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The spectral distributions of light scattered under various polarization conditions in liquids
composed of optically anisotropic molecules are analyzed. Macroscopic equations are derived
using analogous electric circuits which simulate the viscoelastic behavior due to shear stress,
reorientations, and coupling with internal degrees of freedom. The equations describe the long-
wavelength thermal fluctuations in the liquid and form the basis of a unified calculation of
depolarized and Brillouin scattering. Under the condition that shear relaxation takes place more
rapidly than reorientational processes, the sharp component and broad background in the
depolarized spectrum are shown to depend primarily on the fluctuations in orientations and
shear stress, respectively. Our results also provide a simple interpretation of the recently
observed doublet structure. The Brillouin spectrum, on the other hand, shows the well-known
effects of thermal relaxation as well as the effects of coupling with shear stress and reorienta-
tions. Numerical results on quinoline and nitrobenzene are presented, and the computed depolar-
ized spectra are in good agreement with the experimental data of Stegeman and Stoicheff.

I. INTRODUCTION

Recent high-resolution measurements of the de-
polarized spectra of light scattered in molecular
liquids have revealed a number of interesting fea-
tures. In general, the profile of a depolarized
spectrum is known to consist of a central compo-
nent, called the diffuse line or Rayleigh "wings, "
superimposed on a broad background. Detailed fea-
tures of the sharp component, however, vary with
the polarization arrangement and in special cases
also with the scattering angle. For example, if the
incident- and scattered-photon polarizations are
normal and paraliel to the scattering plane (VH ge-
ometry), a splitting in the sharp component is ob-
served which gives rise to a narrow doublet. The
splitting frequency is several times smaller than
the familiar Brillouin shift. In the backward scat-
tering spectrum the doublet is not observed. In the
case of HH geometry, two broad peaks also appear
in the spectrum, but now in the vicinity of the Bril-
louin frequency.

The experimental observations have stimulated
considerable theoretical interest, as several at-
tempts have been made recently to analyze these
phenomena. From the early work of Leontovich,
it is known that the sharp component arises from
anisotropic fluctuations due to molecular reorienta-
tions. A more general formulation by Rytov led to
essentially similar results. Recently, Volterra
has extended the Leontovich approach by consider-
ing explicitly two relaxation mechanisms, reorien-
tations and shear diffusion, and in this way he was
able to treat both the sharp component and the back-
ground in a single calculation. On the basis of these
calculations, Stegeman and Stoicheff interpreted the

narrow doublet in the depolarized spectrum as a
direct indication of shear-wave propagation.
The different features of the sharp component also
have been analyzed by Ailawadi, Berne, and Forster
by studying the effects of angular momentum fluc-
tuations. These authors considered explicitly the
effects of angular momentum fluctuations which give
rise to an antisymmetric contribution to the stress
tensor. On the other hand, Andersen and Pecora
have derived kinetic equations which take into ac-
count shear and orientation relaxations. They ob-
tained results which reduce to those of Leontovich
or Volterra when the stress tensor is assumed to
be symmetric.

In contrast to the approach using macroscopic
equations and dielectric constant, direct calculations
of the molecular polarizability also have been

Ben-Reuven and Gershon have shown that
by coupling the orientational motions to sound waves
one obtains a frequency-dependent damping constant
which will lead to a doublet in the depolarized spec-
trum. " In a related analysis, Keyes and Kivelson
concluded that the existence of the narrow doublet
indicates coupling effects are related to dissipative
mptipns and npt wavelike propagatipns.

The purpose of this paper is to present an analysis
of light scattering in liquids composed of optically
anisotropic molecules. We adopt a macroscopic
approach in which the liquid is treated as a visco-
elastic medium which exhibits shear, reorientation,
and thermal relaxations. Phenomenological elec-
tric circuits are used to simulate the behavior of

fluctuations in the presence of multiple relaxations,
and from these circuits we derive model equations
by making the analogy between pressure or stress
and voltage, and between density or deformation
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II. FRENKEL MODEL

In this section we obtain a system of macroscopic
equations which describe the long-wavelength iso-
tropic and anisotropic fluctuations in molecular
liquids. These equations are basically the linearized
equations of fluid dynamics except that the stress
tensor is specified by a model equation which takes
into account shear and orientation relaxations.
Another model equation which considers thermal
relaxation is used to relate the pressure and den-
sity fluctuations. Both equations are derived by
analogy with phenomenological electric circuits.

