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Two alternative expressions for the two-photon decay rate of the 2 Sp metastable state of

helium are evaluated by performing the summations over intermediate P~ states. The values
obtained from the "length" and "velocity" expressions for the decay rate are 50.85 sec ~ and
50.89 sec, respectively, in good agreement with a recent experimental value and with pre-
vious calculations done by different methods. Incidental results are given for the photoioniza-
tion cross sections of the 1 Sp and 2 Sp states of helium in the energy region 0-0.2 By.

I. INTRODUCTION

The radiative lifetime of the 2'Sp metastable state
of helium is of fundamental interest because single-
photon decay to the 1'Sp ground state is strictly
forbidden by the selection rule J =0 ~J =0. This
selection rule is violated only by the presence of
nuclear spin. Breit and Teller' pointed out that
the 2'Sp state of helium should decay predominantly
by two-photon electric-dipole emission. This de-
cay process gives rise to a continuous emission
spectrum, since the only restriction on the photon
energies is that their sum equal the energy dif-
ference between the 2'Sp and 1 Sp states.

The two-photon decay of the 2'Sp state proceeds
through virtual transitions to intermediate I'&

states. In order to evaluate directly the expression
for the decay rate, an infinite summation over the
intermediate 'P& states (which includes integrations
over the continua) has to be performed for each
pair of photon energies. Dalgarno first attempted
a direct evaluation of the expression for the two-
photon decay rate of the 2 Sp state by explicitly
carrying out the summations over the intermediate
states. In subsequent calculations, Dalgarno and
Victor ' avoided doing the infinite summations
over intermediate states by carrying out variational
calculations for the complete perturbed wave func-
tion for each pair of photon energies. In a recent
calculation of the two-photon decay rates of the
2'Sp and 2 S& states of heliumlike ions, Drake,
Victor, and Dalgarno' conveniently performed the
summations over intermediate states by replacing
the sets of true excited-state wave functions by

discrete sets of variationally determined functions.
In the calculation of the two-photon decay rate

described in this paper, the summations over the
intermediate 'I'q states are explicitly performed.
Use is made of the oscillator strengths recently
obtained by Schiff, Pekeris, and AccadB for the
electric-dipole transitions from the 1 Sp and 2'Sp
states to the lowest four discrete 'I'& states. An
expansion into a complete discrete basis set (a
modification of the close-coupling method used to
describe electron scattering by hydrogenlike ions)
has been carried out for the I', continuum wave
functions. These wave functions have been applied
with success in an evaluation of the photoionization
cross sections of the 1 Sp and 2 Sp states of helium.

Pearl has reported an experimental value of
(38 + 8) && 10 s sec for the radiative lifetime r of the
2'Sp metastable state of helium. However, a more
recent series of measurements made by Van Dyck
and co-workers ' has yielded the result v'=(20+ 1)
x10 sec, which is in good agreement with the
theoretical value of r= 19.5X 10 ' sec calculated by
Drake, Victor, and Dalgarno. '

II. THEORY OF TYCHO-PHOTON EMISSION

The probability for the simultaneous electric-
dipole emission of two photons with one photon
in the frequency range from v& to v&+dv& is given
(in sec ') by'

210 ~B~4
A(v&)dv& —

z 6 v& v2 dvz

(1'SIR fain')(n'IR t, i2'S)
tl vn's+ va
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(1'sIR ~ e, ln'&(n'la Z, I2's)
Vn'2+ VS av

where the summation is taken over the triply de-
generate 'I', states and includes integrations over
the continua; v„.2 is the frequency of the n"P&

2'So transition; v2 is the frequency of the second
photon; R= r&+r2, where r& and r2 are the elec-
tronic coordinates measured with respect to the
nucleus; and ej and e2 are unit vectors parallel to
the directions of polarization of the two photons.
The averaging indicated by ( )„is to be taken over
the directions of propagation and over the directions
of polarization independently for v& and v2. Since
the 2'P, level lies above the 2'So level, no cascade
emission process of the type 2 So 2 I'y 1 So can
affect the probability of two-photon emission.

