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electron's energy are not accounted for in the

model. These would be expected to be larger for
the smaller nuclei. A more detailed examination

of the formulation is required to see if one can re-
tain the basic simplicity of the impulse model and

obtain corrections for these effects.
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The result of a differential scattering experiment of H by Ne at 5.71-eV collision energy
is compared to the differential cross section predicted by (a) a JWKB partial-wave calculation
based on a potential model, (b) a similar calculation based on the ab initio Peyerimhoff calcu-
lated intermolecular potential for the NeH' system, and (c) a new and more efficient calcula-
tional scheme developed by Remler involving Regge poles. The agreement of the Peyerimhoff
prediction, (b), with the experimental data is very good. Differences between the Peyerimhoff
potential and the final values of the parameters retrieved from the iterative calculation in (a),
as well as implicit ambiguities of (a) in reproducing the features of a low-resolution experi-
ment, are discussed in terms of semiclassical theory and the Remler-Regge method.

I. INTRODUCTION

The results and analysis of several experiments
on the low-energy differential elastic scattering of
H' by noble-gas atoms have been reported. ' In
Ref. 1, the experimental differential cross section
o„„(e)for each of the systems NeH', ArH', and
KrH' was compared to a calculated differential
cross section utilizing the JWKB method and a
chosen analytic form for the interatomic potential
V(r). For each system the internuclear equilibrium
separation r and the well depth U for the assumed
V(r) were varied in the calculations until reason-
able agreement was obtained between the experi-
mental and calculated differential cross sections.

Since then we have come to believe that the re-
sults obtained from such potential-model calcula-
tions do not necessarily yield reliable intermolec-
ular potentials, unless the resolution in the experi-
ment is very good. The purpose of this paper is
(a) to compare the V(r) found via the method de-

The semiquantal calculation of Ref. 1 as regards
the NeH' system will be briefly recapitulated. The
JWKB phase shifts were found using the potential
model

V(r) =(C/p) expP(l —p)- C /p —C /p

with

p =r/r C4 = ne'/2r',

scribed above (and in Ref. l) to an ab initio calcu-
lation of the intermolecular potential for NeH' due
to Peyerimhoff, ~ (b) to discuss why there is a
rather significant difference in the two results,
and (c) to apply a new method due to Remler' in-
volving Regge poles which can be used to efficiently
calculate the differential cross section, where the
starting point for such calculations is based on
one's intuition in light of the classical deflection
function.

II. EXPERIMENT AND SEMIQUANTAL
CALCULATIONS
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oscillations of o„„(8)in Fig. 2(c) are in good agree-
ment with those of o,~ (8) in Fig. 2(d), the fine os-
cillations in the calculation have a much higher
frequency than those in the data. It shall be shown
in Secs. III and IV that the experimental resolution
of these high-frequency oscillations and the neces-
sity to reproduce them in the calculation place im-
portant restrictions on the intermolecular potential.

It is of interest to compare the calculated differ-
ential cross section, utilizing the potential discussed
above, with the differential cross section predicted
by an ab initio pointwise calculated intermolecular
potential of Peyerimhoff for the system NeH'. An
analytic function has been fitted to the points of the
Peyerimhoff potential [shown in Fig. 1(a)j and used
in a standard JWKB calculation for the phase shifts.
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FIG. 1. Intermolecular potentials for the NeH system:
(a) Peyerimhoff calculated points and analytic fit; (b)
potential model.
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where r is the position of the potential minimum,
U is the depth of the potential well, and n is the
dipole polarizability of the target atom. The dif-
ferential cross section o ~ (8), calculated by using
these phase shifts in the Rayleigh-Faxen-Holtzmark
(RFH) partial-wave sum, was brought into satis-
factory agreement with the data by varying the
parameters x, U, and C6. This procedure was
applied to the system NeH' and no attempt was made
to reproduce the high-frequency oscillations seen
in the 5. 71-eV experiment4 shown in Fig. 2(c). The
values of the potential parameters necessary to
achieve a satisfactory fit to the low-frequency os-
cillations in the data were x =3.25ao, U=1. 8 eV,
and C6= 5. 0 eV. This potential is shown in Fig.
1(b).

The differential cross section a,~(8), calculated
(at 5. 71 eV) on the basis of the potential model of
Ref. 1, is shown as a dashed line in Fig. 2(d). The
heavy black line superimposed on the dashed line
is the result of a convolution of the calculation with
a function whose width is thought to be represen-
tative of the experimental resolution. It is clear
that, even though the large (i. e. , low-frequency)
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FIG. 2. Logarithm of the relative elastic differential
cross section vs c.m. scattering angle for H'+ Ne at
5. 71-eV collision energy: (a) Remler-Regge calculation
with only the convolution displayed; (b) dashed line —semi-
quantal calculation made using Peyerimhoff potential,
solid line —convolution of dashed line; (c) experimental
observation; (d) dashed line —semiquantal calculation
made using potential model, solid line —convolution of
dashed line; (e) low-frequency oscillations predicted by
semiclassical rainbow scattering theory.
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lines in Figs. 3(a) and 3(b). The deflection function
0 is related to the potential by

8 (t) = v--(l+-, )
2 1

Cl

2
K

C4
4
C

U

(2)

n( ) o(t)2 (3)

(where h is the wave number, E is the collision
energy, and xo is the classical turning point), to
the JWKB phase shift q by

C
4
V

EPa 9

and to the c.m. scattering angle by

8 = —OH for attractive scattering

=+ O for repulsive scattering . (4)
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These phase shifts have been used in the RFH sum
over partial waves to find the differential cross
section oz„„(8), shown in Fig. 2(b).

