a universal function valid for all gases. "

The extension to the case where an attractive po-
tential is included can be carried out straightfor-
wardly. We have now in place of Eq. (17) the po-
tential

We are temporarily employing the notation of Eq.
(10a) for convenience. Here f(/ is Avogadro's num-

ber. By letting u= (o/r)~ and )/ = —', (n+ m ——,')

1.0&-2'-2fft d g gt -& e-r&.~ -tf&
mn

—
6 0 du

V(r) = 4e [(o/r)' —(o/r)'] .
instead of Eq. (18a) we obtain

40& o '3 16& o ~ mv2

while Eq. (18b) becomes

a= o f 2 [1+ (1+ m/2v)'"e])-'/ . 6

Finally, Eq. (18c) becomes

(20)

(21a)

(21b)

(21c)

where y=4e/kT. This, in turn, can be expressed
in terms of parabolic cylinder functions. " Thus

+ o1-2n-Rm(2y)-v/2 ln()/) ev/8 I) ((~1 )1/3) (26)

(Buckingham and Dunmur express I» in terms of
the 06 function, which, as we see, is proportional
to the parabolic cylinder function. ) Thus, letting
g= (-,'y)'+, we have

(2)1'/&)(2y) '" [V(2,g)&- f/(n, g)]
V(0 g)

An additional feature appears in the range of inte-
gration, however. This is due to the fact that for
fixed b, r, may undergo a discontinuity as v is
raised above a certain critical value. This is be-

, «'(») '"«0,«)) (m)
V(0, g)

The U and V functions are tabulated by Abramowitz
and Stegun. 8„is the Kerr constant for the model
of Eq. (1) and is given by
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FIG. 1. ~vs & for two cases (v
= 2. 74) . In curve a, a truncated re-
pulsive Lennard- Jones potential was
employed, while in curve b the regular
Leonard- Jones potential was used.
The dashed lines represent asymptotes
to the low-frequency slopes.

~0$
40

8»= (4»'N'/1215kTo')(6o ) (2y) e" 'V(0, g) .

(2S)

By comparing Eq. (27) to experiment we are able
to extract a, value for a'. We can then use Eq. (11)
to obtain a refined scattering integral. The re-
mainder of the analysis proceeds exactly as before.

RESULTS AND DISCUSSION

In the previous sections a theory for the asymp-
totic line shape of collision-induced light scattering
has been presented. This theory is relevant only
to the non-near wings of the scattered spectrum and

is probably unreliable for 4 & 3. LTo express 4 in
cm ' we multiply by (e/m)'/ /2»co. ] In order to
obtain a theory valid near the line center one would
undoubtedly need to include the dynamics in a more
sophisticated manner. Thus one would have to de-
termine the role played by dimers, " evaluate the
effect of the intercollisional interference, and in-
clude the dynamics of two-body collisions in more
detail. For the asymptotic line shape, however,
we were able to simplify the description consider-
ably. The key to this simplification lies in the
introduction of a pseudodynamics which respects
the analytic behavior of the trajectory in the com-
plex time plane.

The present theory applies directly to the Stokes
side of the spectrum. To obtain the appropriate line
shape for the anti-Stokes side one must include the

additional Boltzmann factor e
In order to compare the theory with experiment

it is still necessary to perform an average over the
thermal distribution of velocities. To this end the
distribution function

f (&) (2&)1/2& -3/2&2 e-v /2w

is employed, where r=kT/e. The effect of velocity
averaging turns out not to be very significant, af-
fecting the curvature of the logarithm of the spec-
trum only slightly.

We now apply the theory to some practical cases.
We shall be concerned here only with the rare
gases, as most of the experimental work has fo-
cused on these. The theory may readily be extended
to more complicated systems.

Argon

Let us first try to determine what effect, if any,
the potential form has on the line shape. We begin
by considering a purely repulsive potential of the
form of Eq. (17). The model for P will be taken
simply as the asymptotic form given in Eq. (1).
In Fig. 1, J is plotted as a function of ~ for a fixed
v=2. 74 units. (We are neglecting thermal averag-
ing in this computation. The speed is the mean
relative speed of a colliding argon pair at
T= 300'K. ) Note that the spectrum may be charac-
terized quite accurately as being piecewise expo-
nential. Only two slopes appear on a semilogarithmic
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~ I

FIG. 2. ~ vs & for several differ-
ent assumed Kerr constants in Ar.
The curve x= —0.25 corresponds to
the observed experimental value {ther-
mal averaging included) .