An alternative expression for the probability of
two-photon emission can be derived by proceeding
directly from the usual expression for the second-
order transition amplitude" written down with ma-
trix elements of the momentum operator P==p, +p2
in place of the position operator R. The expression
thus obtained for A(v, ) dv, is given by

2'm2e'
A (v1) dv1 =

h2 1 4 v1 v2 dv1

(1's IP ~ e, In') (n'IP ~ e, I2's)
(X

n' Vn'2+ V2

(1'Sll e, ln'&(n'IP Z, I2'S)
Vn'2+ Vi av

The equivalence of Eqs. (1)and (2) can be established
by employing the following identities'~:

-&'IR ~ "ln'&&n'IR e11~&]=0, (4)

= —itf e1 ~ e261q . (5)

These two expressions for the probability of two-
photon emission would give identical results if they
could be evaluated using exact solutions of the non-
relativistic wave equation. When only approximate
wave functions are available, the difference between
the two results should provide some measure of the
uncertainties in the wave functions.

Carrying out the averaging over propagation and
polarization directions as described by Breit and
Teller' and converting to atomic units, Eqs. (1)
and (2) become

Az(v, )dv, = ~(E2 —E1) o' y (1-y) dy

oo 1 1
x & &1'six, +a, ln'P&&n Pla, +a, l2 s) —

E (E E)-+E E (E E)(, )
()

j
n=2 2+ 2- tl

Av(v1)dv1 =- ~ (@g—E1) & y (1 y)dy

The summation is now taken over the principal
quantum number n, which must be extended into
the continuous spectrum. a is the fine-structure
constant, and y is the fraction of the 2 So- 1 So
energy difference carried away by one of the two
photons (v1 ——y v21). E1, Ez, and E„detnotehe ener-
gies of the 1'So, 2'So, and n 'I'j states, respective-
ly, measured in rydbergs.

The radiative lifetime v and the total transition
probability A (decay rate) are obtained (in rydberg
frequency units) from Eqs. (6) and (7) by

1/r =A = 2 f ~'A (v, ) dv„= & J A. (y ) dy.

The factor of & in Eq. (8) is needed because only

I

pairs of photons are counted, whereas a given
pair will occur twice in Eqs. (1) and (2) when v,
is varied through the range O-v».

III. EVALUATION OF MATRIX ELEMENTS

The m 'Sz bound-state wave functions obtained by
Pekerjs' ' and the n 'I'& bound-state wave functions
obtained by Schiff, Lifson, Pekeris, and Rabino-
witz' can be reexpressed in the forms

tII(r1, r&) = —
2

e 1 ~ Z c~»&11'~1 12 (9)
(1 +P12) -ar -bt ~ 1

f j)lt

1in (r1i ra) =
2

e 1 & 7pcos82'(1+P1a)
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x Z dr» r', r, r», (10)

where P» indicates the interchange of the labels
1 and 2. En the 1'Sp ground-state wave function, '
(r = b = (- 0. 5Er)', where —0. 5E, is the binding en-
ergy measured in atomic units. In the 2 Sp and
n 'P& wave functions, '4 a =Z, while b was optimized
to obtain the lowest-energy eigenvalue for a given
number of terms in the expansion. Employing
these wave functions, Schiff, Pekeris, and Accad
have evaluated the matrix elements (m 'S lz,
+z~)n 'P) and (m 'S lS/Sz, +&/Sz~)n 'P) (for m =1, 5

and n = 2, 5). They obtained length and velocity val-
ues for the corresponding electric-dipole-transition
oscillator strengths which are believed to be ac-
curate to within 1% or better.

Higher discrete n 'Pj states are expected to be
less important in the evaluation of expressions (6)
and (7). The oscillator strengths estimated by
Dalgarno and Lynn' and by Dalgarno and Kingston'6
should be sufficiently accurate for the n 'P,
states for ~ = 6, 10. The contributions from the
remaining discrete n 'P& states can be estimated
by employing the asymptotic expressions

(m'S~z, +z In('P) — (2/n )' (m 'S~z, +z2~)r, .o)

and

functions introduced by Rotenberg' for elastic pos-
itron-hydrogen scattering. These functions can be
constructed from the complete radial set ~ '~e

by means of the Schmidt orthogonalization proce-
dure. Their explicit form is given in terms of the
associated Laguerre polynomials Lzr;zr(2Zr) by~a

( )
(Rz )'(n —!- !)!)"'
[(n+l +1)t]'

x (2Zr)rre zrL2-r z'(2Zr) (14)

This discrete basis includes the 1s eigenstate,
thus ensuring that the expansion for gr& will satisfy'
the correct scattering boundary conditions. A
discrete radial basis appropriate for inelastic scat-
tering can be constructed by orthogonalizing the
functions y""~e " to the atomic eigeqstates oc-
curring in all open channels. The use of a dis-
crete basis for the functions S„,,(r, ) circumvents
the necessity of explicitly including continuum
hydrogenlike eigenstates in order to achieve com-
pleteness.

