
EXPERIMEN TAI W IDTHS AND SHIFTS. . .

Transfer 4, 177 (1964).
3~D. D. Burgess and J. E. Grindlay, Astrophys. J.

161, 343 (1970).
A. Unsold, Physik de~ Stexnatmopphazen, 2nd ed.

(Springer, Berlin, 1955).

4 R. B. Bernstein and J. T. Muckerman, in Advances
in Chemical Physics, edited by J. O. Hirschfelder
(Interscience, New York, 1967), Vol. XII, Chap. 8.

R. D. Bengtson and M. H. Miller, J. Opt. Soc. Am.
8, 1093 (1970).

PHYSICA L RE VIE W A VOLUME 4, NUMBER 3 SE PTE MBER 1971

Generalized Impact-Parameter Method for Low-Energy Molecular Collisions

B. Corrigall, B. Kuppers, and R. Wallace
Chemist~ department, University of Manitoba, S'innipeg, Canada

(Received 29 October 1970)

A generalized impact-parameter method (not based upon perturbation theory) which is capa-
ble of describing the evolution of a collision system throughout the entire interaction region is
developed. The method is then applied to the collision of a proton and a hydrogen atom at low
(chemical) energies. The results obtained suggest that static calculations such as those using
molecular potential-energy surfaces do not represent a very real picture of a dynamic process
like a collision. Furthermore, the model does not assume linear trajectories for the atoms.
This is shown from the calculations to be of importance in such low-energy collisions, the tra-
jectories being far from linear. The model is capable of generalization to collisions in which
more than two atoms are involved, such as the three-body reaction A+&C A&+ C.

I. INTRODUCTION

A considerable amount of activity is currently
evident in the theory of reactive molecular colli-
sions. ' 3 Although interest in this field is ulti-
mately aimed at the understanding of the physical
"mechanism" of chemical reactions, much current
work is more closely directed towards the inter-
pretation of the results of molecular-beam
studies. 7 Typical calculations of this sort include
the following two main steps: (1}the assumption of
some potential-energy surface describing the in-
teraction between the colliding species; (2} some
kind of trajectory calculation which is carried out
to evaluate the angular distribution of products,
differential cross sections, etc. I et us discuss
what is involved in these two steps of calculation,
beginning with the second.

In the first place, the whole idea of a trajectory
implies a semiclassical model in which the atoms
move along "classical" trajectories which are de-
termined by some potential [step (I)]. Presuming
that such a potential can be found, then step (2) re-
quires the solution of the classical many-body
problem, which is quite feasible by present-day
computer techniques. Step (2), therefore, can be
regarded as being possible, even if it does require
substantial amounts of computer time to evaluate
the large number of trajectories at different impact
parameters necessary to calculate angular distri-
butions, etc. Step (1), on the other band, has not
been properly treated. Common approaches to po-
tentials are as follows: (a) If the system is suf-
ficiently simple (for example, atom-atom colli-

sions) the potential surface may be taken, for
thermal collisions, to be the static (velocity inde-
pendent) ground-state potential-energy surface or
some analytic approximation to it; (b) for more
complicated cases, some model potential' '~ (or
even set of model potentials' may be assumed, the
general characteristics of the process being de-
scribed by this potential. At the present state of
development of such calculations, it is perhaps un-
fair to criticize, but it would appear to us that one
can achieve no more understanding of the details
of a given process than one puts in by suitably
"doctoring" the model potential which one employs.
Even if one accepts the idea of a model potential,
it must be admitted that the nonuniqueness of the
results obtained by suitably choosing a variety of
parameters is scarcely satisfactory. A further
criticism, and undoubtedly a much more serious
one, of this whole method of calculation, is that the
validity of assuming a static potential-energy sur-
face in the first place as an "interaction potential"
is somewhat questionable. Certain of the results
obtained in this paper cast some light on this
problem.