~OI
iO 2, 0 30
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plot. If J is expressed in the form J= Ce ', then
6 represents a characteristic inverse decay length.
The low-frequency region has 5= 9.8 cm ', while
the high-frequency region has 6 = 11 cm '. The
break occurs at roughly 28 cm '. In this analysis
for argon we have taken'6 e/k = 119.8'K and
a=3. 405 A.

The existence of two distinct spectral regions can
be understood by noting that there exist two differ-
ent types of collisions. Those collisions with the
repulsive core, being quite sharp, generate high-
frequency Fourier components, thereby influencing
the outer wings of the spectrum. On the other
hand, as one goes to smaller frequencies the effect
of soft distant collisions becomes more manifest.

We next retain the model employed for P and use
a potential of the form of Eci. (20). Although we
have included an attractive potential, it has the ef-
fect of altering the repulsive force also, as it
lowers the distance of closest approach. In addi-
tion, it increases the velocity of the particles prior
to the moment of impact due to the acceleration of
the attractive force. Consequently the duration of

a collision $0 will be decreased. Thus a large
bandwidth, measured by 6 at high frequencies, is
to be expected. Furthermore, one expects the at-
tractive force to cause more collisions with the re-
pulsive core than before. This will tend to increase
the relative importance of core collisions to dis-
tant collisions. In Fig. 1 we present the J-vs-&
curve for the same physical parameters as in the
previous case. The low-frequency & is 15. 5 cm '.
Instead of having two slopes it now seems possible
to characterize the spectrum by three slopes —the
intermediate 6 being 13.0 cm '. The effect of the
potential is thus rather important. The inclusion
of the attractive potential has introduced a new bend
in the spectrum and the high-frequency slope has
been changed considerably. By including a negative
(attractive) term in the potential the total potential
curve is altered in both the attractive and repulsive
regions. It is the alteration in the repulsive region
which primarily influences the high-frequency
slope. The low-frequency slope, on the other hand,
has not been radically altered, indicating that it is
associated with the distant collisions. We shall see
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4

FIG. 3. 4 vs & for argon at two
temperatures {therma1 averaging in-
cluded).

shortly that the high-frequency slope can be ob-
tained directly by just considering close collisions.

In order to obtain a rough idea of just how sen-
sitive the high-frequency slope is the potential
form, consider the following. Let us typify a close
collision by a head-on encounter. For xo we simply
take a. As noted earlier, the asymptotic character
of the line shape is determined mainly by the loca-
tion of the br anch point in the upper half -plane.
From Eqs. (14') and (2') it follows that

5- 1/2)0(a) . (20)

For the SRke of definiteness, RgRin, we consider
argon at room temperature and neglect thermal
averaging. We obtain &= 16.2 cm"' for the Lennard-
Jones potential, which compares rather favorably
with the numerical result of 15. 5 cm ' found earlier.
If we try other "realistic" potential forms, we find
&= 1V. 5 for a Saxena modified Buckingham (expo-
nential-6) potential" and 5= 15. '7 for a Buckingham
corner potential" (with their p parameter = 0. 2).
Tl1us one could reRlisticRlly expect R variation in

the slope of as much as +1 cm as one potential form
is substituted for another. This variation reflects
primarily the behavior near the turning point.

It should perhaps be emphasized that the asymp-
totic slope, as given in Eq. (30), is valid at asymp-
totically high-frequency shifts. Since we only cal-
culate the spectrum up to some finite, but high fre-
quency, we ought to expect residual sensitivity to
those aspects of the problem other than the repul-
sive part of the potential. In fact, our calculations
show a slight sensitivity of the spectra to the p
parameter. This could be thought of as stemming
from the Pourier components generated by the
radial variation of P(A). Since this variation is not
as dramatic as that of the potential, we should ex-
pect this residual sensitivity to diminish as we
probe higher-frequency shifts.