When the continuum wave function is normalized
to a Dirac 5 function in the total rydberg energy E
(E = k —Z ), the asymptotic form of the function

E„,r..&(r&) becomes"

(Z -1)F„, ~(r2) =, k, iz sin kryo z4rr+ —
k

ln2kr2so 2= „„„(rrk
2

m'S, +, n'P
+ arg I E2+ 1 —l +g~ 15

. (Z —1)

where )~2.0 denotes the 'Pr continuum wave function
evaluated at the first ionization threshold of the
m 'Sp states. The continuum wave function is as-
sumed to be normalized per unit rydberg energy.

The techniques employed to obtain the continuum
wave functions are described in the theory of elec-
tron scattering by hydrogenlike ions with nuclear
charge Z. The 'L continuum wave function (cor-
responding to nonresonant elastic scattering) can
be expanded in the form

(1+P ) g S r (rr) E (r2)
rrra) =

„r
) * ))rr r2 r2

x Q (lr l2LM~ ~l m, l2m2) Fr"r(r, ) Fr2 (rz),
m pm 2

where the functions S„, (r, ) form a complete or-
thonormal basis and the functions E„(rz) are to be
determined.

The radial basis functions S„, (r, ) employed in
this expansion are similar to the discrete basis

where g& is the additional phase shift due to the
non-Coulombic part of the potential. When k =0,
this asymptotic form must be replaced by

x sin( [8(Z- 1)r,]'"-(f, +-,')rr+)7~) . (16)

The other functions F„(rr), corresponding to closed
channels in the elastic-scattering energy region,
have asymptotic forms which represent exponen-
tially decaying waves. In our calculations, the
closed channels included in the expansion were
(2s, la=1), (2P, la=2), and (2P, l~=0). (The bar over
the principal quantum number indicates the replace-
ment of He' eigenstates by discrete basis functions. )

The computer code of Burke was used to solve
the coupled integrodifferential equations for the
functions E„(rz) in the energy region 0&k ~ 2. 4
By. An asymptotic expansion, 23 whose leading
term has the form given by Eq. (15), is employed
in Burke's code to obtain starting values of the
functions E„(rz) for inward integration of the cou-
pled equations. When k2 is very small, this asymp-
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TABLE I. The P-wave e -He elastic-scattering phase shift g1 and differential oscillator strengths for helium evaluated
in the energy region 0(k ~0.2Ry, using the 1s, 2s, 2P expansion for the P continuum wave function.

k' (Ry)

0
0.02
0.04
0.06
O. 08
0.10
0.12
0.14
0.16
0.18
0.20

—0.0424
—0.0429
—0.0435
—0.0439
—0.0444
—0.0448
—0.0452
—0.0455
—0.0459
—0.0462
—0.0465

1 S state

H.
0.9218
0.9072
0.8926
0.8783
0.8642
0.8502
0.8365
0.8230
0.8097
0.7966
0.7838

0.911V
0.8971
O. 8827
0.8685
0.8546
0.8408
0.8274
0.8141
0.8011
0.7884
0.7756

1.144
1.026
0.9263
0.8408
0.7671
0.7030
0.6466
0.5967
0.5523
0.5125
0.4768

1.1384
1.0306
0.9364
0.8538
0.7809
0.7165
0.6591
0.6079
0.5621
0.5209
0.4837

totic expansion for the functions F„(vs) converges
only for extremely large values of r~. Norcross
and Seaton have developed an alternative asymp-
totic expansion for the functions F„(xs) which is
based on the WEB method and is appropriate for
small values of k (including k =0). The computer
code of Norcross ' was employed in our calcula-
tions to obtain starting values for the functions