The interest of the present authors in reactive
molecular collisions derives from previous work
in the theory of molecular processes in general"'"
and a concurrent interest in techniques for describ-
ing the evolution of a, quantum system in time. "
Our interest in semiclassical calculations therefore
relates to the model one might use to calculate a
given trajectory, rather than the calculation of
many trajectories to evaluate quantities of interest
to molecular-beam specialists. Apart from the
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previous shortcomings of existing techniques, one
might add that there appears to be little in the way
of a theory in existence which is capable of gen-
eralization to molecules possessing more than about
two atoms.

In this paper we shall describe a semiclassical
model for treating molecular collisions which we
believe overcomes many of the previously men-
tioned criticisms and which is capable, at least in
principle, of generalization. The characteristics
of this model are as follows: (a) The nuclei are
considered to be classical particles and the elec-
trons are treated quantum mechanically. (b) Within
this model the equations of evolution of the elec-
trons and the nuclei are developed and solved with-
out using crippling approximations such as pertur-
bation theory. The major approximation is that
common to all molecular quantum theory, namely,
that the electrons are described by some truncated
basis set. This model may be regarded as a highly
generalized impact-parameter method which is
applicable to systems of more than two particles,
is not limited by the assumption of linear trajec-
tories, and does not rest upon perturbation theory.
The salient advantages of the model are as follows:
(a) The model is entirely dynamic. (b) Interaction
forces are treated explicitly so that no potential-
energy surface need be assumed. As a result of
the calculation it is possible to identify a dynamic
potential-energy surface, the properties of which
will be discussed. (c) The state of the system is
described all the way through the interaction and
not merely asymptotically. Thus a description
within the interaction region is obtained.

The example which we have chosen to illustrate
the techniques developed in this paper, namely,
charge exchange in the proton-hydrogen atom sys-
tem, deserves some mention at this point since a
great amount of work has been carried out upon
this system.

The closest approach to the method which we have
developed in this paper is the type of close-coupled
calculation originally performed for p-H by Gallaher
and Wilets' and subsequently improved upon, not-
ably by Cheshire and co-workers. '7 Alternative
approaches have been provided by a variety of re-
searchers, notably Bates and Williams' and
Thorson. ' Such approaches in general involve im-
provements upon the adiabatic approximation.

The majority of papers upon the P-H system are
aimed at an explanation of the experimental results
of Everhardt and Lockwood; that is, they are
aimed at scattering at energies greater than 1 keV.
On the other hand, the present paper is concerned
with collisions at energies less than about 10 eV.
At such low energies the electronic translational
energy is negligible in comparison to electronic
internal energy, and for this reason low- and high-

energy calculations are not really comparable.
Treatment of the P-H system at high energies
(& 1keV) has been successfully carried out and will
be presented elsewhere.

Before proceeding to the development of our
equations we shall briefly discuss the basic ideas
involved in the adiabatic approximation which lead
to the static potential-energy surface.

II. ADIABATIC APPROXIMATION AND
POTENTIAL-ENERGY SYSTEM

Consider the process '

k2 " h2
Z &, — v + F(i;,R) —E)0=0,

2m =1
(2. 1)

where M is the reduced mass of the nuclei, and the
total potential energy V'(r;, R) can be written as

V(r;, R) = V,(r;, R)+Z„Zee /R . (2. 2)

Now if the electrons are regarded as moving in the
combined field of the nuclei of A and B"(both bei'ng
spatially fixed), the equation

=Z, (R)y, (r, , R) (2. 3)

generates the complete set of molecular electronic
eigenfunctions and corresponding eigenvalues for
this combined potential field felt by the electrons.
The wave function 4 describing the relative motion
of the nuclei and the electronic motion is then ex-
panded as

FIG. 1. Coordinate system appro-
priate to discussion of adiabatic ap-
proximation.

for which the coordinate system is shown in Fig.
1. Suppose that the relative velocity v between A
and B+ is much less than the orbital velocities of
the electrons but that the relative kinetic energy is
much greater than the energy of excitation of either
of the atoms. Then energy transfers to excitation
are considered to be small compared with the rela-
tive kinetic energy and their effect on the classical
trajectory is neglected. Since v is small relative
to the orbital velocities of the electrons, the start-
ing point of the adiabatic approximation is an ex-
pansion of the wave function for the collision in
terms of molecular wave functions.