Our final task is to study the influence of the
short-range part of P on the spectral shape. To
this end we employ the truncated asymptotic form
described in Eq. (22). The parameter p can then
be varied. There exists a particular p which re-
produces the experimental Kerr constant, viz. ,
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FIG. 4. &vs & for krypton at three
temperatures (thermal averaging in-
cluded).

,0$
IO gO 50 90
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Eqs. (27) and (28). This gives" p= —0. 25o'. The
experimental error limits on the Kerr constant'
allow us to define a range for the parameter p
which is physically acceptable. This range is
bounded by roughly -0.15''& p&-0. 350'. In Fig.
2 we have plotted the spectral integral J as a func-
tion of ~ for these values of p. In this figure ther-
mal averaging has been included. The value of
p=0, corresponding to the model of Eq. (1), is also
included for the sake of comparison. We note tQat
as I pl is increased, the spectral integral J becomes
smaller. This is to be expected since the P func-
tion becomes smaller near the turning point. The
low-frequency slope is virtually unaffected —again
supporting our conclusion that it is due to the soft
distant collisions. The slopes at intermediate and
high frequencies are influenced, however.

We note that the actual spectral shape is rather
sensitive to the value of the Kerr constant, partic-
ularly at high frequencies. This could potentially
provide us with a means to obtain this quantity by
making an optimal fit to the experimental data. For
argon it turns out' that experiment and theory agree

rather well with the experimental value quoted by
Buckingham and Dunmur. '

In Fig. 3 we have drawn the spectral integral for
two values of the temperature. We note that at
high frequencies the high-temperature spectrum lies
above the low-temperature spectrum. This again
can be understood as a consequence of having more
rapid collisions at the elevated temperature, there-
by producing more of a contribution to the far spec-
tral wings.

Krypton

The analysis for krypton proceeds in much the
same way as for argon. The Lennard-Jones pa-
rameters were taken to be'~ e/k = 171 'K and
0 = 3.6 A and the Kerr constant was taken to be that
measured by Buckingham and Dunmur, '~ despite the
large experimental uncertainty. Theoretical line
shapes are presented in Fig. 4 for a few values of
temperature. The value of p turned out to be
—0.38''.
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~ l

FIG. 5. Jvs & for xenon at two
temperatures (thermal averaging in-
cluded).

,Oi

$0

Q ~A C.~

Xenon

For xenon the Lennard-Jones parameters e/k
= 221 'K and 0 = 4. 1 A were employed, '6 and the ex-
perime. l Kerr constant' was accepted. The re-
sults are presented in Fig. 5. Here p= —0. 570 .

the detailed aspects of the potential in this region.
This would provide complementary information to
that obtained from viscosity data. These data
usually are sensitive to a combination of the repul-
sive and long-range attractive parts of the poten-
tial. Parts of CIS, however, are sensitive mainly

CONCLUSION

In conclusion, we have developed in this article
a classical theory for the line shape of collision-
induced scattered light, quantum effects being de-
ferred for discussion in another article. We found

the line shape to be governed by several different
atomic collision parameters, such as the inter-
atomic potential parameters and the parameters
determining the form of P(r). The latter quantities

could be related to the static Kerr constant. Con-

sidering the crude models adopted for P and V, we

really should not expect perfect agreement between

theory and experiment. Thus one might expect

some degree of sensitivity to the form of the po-

tential curve near the turning point [which is really

only guessed at in the Lennard-Jones form, Eq.
(2Q)j. Viewed from a different aspect, CIS could

potentially provide one with a method for studying

b I

PIG. 6. Impact parameter versus distance of closest
approach for an attractive potential for case rnv & 1.6e .
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to the repulsive region. Before this can be im-
plemented, however, we must obtain better know-

ledge of the P function. Thus ab initio calculations
of p would be very helpful —even if only the p coef-
ficients were computed.
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APPENDIX A

In this appendix we describe how the range of
integration over dro breaks up into bvo segments
when an attractive force is present. From Eq. (15)
we have

Finally, we define x, as the other root to the equa-
tion

b =r.', —(2/mv ) V(r, ) . (A4)

The region of integration breaks up into (a, x,) and

(x, ~). These results are summarized in Fig. 6.
As a first approximation we can take x, = a. When

inserted in Eq. (A4), we obtain a refined guess,

r, =a'( —,'+[1 —(me /2e)(b /a~ —1)]'t ]
't . (A5)

The breakup occurs because that part of the repul-
sive potential below the centrifugal hump in the ef-
fective potential is classically inaccessible.