F„(rs) in the energy region 0 (k ( 0. 2 Ry.
The matrix elements (m S izt+zsi P,&) and

(m 'S
i 8/8zt + 8/8z s i t)tp) (for m = 1, 2) were evaluated

in the energy region 0 &k~( 2. 4 Ry, using the 56-
term m 'So bound-state wave functions of Pekeris
and the 1s, 2s, 2P expansion for the 'P, continuum

wave function. The "length" and "velocity" expres-
sions for the differential oscillator strengths,

which would yield identical values if they could be
evaluated using exact eigenstates of the nonrelativ-
istic Hamiltonian, are given in terms of the above
matrix elements by

=(f+k')i(m'Siz, z, iy, s&i'
L

and

m'S —+

where I is the first ionization potential of the
m SD state. Results are given in Table I for the
P-wave phase shift and the differential oscillator

TABLE II. Various contributions to the sums in Eqs. (6) and (7) for representative values of y:

M„(y)=(1 Sl D, l n &)(ntPI &,12 S) +

Continuum contributions are denoted by Mz(y). Numbers in parentheses are the powers of 10 by which the entries are to

be multiplied.

Q M„{yi
Tf=2

LM„(y)
fl=2

fqt OMz(y) dE f/' g 4Mz(y) dE

0.025
0.100
0.300
0.500

0.025
0.100
0.300
0.500

—1.433 (1)
—6.119 (0)
—2.892 (0)
—2.450 (0)

-1.51O (-1)
—3.53S (-2)
-2.892 (-3)
+8.2vv (-5)

Dg = z(+.Z2

1.20 (—1)
1.O3 {-1)
7.40 (-2)
6.vv (-2)

8 8
D»= +

ez( ~Z2

1.64 (—2)
1.30 (-2)
9.34 {-3)
8.52 (—3)

9.551 (—1)
8.285 {—1)
6.738 (-1)
6.356 (- 1)

3.O84 (-1)
2.v9o (-1)
2.4O6 (-1)
2.3ov (-1)

2.6V (-3)
2.64 (—3)
2. 5V (-3)
2.54 (-3)

1.16 (-2)
1.15 (-2)
1.13 (-2)
1.12 (-2)
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TABLE III. Two-photon decay energy distribution &(y)
.(in sec ) as a function of y, the fraction of the 2 So —1 So

energy difference carried away by one of the two photons.
The numbers in parentheses are the powers of 10 by which
the entries are to be multiplied.

used by Salpeter and Zaidi and by Suh and Zaidi 7

in their calculations of the Lamb-shift mean ex-
citation energies.

IV. RESULTS FOR TWO-PHOTON DECAY RATE

0.025
0.050
0.075
0.100
O. 125
0.150
0.175
0.200
0.225
0.250
O. 275
0.300
O. 325
0.350
0.375
0.400
O. 425
0.450
0.475
0.500

&1, (y)

v. v26 (o)
2.513 (1)
4.324 (1)
5.959 (1)
v. 3vs (1)
S.5e3 (1)
9.629 (1)
1.O51 (2)
1.127 (2)
1.191 (2)
1.245 (2)
1.291 {2)
1.33O (2)
1.362 (2)
1.389 (2)
1.41O (2)
1.425 (2)
1.436 (2)
1.443 (2)
1.445 (2)

Av(y)

7.745 (0)
2.515 (1)
4.32V (1)
5.964 (1)
V. 384 (1)
8.600 (1)
9.63S (1)
1.052 (2)
1.128 (2)
1.192 (2)
1.246 (2)
1.293 (2)
1.331 (2)
1.364 (2)
1.390 {2)
1.411 (2)
1.42V (2)
1.438 (2)
1.444 (2)
1.44V {2)

Various contributions to the sums in Eqs. (6)
and (7) are presented in Table II for representative
values of y. The continuum contributions are of
relatively greater importance in the velocity ex-
pression. This is explained by the different ener-
gy dependence of the matrix elements implied by
Eqs. (17) and (18). The two-photon decay energy
distributions resulting from the evaluation of the
two alternative expressions for A(y) are tabulated
in Table III, and they both differ from the distri-
bution obtained by Drake, Victor, and Dalgarno
by less than I%%uq. The integrated decay rates ob-
tained from these two distributions are A~ = 50, 85
sec ' and A„= 50. SS sec ', in good agreement with
the value A = 51.3 sec ' obtained by Drake, Victor,
and Dalgarno. ' It is very possible that the uncer-
tainty in our two values for the decay rate is
greater than the difference between them.