Excluding center-of-mass motion, the time-inde-
pendent SchrMinger equation for the collision is
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4=+, F,(R)(t];(r„R) (2. 4)

k2
Z 2[R„R (R)] fdrdflr„d, .

2M

,R, (R]fd2, 2, V„d,) . (2. 2]

Now all the coupling terms on the right-hand side
are neglected, the argument being that at low rela-
tive velocities most of the scattering takes place
at internuclear distances which are large compared
with the extent of the atomic electrons. This re-
sults in the wave equation in the adiabatic approxi-
mation, which we may write as

82 ZZV2 A B +E (R)

—R,. ( ) —(R-R,.( )])R,(R]=O (2 2)

The effective central field given by

V, (R) = Z„Z,e'/R+ E, (R) -E,().(2. 7)

is known as the potential-energy surface of the
diatomic molecule AB'.

Equation (2. 6) is just the eigenvalue equation for
the F;(R), and the neglect of the coupling terms on
the right-hand side of Eq. (2. 5) implies that the
functions (t(;(r;, R) used as an expansion set for the
collision are velocity independent. Obviously any
calculation based on a potential-energy surface of
this type is a completely static representation of a
dynamic process.

The calculations described in this paper do not
depend upon a static potential-energy surface, nor
do they result from the assumption of linear tra-
jectories. The results indicate that these are
significant improvements in such low-enex gy cal-
culations.

III. DEVELOPMENT OF THE EQUATIONS

In our approach to the problem we do not assume
a static potential-energy surface. We consider the
atoms to follow the classical trajectory determined
by the interatomic potential which is a dynamical
variable in that it depends on the internal states of
the atoms, these states having an implicit depen-
dence on the velocities of the classical nuclei
through their explicit dependence on the time-de-
pendent interatomic separation R(t). The interac-

and substitution of this expansion into (2. 1) followed
by multiplication from the left by (]((2* and integration
over the electron coordinates yields the set of
equations

R + " +R;(R) —
R) R;(R)

To develop the quantum-mechanical equations we
choose a molecular coordinate system fixed on the
nuclei. The problem reduces to two dimensions
because of the cylindrical symmetry about the in-
ternuclear line, and to one dimension for the zero-
impact-parameter collision. The coordinate sys-
tem used is shown in Fig. 2. The derivation is
carried out in atomic units, in which the values of
the electronic charge, the electron mass, and 5
are unity.

We wish to solve the time-dependent Schrodinger
equation

i &,
~

4'(R, t)) =H]212(R, t)) (3.1)

for the collision. For the proton-hydrogen atom
system the Hamiltonian H may be resolved as
H=HO+ V (where Ho is the Hamiltonian for the hy-
drogen atom) in two physically meaningful ways,
corresponding to the two channels available to the
reaction. In the initial or nonrearrangement chan-
nel (which we shall call channel n), the electron
remains bound to proton A and we have

(3.2a)

H(] —-- RV —1/r

V = 1/R —1/r, ,

(3.2b)

(S.2c)

while in the rearrangement channel (channel P)

(3.Sa)

H (]
= —

R V —1/rb 2

g

Vb= 1/R —1/r, .
(S.3b)

(3.3c)

For either channel the set of eigenfunctions for the
asymptotic channel Hamiltonian is the set of eigen-
functions for the hydrogen atom, and we use this
set as a basis on which to project the collision.

I'IG. 2. Molecular coordinate
system used in derivation of
quantum-mechanical equations.

tion between the atoms in this trajectory provides
a time-dependent perturbation which can lead to
excitation and exchange processes. Thus all
changes within the system are coupled in that a
change in the internal states of the atoms results
in a corresponding change in the interatomic poten-
tial and the trajectory.

In this first application of our method to low-
energy atomic collisions we have chosen the simple
system consisting of a proton scattering from hy-
drogen atom.