APPENDIX B

The intensity distribution in frequency and angle
of the energy radiated by an accelerating charge
distribution is given by the formula"

db ~x~ I'o

o b mv
(15')

dI,
d 4m'c'

r = o[-'~ (~- mv'/40')'"]-'" =r- (Al)

For mv'& 40'/25 there are no real roots to this
equation. Then b is a monotonic function of xo and

no breakup of the region occurs. xo simply varies
from a to ~.

For mv & 40'/25, however, two real roots ex-
ist, which will be denoted by x,. x, corresponds to
a relative maximum in the b(ro) curve, while r is
a relative minimum. Let V be defined by

V = V(r ) = 4e [(o/r )"—(& /~ )'] . (A2)

The impact parameter corresponding to x is b,
where

b =r [1 —(2/m~')V]'".

which tells us that the extrema of b(ro) occur when

Eo vanishes. For the potential of Eq. (20) the roots
to So=0 are at

2
x dt dxe n )((n &&J)ei u(t n x) /c

~ eo

(»)
where n is a unit vector from a source point to the
field point, J is the current density, and e is a
polarization vector. Since the interaction region is
small compared to an optical wavelength, we shall
make the dipole approximation. The integrated
current density may be related to the time rate of

change of the dipole moment, which in turn may be
related to the electric field. Thus

dI6 dt's n&(n&& & E)e"
dA 4m c

where n is the polarizability tensor. Upon multi-

plying this by the collision rate/volume for collision
with impact-parameter area da, —,'n'ado, we obtain
Eq. (2).
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The method of extrapolating the t matrix from complex energies to real energies is tested
on the positron-hydrogen s-wave amplitude at 29 energies in the elastic and inelastic regions,
including 10 energies in the ionization region. The error in the extrapolated t matrix is not
expected to be more than 10% in the ionization region.

f. INTROOUCTION

Recently a method has been proposed for comput-
ing scattering amplitudes a.t energies allowing final
states for three charged particles. ' In this paper
we report the results of an s-wave study of this
complex-energy extrapolation method applied to
positron-hydrogen scattering. This method is of
interest because it is the only mathematically sound
and practical procedure that has been proposed to
describe the scattering of three charged particles
above the ionization threshold.

The first step in this method is to calculate vari-
ationally the scattering amplitude at complex ener-
gies where the calculation is known to converge.
As a variational technique, we use the inhomoge-
neous Rayleigh-Ritz method. The results of this
paper show, as expected, that the convergence rate
of the variational method increases with increasing
imaginary part of energy. In the case treated here,
however, it is possible, even in the ionization re-
gion, to obtain good convergence surprisingly close
to the real axis in energy.

It has been determined that in this case the am-
plitude has a singularity, as the complex momen-
tum P approaches its real physical value k, of the

form Co+ C,q+ Czq + D, q'inq+ C4q ~, where
q=P —k. This singularity is so weak that it appears
that the extrapolation from the calculated values of
the amplitude to the point P = k should not be too dif-
ficult, provided we keep away from thresholds and

resonances. The accuracy of the extrapolation
procedure might be improved by fitting the calcu-
lated amplitude with a function containing the sin-
gularity above, but we have not attempted to do
this here.

First, describing our procedure in more detail,
we present numerical results in the elastic and
inelastic regions.

H. PROCEDURE

%e use the inhomogeneous Bayleigh-Ritz varia-
tional principle given by McDonald and Nuttall' as
follows:

Ir(p)l=(4 I vd»+(x
I

vq»+(vq
i x, ) -(x,

i
(z-if)x, ),

where
1 „sinks~

Yg

27i kr2

and E=p —l, k=BeP. Here, H is the Hamiltonian
and V is the potential for e'-H elastic scattering.
The trial function g, is taken to be a sum of the form