ACKNOWLEDGMENTS

strengths in the energy region 0 & k & 0. 2 By. Re-
sults were given in the previous paper for the en-
ergy region 0. 2 &k & 2. 4 By. The photoionization
cross sections are obtained (in units of ao) by
multiplying the differential oscillator strengths by
4m'n.

The contributions to the sums in Eqs. (6) and (7)
from the continuum states for k & 2. 4 By can be
estimated with sufficient accuracy by employing

the various independent-particle approximations

I would like to express my gratitude to Professor
C. L. Pekeris for the use of his wave functions and
to Dr. B. Schiff for many stimulating discussions,
I am deeply grateful to Professor P. G. Burke
for supplying me with his complete collision code
and to the Computer Program Library at the
Queen's University of Belfast for their prompt and
efficient service in sending the code of Norcross.
Finally, this calculation would not have been under-
taken without the interest and encouragement of
Professor A. Dalgarno.

TResearch supported by the National Bureau of Stan-
dards under Grant No. NBS(G)-105.

Present address: Department of Applied Mathematics
and Theoretical Physics, The Queen's University of Bel.—
fast, Belfast, Northern Ireland.

G. Breit and E. Teller, Astrophys. J. 91, 215 (1940).
~A. Dalgarno, Monthly Notices Roy. Astron. Soc. 131,

311 (1966).
A. Dalgarno and G. A. Victor, Proc. Phys. Soc.

(London) 87, 371 {1966).
4G. A. Victor, Proc. Phys. Soc. (London) 91, 825

(1e6v).
G. W. F. Drake, G. A. Victor, and A. Dalgarno,

Phys. Rev. 180, 25 (1969).
6B. Schiff, C. L. Pekeris, and Y. Accad, this issue,

Phys. Bev. A 4, 885 (1971).
V. Jacobs, Phys. Rev. A 3, 289 (1971).
A. S. Pearl, Phys. Bev. Letters 24, 703 {1970).

~R. S. Van Dyck, Jr. , C. E. Johnson, and H. A.
Shugart, Phys. Rev. Letters 25, 1403 {1970).

9.0R. S. Van Dyck, Jr. , Ph. D. thesis (University of

California, Berkeley, 1971) {unpublished).
~~A. I. Akhiezer and V. B. Berestetskii, Quantum

Electrodynamics (Interscience, New York, 1965).
~2C. L. Pekeris, Phys. Bev. 112, 1649 (1958).
~ C. L. Pekeris, Phys. Rev. 126, 1470 (1962).
~ B. Schiff, H. Lifson, C. L. Pekeris, and P. Rabino-

witz, Phys. Rev. 140, A1104 (1965).
5A. Dalgarno and N. Lynn, Proc. Phys. Soc. (London)

A70, 802 (1957).
A. Dalgarno and A. E. Kingston, Proc. Phys. Soc.

(London) A72, 1053 (1958).
D. B. Hartree, Proc. Cambridge Phil. Soc. 24, 426

(1928).
J. Hargreaves, Proc. Cambridge Phil. Soc. 25, 75

(1928).
~M. Rotenberg, Ann. Phys. {N. Y.) 19, 262 (1962).
H. Shul. 1 and P. O. Lowdin, J. Chem. Phys. 30, 617

(1959).
P. G. Burke and D. D. McVicar, Proc. Phys. Soc.

(London) 86, 989 (1965).
~~P. G. Burke, D. F. Gallaher, and S. Geltman, J.



g44 VERNE JACOB S

Phys. B 2, 1142 (1969).
P. G. Burke and H. M. Schey, Phys. Rev. 126, 147

(1962).
~D. W. Norcross and M. J. Seaton, J. Phys. B 2,

731 (1969).
25D. W. Norcross, Computer Phys. Commun. 1, 88

(1969).
26E. E. Salpeter and M. H. Zaidi, Phys. Rev. 125,

248 (1962).
K. S. Suh and M. H. Zaidi, Proc. Roy. Soc. (London)

291, 94 (1940).