A, Quantum-Mechanical Equations
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H ~.s~@n,s& E~.a~ @a,a& (s. 6)

From the normalization requirement, we have

&4(R, t)
I
fl(R, t)) = 1 = ti' Z Z a; *(t)

C gC lyly

x &el (t)
I el(t)& ~l(t) (3 7)

and denoting &Pt (t)
I

P', (t)& by N f,'(R, t) this becomes

1=N2 g g a', *(t)N'„'(R, t)a~(t) (s. 3)

The wave function for the collision is expanded as

I+(R, t)&=fi(R, t) Z, Z; ~;(t)l 4;(t)), (3.4)

where the summation over j is over states and that
over c is over the channels:

(s. 5)

=Z. ~; &0' (t)
I
If —E'I 0'«)»'(» t) .

Defining the matrix H(R, t) by

H,', '(R, t) =&y; (t)IHI yf(t)&,

the set of coupled equations (3. 14) becomes

(3. 14)

(3. iS)

or

i N(R, t) [s,b(R, t)] = [H(R, t) —N(R, t)E]b(R, t)

(s. is)

B,b(R, t) = —i N (R, t) [H(R, t) —N(R, t)E] b(R, t) .
(s. iv}

The matrix E is diagonal, with its elements being
the eigenvalues of the asymptotic channel Hamil-
tonian.

Recalling the two possible resolutions of H, we
can write

C tC keg

or, in matrix terms,

1=N a*(t)N(R, t)a(t) .
Thus, we have

N= [ a*(t)N(R, t)a(t)] '~~=N(R, t) .

(s. 9)

(s. io)

H (R, t) = N(R, t)E+V (R, t),
where

(s. is)

=~, ~, b;.(R, t)I &;«)

The normalization requirement now becomes

(s. ii)

b*(R, t)N(R, t)b(R, t) = 1 . (3. 12)

To keep the notation as simple as possible, we
shall incorporate the normalization N(R, t) into the
coefficients a&(t), and write

I
+(R, t)& =K. ~~ ti(» t)C«)l &~«)&

v;; (R, t)=&a.'(t)l v I&'«»

v';(R, t) =&0';(t)l ~
I
4&(t)&,

1'„"(R,t) = &e;(t)
I
v'I el(t)&

v'„(R, t)=&&,'(t)l &
I
0;(t)& .

Now using (3. 18), Eq. (3. 17) becomes

(s. iea)

(3. 19b)

(s. igc)

(s. igd)

The general elements of these components of V are
given below:

We now proceed to the development of the quan-
tum mechanical equations. Substitution of the ex-
pansion (3.11) into the time-dependent SchrMinger
equation yields

s,b(R, t) = —~N-'(R, t) [N(R, t)E+V(R, t)

—N(R, t)E] b(R, t)

= —iN '(R, t)V (R, t)b(R, t) . (s. 20)
is, p, p, b,'(R, t)

I
y', (t)& = a Z, Z, b, (R, t)

I
y';(t)&

(s. isa)

i ~.~, [s bl(R t)]l e,'(t)&+i ~.Z;t'J(R t)stl &,'«)& db Bb eb

dt t ~R et (3.21)

The total time derivative of b(R, t) is easily obtained
as follows:

=P, Q; b,'(R, t)HI y;(t)&,

i ~, ~,. [s,b;(R, t)]10',.(t)

(3. 1sb)
~b

= sB [iv (R, t)a(t)] = r eBN(R, t)]a(t)

=p, p,. 5,'.(R, t)(H —is, )l Q,'(t)&

=Q, Q; 5;(R, t)(H- E,')
I
p;(t)& . (3 isc)

Multiplying across from the left by the bra &Q;. (t) I,
we obtain

= (S„[a*(t)N(R,t)a(t)]-' "]a(t)

= ——,'[a*Na] ~ [a*(s„N)a]a(t)

= ——,'[b*(s~ N)b]b . (s. 22)

i ~.~ &&' (t)
I 4~(t)& [s,b;(R, t)] ~R N can be obtained analytically from the matrix
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elements of N, and dR/dt is simply related to the
velocities of the classical particles (the nuclei).