The agreement between ov,„(8), Fig. 2(b), and

o„„(8),Fig. 2(c), is very good regarding both the
high- and low-frequency oscillations. The largest
difference between oz,,„(8) and o„„(8)is a small
(about 1') discrepancy in the positions of the low-
frequency oscillations. It should be pointed out
that the value of U (2. 21 eV) from the Peyerimhoff
calculation is in good agreement with the experi-
mental measurement (2. 29 eV) reported by Chupka
and Russel. '

The two potentials presented in Fig. 1 are clearly
very dissimilar, and yet both predict the period-
icity of the large oscillations in the experimental
differential cross section. It shall be shown in
Sec. III why both of these potentials lead to the
same differential cross section in the limit of low
angular resolution.

III. SEMKLASSICAL INTERPRETATION

The potentials in Figs. 1(a) and 1(b) lead to the
corresponding deflection functions shown by solid

Angular Momentum Quantum Number

FIG. 3. Deflection functions for the H'+ Ne system at
5.71-eV collision energy: (a) circles with dashed line—
points on the deflection function predicted by the Remler
Regge method, solid line —prediction of the Peyerimhoff
potential; (b) prediction of the potential model; (c) parab-
ola whose curvature fits the attractive portion of both
3(a) and 3(b).

o(l) = 9,+q(t t„)', — (5a)

(»)

the resulting differential cross section being

o(e) = o, (8) +o„(8}+ 2[v, (8) o„(8)]'"cos(b —y, ),
(6a)

with

o, (8) = —l, h — sin8
86)

'c

o„(8)=(2mls/h sine) q "'Ai'(o "'(8 —8 ))

(ob)

where l, is the angular momentum quantum number
corresponding to the contribution from the repulsive
part of the deflection function to the scattering at
8~, and

20(tR) +tse ——.&, y.=28(&,) —&, (8) —2 m .
(6c)

In the semiclassical framework oscillations in the
differential cross section for 8 less than or equal
to the attractive scattering maximum 8„,„~„(here-
after labeled ez) are due to the interference of
three partial waves having l = l» l» l, as labeled
in Fig. 3(a). For 8& ez, only the repulsive branch
of the deflection function contributes to the differ-
ential cross section. Clearly the attractive branches
of both deflection functions [Figs. 3(a) and 3(b)j are
very similar. The obvious difference in the two
curves is the value of l„„„,„(hereafter labeled l z),
which is the angular momentum quantum number
corresponding to O~ for a given collision energy.

The first successful attempt to predict the dif-
ferential cross section in terms of semiclassical
theory was made by Ford and Wheeler. In their
work the deflection function in the vicinity of O~~

was fitted to a parabola of the form
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The low-frequency oscillations observed in the dif-
ferential cross section are due to the term that
contains the square of the Airy function. The ar-
gument of the Airy function, q

'~ (8 —8z), does not
depend upon l» but is a function of 8~ and the cur-
vature q of the parabola. Figure 3(c) is a parabola
with q =10 rad whose curvature fits the attractive
portion of both Figs. 3(a) and 3(b) equally well (for
clarity, this parabola is shown displaced to the
right of the deflection functions in Fig. 3). The
Airy function corresponding to the q is plotted in
Fig. 2(e). Note that if 8a is fixed and the attractive
portion of the deflection function is made wider,
the curvature q is thereby decreased, and, as is
seen via Eq. (6b), the number of low-frequency
oscillations predicted in the differential cross
section increases. Thus it is possible to change
the periodicity of the low-frequency oscine. lations
in the calculated differential cross section by chang-
ing the curvature of the attractive portion of the
deflection function. The low-frequency oscillations
in the differential cross sections of Figs. 2(b),
2(c}, and 2(d) have the same periodicity as the
square of the Airy function shown in Fig. 2(e).
This agreement clearly demonstrates that in the
semiclassical approximation the low-frequency os-
cillations in the differential cross section around
the rainbow angle are dependent upon the shape
and the depth of the attractive portion of the de-
flection function, and in no way depend upon the
location of l~. Thus all potentials which lead to
deflection functions whose attractive branches are
of the same shape and depth, but differ in l~, will
predict equally well the periodicity of the low-fre-
quency oscillations in the relative differential cross
section in the region of the rainbow angle.

The argument of the cosine term in Eq. (6a),

(7)

is responsible for the high-frequency oscillations
in the differential cross section. Therefore the
frequency of these oscillations is proportional to
la+I, . Since (Ia) & (l„) in Fig. 3, it is not sur-
prising that the fine oscillations of the differential
cross section in Fig. 2(d) have a higher frequency
than those of the differential cross section in Fig.
2(b). Thus the experimental resolution of the fine
oscillations in the differential cross section enables
one to locate the minimum of the deflection function
and consequently the corresponding intermolecular
potential may be more accurately determined.