B. Classical Equations of Motion

%e derive the classical equations of motion for
the nuclei in the lab frame in which their coordi-
nates are (x„y„z,) and (x~, ya, z2).

To obtain the classical equations we use Hamil-
ton's canonical equations, '

%C
(3.23a)

~K
pk (s. 2sb)

3C=Z ~ +E(R, f) .
j=1 2' (3.24)

E(R, f) is the mean quantum-mechanical energy,
given by

X(R, f) =(+(R, f)
~
a~ e(R, f))

where p„and qk are the generalized momentum and
coordinate for the kth particle, and $C is the total
Hamiltonian function for the system. K is defined
as

ing after each cycle of the Runge-Kutta process.
Thus, from the initial positions, momenta, and
state of the system b(R, t) (for all the calculations
reported here the electron was initially in the 1s
level of the atom) we obtain the initial potential and
kinetic (and, therefore, the total) energy; using
this potential energy we may solve for the new

positions, momenta, and the coefficient matrix
b(R, f) at a time 4t later, this information then de-
fining a new potentia) and kinetic energy. Proceed-
ing in this iterative fashion, we thus obtain all these
quantities throughout the interaction region.

The accuracy of the calculation was controlled
by using a variable step size ~t such that the total
energy at a given iteration was equal to the total
energy at the previous iteration by an amount not
less than E~x10 ' nor greater than E~x10, where
E& is the initial asymptotic total energy. This re-
sulted in the over-all energy conservation being
to three significant figures.

We should mention here that (3. 26b) presents no

problem since, for example,

=b*(R, f)H(R, f)b(R, f), (3.25)
can be written as

and we assume that its fluctuations are small.
Thus Hamilton's equations become

q, =P, /m, ,

P~=- sE/sq& .
(3.2ea)

(s. 2eb)

Consequently, the mean quantum-mechanical en-
ergy E(R, t) is the interatomic potential energy
which determines the trajectories of the nuclei. It
is readily apparent that E is a dynamic variable
since, through its dependence on the coefficients
b&(R, f), it has an implicit dependence on the velo-
cities of the classical particles.

Now we have to solve the set of equations consist-
ing of

~ E &R

R ~xg

R = [(x, —x,) + (y, —yp)'+ (z, —z,)']' ',
we have SR/&x, and, therefore, P„.Xf

(4. 2)

—= Ss(b*Hb) =b "(S„H)b+[b*H(&sb)+ (esb )Hb],

(4. 1)

where 8~ H can be obtained analytically from the
matrix elements of H, and the gradients of b with
respect to 8 are obtained numerically within the
computer program. Since

db(R, t) &b(R, f) &b(R, t) dR

dt ~t ~B dt
(3.21)

V. RESULTS FOR THE PROTON-HYDROGEN
ATOM COLLISION

q, =P, /m, ,

f, = —sE/sq, .

(S. 2ea)

(3.26b)

IV. METHOD OF SOLUTION OF THE EQUATIONS

To solve the set of equations (3.21), (3.26a), and
(3.26b) we use Gill's adaptation of the Runge-Kutta
method (19). 4 This generates a fourth-order solu-
tion to a total differential equation. The computer
program was written to solve the equations simul-
taneously, with momentum and total energy (clas-
sical plus quantum-mechanical) conservation.
Unitarity of the solutions was ensured by normaliz-

Since our present interest is in collisions at low
energies (~10 eV) and since the time of computation
rises markedly with increase in the dimension of
the basis set employed to describe the electrons,
we considered the hydrogenic orbitals (is, 2s, 2P, ]
on each center to be a sufficiently large set for our
purposes. The orbitals 2p„and 2p, on each center
may be omitted by symmetry considerations.

It is well known from the general theory of scat-
tering that the Schrodinger equation (or the cor-
responding integral equation) describing the scat-
tering process may have several solutions depend-
ing upon how one chooses the asymptotic boundary
conditions. This is borne out by test calculations
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which we carried out largely to check the computer
program. Thus if, for example, the initial as-
ymptotic state is chosen to be the antisymmetric
molecular function (lo„)

and the atoms are directed towards each other with
relative incident energy corresponding to 4 eV, it
is found that the wave function 4'(R) always main-
tains the antisymmetric character with which it
started. The calculated dynamic potential- energy
surface for the collision turns out to be the same
(to within numerical accuracy} as the static poten-
tial-energy surface of the 1o„*molecu'ar state.
This is easily understood in terms of the static
molecular potential-energy surfaces. Since only
antisymmetric states can contribute, it follows
that the only potential-energy surfaces which could
influence that due to the 1o„~state would be those
due to the other antisymmetric states, all of which
lie at sufficiently high energy to make a negligible
contribution.

Similar results were obtained by starting out
with a symmetric asymptotic molecular state

In this case P(R) retains its symmetric character,
the dynamic potential-energy surface correlating
exactly with the static 1o, molecular potential-en-
ergy surface, this being expected on grounds
analogous to those applied to the antisymmetric
collision. It is worth noting that these symmetric
and antisymmetric collisions are not entirely un-
physical, the photodecomposition of the, H&' mole-
cule from the 1o„~state corresponding closely to
the reverse of the antisymmetric collision de-
scribed above.

The collision of a proton with a hydrogen atom
corresponds to an asymmetric asymptotic state and
therefore one might expect "conservation" of asym-
metry in the process. In particular, since the
asymptotic atomic state, P„say, can be regarded
as a linear combination of symmetric (5. 2) and

antisymmetric (5. 1) molecular states

upon R ~ and it was found that a suitable R was in
the range of 150-200 a. u. Confidence in the val-
idity of the results obtained in calculations was also
reinforced by verifying the invariance of the calcu-
lations to time reversal. In this respect, the ac-
curacy of the calculations proved to be remarkable
in view of the extremely complicated behavior of
the electronic wave function which we shall shortly
discuss.

The contribution of both states 1o~ and 1o„*to the
scattering process is borne out by our calculations.
Figure 3 portrays the dynamic potential-energy
surfaces for a variety of zero-impact-parameter
calculations. As the incident energy decreases,
the dynamic potential-energy surface correlates
more closely with the 10~ state. Note, however,
that even for thermal (0.02 eV) and subthermal col-
lisions, the dynamic potential-energy surface is
still significantly different from the static 1o, sur-
face, as indeed one might expect from the above
symmetry conservation arguments. These differ-
ences are even more obvious in the wave functions,
or, more conveniently, in the electron densities.
In the symmetric and antisymmetric collisions the
electron density in one channel is the same as that
in the other at any instant of time. On the other
hand, the density for the H' + H collision oscillates
rapidly in the interaction region (resonant charge
exchange} as depicted in Fig. 4. The region in the
vicinity of the turning point of the trajectory has
been omitted in this diagram since it is rather com-
plex. This type of exchange behavior could in no

way be accounted for by perturbation theory tech-
niques since the "initial value" of the wave function
is drastically altered in the course of the process. "

A variety of calculations were carried out for

ENERGY
a.u.

-0.46.

-0.48-

P„= —,'[1o,(R= ~)+ lo„*(R=~)], (5. 2)
-0.50-

we should expect static potential-energy surfaces
due to both 10~ and 10„*to contribute. Equation
(5. 2) also suggests that we be extremely careful
in choosing the initial state (Ro= finite) for numer-
ical calculations, since even small errors in this
choice would cause the system initially to "shoot"
along an erroneous potential-energy surface. In
practice, this difficulty was overcome by repeating
the calculation using increasing values of the initial
distance Ro until the dynamic potential-energy sur-
face became independent of Bo. For the collision
H+H', the leading terms in the interaction depend

-0.52-

eV

-0.54-

-0.56-

I 2 3 4 5 6 7 8 9 10
INTERNUCLEAR DISTANCE a.u.