In some cases, two of which are discussed be-
low, the value of l~ can be found without knowing
the periodicity of the high-frequency oscillations.
It has been pointed out that if absolute differential
cross-section measurements are made, the value
of l~ can in principle be determined. This is due
to the fact that the scattered intensity at the rain-

bow angle is proportional to the corresponding im-
pact parameter and hence proportional to l„. An-
other method of obtaining a value of l~ is to experi-
mentally observe equally spaced low-frequency os-
cillations at small (& 30') angles which may be at-
tributed to 'glory" scattering. The periodicity of
such oscillations can be directly related to lo, the
/ value for which 8(l) passes continuously through
zero. From the experimental determination of the
position of lo and a knowledge of q, the curvature
of the deflection function around e~, the value of
4 may then be inferred. However, since o,„„(8)
in Fig. 2(c) for the NeH' system at 5. 71 eV does
not show sufficiently detailed "glory" structure,
the procedure just outlined cannot be applied in
this case.

IV. REMLER-REGGE METHOD

8„=2N/Im(L«) . (6)

For fixed 8~ the number of low-frequency oscilla-
tions increase as N is increased, since the width
of the attractive portion of the corresponding de-
flection function is proportional to 2Im(I «). The
frequency of the fine oscillations in this treatment
is completely decoupled from the parameters N and

The semiclassical argments of Sec. III are ap-
pealing because of their simplicity, but they are
strictly valid only for scattering in the region of
the rainbow angle. A recent theoretical treatment
developed by Remler will allow the extension of
the results of Sec. III to a larger range of 8.

A brief discussion of the Remler treatment is in
order. It is not our purpose, however, to develop
the subject in detail, and the interested reader
should consult Ref. 3 for a deeper understanding.
Regge' ' has shown that the infinite sum over
partial waves for the scattering amplitude may, in
certain cases, be replaced by a finite sum over
singularities of the S matrix in the complex angular
momentum plane. Remler3 has parametrized the
S-matrix elements in such a way that the resulting
singularities may be directly related to the clas-
sical deflection function. In practice, a number
of poles N are positioned on a circle centered at
some point I ~ in the first quadrant of the angular
momentum plane. The circular placement of the
poles is advantageous in that it allows all the poles
to be treated in the calculation as if they had been
placed at L«. The three parameters [N, Re(L«},
and Im(I.«}] are sufficient to determine the period-
icity as well as the location of both the low- and
high-frequency oscillations observed in the calcu-
lated differential cross section.

The simplicity of applying this treatment is very
appeal, ing. The rainbow angle is given approxi-
mately by
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Im(L~). In fact, the frequency of the fine oscilla-
tions is directly proportional to Re(L, ), which in
semiclassical terms is equal to IR (the location of
the minimum of the deflection function). Since both
high- and low-frequency components may be varied
independently in the calculation, this method proves
to be a flexible and efficient scheme to reproduce
the features of the experimentally observed cross
section.

The convolution of the differential cross section
resulting from a Remler-Regge calculation with

parameters Re(L~) =70, Im(L~) =21.88, and K=6
is plotted in Fig. 2(a); a number of points on the
corresponding deflection function are shown as
circles connected by a dashed line in Fig. 3(a).
The Remler-Regge cross section is in good agree-
ment with both o,„„(e)in Fig. 2(c) and vv, „ in Fig.
2(b).

The positions of the low-frequency oscillations
do not depend upon Re(L~). In fact, the value of

Re(L~) was varied from 50 to 250 with absolutely
no effect on their location at any angle. Thus the
lack of dependence of these oscillations on /~

pointed out in Sec. ID is further supported.

V. CONCLUSION

The discussions in Secs. III and IV serve to point
out that the relative differential cross sections
measured in low-resolution experiments do not
unambiguously determine the intermolecular poten-
tial. In fact, there exist many intermolecular po-
tentials which correspond to deflection functions

whose attractive portions differ only in l~, and all
of which predict the periodicity of the observed
low-frequency oscillations. Thus care must be
exercised in applying a potential-model treatment
to differential scattering data. Furthermore, the
values of potential parameters retrieved from such
calculations are subject to uncertainty when the
high-frequency component of the differential cross
section has not been resolved experimentally.

The Remler-Regge method of calculating the dif-
ferential cross section proves to be much more ef-
ficient than the standard semiquantal method in that
it replaces the infinite partial-wave sum by a finite.
(six terms in the NeH' case) sum over singularities
of the S-matrix elements in the complex angular
momentum plane. More importantly, however, the
mathematical form of these 8-matrix elements al-
lows them to be simply and directly connected to
the classical deflection function. This connection
with the deflection function is useful in that semi-
classical intuition may be applied effectively to the
analysis of a given scattering experiment. More-
over, the deflection function retrieved from the
Remler-Regge calculation could serve as a starting
point for an inversion procedure to find the inter-
molecular potential.
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