FIG. 3. Dynamic potential-energy surfaces for zero-
impact-parameter collisions. (Figures on the right refer
to the asymptotic proton kinetic energies. )
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I.O- VI. DISCUSSION OF SEMICLASSICAL MODEL

0.8-

~0&

O
g 0.4-

LLI

~Q2
OC
LIJ

IO 8 6 4j4 6
INTERNUCLEAR DISTANCE. 8.0,

IO

The type of calculation which we have described
in this paper would at this stage seem to have a
considerable number of virtues, a few of which are
as follows: (a) It appears capable of extension to
many-electron systems, the only difficulties antic-
ipated being those of molecular quantum theory,
which, in some approximation, are not insuperable.
(b) It is capable of extension to systems with more
than two nuclei, e.g. , to the exchange reaction

A. +BC AB+ C .
FIG. 4. Electron exchange probability as a function of

internuclear distance. (Left side of the diagram refers
to the approach to the turning point; right side, to retreat
from turning point. )

nonzero impact parameters. The dynamic poten-
tial-energy surfaces for these collisions were sim-
ilar to those for zero impact parameters. The
trajectories for these calculations are of interest,
however, since they illustrate the ability of the
method to handle trajectories which are very far
from the usual linear trajectory approximation
normally employed in an impact-parameter treat-
ment. A typical trajectory is shown in Fig. 5 cor-
responding to an impact parameter of 1 a.u. and
incident energy of 0. 5 eV. The coordinates refer
to the laboratory frame. It can be seen how the
initial and final interactions are attractive (corre-
sponding to the outer region of the dynamic poten-
tial-energy surface), the intermediate interaction
being repulsive (corresponding to the inner region
of the potential-energy surface).

Work in this direction is proceeding at present.
(c) The method provides a detailed step-by-step
description of the evolution of the reacting system
and should therefore yield information as to how

and why a reactive collision proceeds in the manner
which is predicted. It is difficult to see how alter-
native procedures, such as the S-matrix, which
are concerned only with the calculation of asymp-
totic probabilities, could provide such information.

The limitations of the model do not appear to be
in any way insuperable. Although the techniques
employed in this paper describe a semiclassical
model, conversion to an entirely quantum-mechan-
ical model would require no more than a suitable
way for handling continuum states in addition to
discrete states. Avenues of approach to this prob-
lem are currently being explored.
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The cross sections for the decay of circular and of linear polarization in oriented 4 Peyp
potassium atoms, induced in collision with inert-gas atoms, were determined in a series of
fluorescence experiments. A modified Zeeman scanning method was used to populate selec-
tively the mJ sublevels of the Pe~& potassium atoms mixed with inert gases and placed in a
strong magnetic field. Measurements of depolarization of the fluorescence, in relation to
gas pressures, yielded the following depolarization cross sections: 0& (disorientation): K-He,
86 A~; K-Ne, 86 A2; K-Ar, 164 A2; K-Kr, 248 A; K-Xe, 261 L. 0& (disalignment): K-He,
127 L; K-Ne, 120 A2; K-Ar, 240 8, K-Kr, 301 A2, K-Xe, 336 At. The experimental values
are in satisfactory agreement with the calculations of Nikitin and Ovchinnikova.

I. INTRODUCTION

The depolarization of alkali atoms in their
P&~2 and P3&, resonance states, induced in col-

lisions with inert-gas atoms, has been the subject
of several recent studies, both theoretical and ex-
perimental. The general theoretical problem of
collisional relaxation of excited atoms has been
treated by Dyakonov and Perel, ' and by Omont. a

Franz and Franz proposed two models for the
description of the depolarization in the particular
case of alkali atoms, of which one involved a ran-
dom reorientation of the total electronic angular

momentum J, while the second assumed the ex-
istence of selection rules according to which
~m& = 0, a 2. Elbel and Naumann suggested that
the mixing of the Zeeman sublevels is due to col-
lisional phase shifts between the molecular o and
p substates, into which the atomic P state is
split during a collision, and obtained the selection
rule tnt g —mz for mixing within a J multiplet
state. A similar result was derived by Franz,
Leutert, and Shuey. ' Mandelberg, 6 using an im-
pact-parameter method, calculated the cross sec-
tions for mz mixing in alkali atoms, induced in
collisions with the inert gases. His results did