The linearized equations of motion of a fluid
are"

where po is the equilibrium mass density, v the
local velocity, p the pressure deviation, and 0 z

is the traceless stress tensor. Vector indices are
denoted by Greek letters and summation over re-
peated indices is understood. We will consider a
linear relation between p and the deviations in den-
sity (or volume) n and in temperature T,

—p(r, t) = Ln(r, t) —pr c(T(r, t), (2)

where n= &p/po, Pr is the isothermal compressi-
bility, and o' is the thermal-expansion coefficient.
The coefficient L depends on the model used and

and charge.
The model equations, derived in Sec. II, are sim-

ilar to those used by Volterra. However, in carry-
ing out the analysis, Volterra has assumed that the
relaxation times for reorientations are shorter than

those associated with the shear modes. We believe
that the opposite situation is generally more realis-
tic and propose initial conditions consistent with this
assumption. Section III contains the analysis of de-
polarized light scattering. By assuming that the

isotropic and anisotropic components of the dielec-
tric tensor have the same time dependence as the
fluctuations in density and stress tensor, we obtain
a unified calculation of depolarized and Brillouin
scattering. The treatment of depolarized spectra
takes into account both the sharp component and the

background, and we find the observed "doublet"
behavior in our results. The Brillouin spectrum,
discussed in Sec. IV, shows the effects of thermal
relaxation; in addition, the effects of coupling with

shear modes and reorientations are also present.
The depolarized spectra of liquid quinoline and

nitrobenzene are analyzed in Sec. V. The calcula-
tions are seen to be in quantitative agreement with

experiment. We then summarize the essential fea-
tures of our work in Sec. VI and discuss them in
the context of several recent theoretical investiga-
tions.

may appear as an operator. Another relation be-
tween T and n is the Fourier law of heat conduction

s T(r, t) 2 y —1 sn(r, t)=a% T r, t—

where a = &/poc„ is the thermal diffusivity, & is the
conductivity coefficient, e, the constant-volume
specific heat, and y= c~/c, . We also define the
traceless deformation (strain) tensor as

To complete our description we need to specify L
and the relation between 0 z and u z.

As a simple example we recall the classical
hydrodynamics model where

-p(r, t) = p r [n(r, t) —o.T(r, t)],

o„~(r, t) = 2q
su„(r, t)

(6)

(6)

and p is the shear viscosity coefficient. It is well
known that these expressions are not adequate in
the presence of dispersion effects. We can easily
modify (6) in a phenomenological manner to include
shear relaxation. ' This can be accomplished by
making an analogy with an electric circuit consist-
ing of a capacitance C placed in parallel with a
resistance A. From this circuit we obtain an equa-
tion between voltage and charge, and if we now re-
place them by o ~ and u tt, respectively, the re-
sult is

—+ —o, ()(r, t) = 2G,
S

where we have identified C and A with the elastic
and viscous properties of the fluid, C = I/2G„and
R= 2G, 7, . Here G, is the shear modulus and 7,
= I', is the shear-relaxation time. The viscosity
is given by the usual Maxwell relation, g = G, v, .

A number of interesting equations can be rep-
resented by similar circuits. Also, the voltage
and charge in the circuit equation are analogous
to the pressure and density deviations. For ex-
ample, using a AC circuit in series with a capaci-
tance, we obtain an equation which takes into account
thermal-relaxation effects. Such an equation has been
used by Mountain in his analysis of Brillouin scat-
tering by molecules with internal degrees of free-
dom. ' Several models of this type are illustrated
in Table I. The damping function D(q, w) arises
in connection with Brillouin scattering and there-
fore will be discussed later. It should be remem-
bered that in the circuits relating p and n, a term
—P~ &T should be added to the final expression for
p; otherwise, one should at least replace pr by
P„ the adiabatic compressibility.

The circuits shown in Table I are arranged in the
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TABLE I. Phenomenologica1 analogous electric circuits and damping functions.

Mode I -P D(q, co)

Class ical
Hydrodynamics

I I
l

C =
I/pT Rl 2q 2G

2 -I 2{I-y ) aq
4 q/3p +

cu + {aq )

Ma x wel I

C) = I/P

Rl = 2Gs Ys
P,MW

I
I I

C) = I/2 Gs

4 /3 vo (I-y ) aq2 I 2

I + (o)vs) ~ + {aq )
2+ 2 22

Kneser —Mountain

Maxwell —Mounta in

Fr enkel

R2=K~hhr ~

I I
I I

C) = I/P
C2 I/K

R2= Kt Tt
+&Aha

C = I/P
C

2 t

R2= Kt rt
~

~PA~
Ci = I/P T

G2 = I/Kt

"l . 2Gs &s

R) =260ro

) I
I I

C ~= I/2 Go

I

CI= I/2 6

'W~
Rl= 2Gs&s

R, = 26,
I-

Cl = I/2 Gs

2 -I 2
v, (I-V ) aq K, ~, /p,

4q/3p + -- — +
4U + (aq ) I + (QJTt )

2 -I 2
( I-V' ) aq Kt Tt/po

22 +
I + {~T ) 4P + (aq ) I + (coT )

4G, ~'r {I+~) + r, (rsr, -~')
+

3p (~2 p p )
2

( I-Y ) oq Ktet /po~
2 — ' 2

+ +2 + {Oq2 )2 I + (& )2

order of increasing complexity. The circuits which

describe shear and thermal relaxations may be
called the Maxwell- and Kneser-Mountain models,
respectively. The Maxwell-Mountain model, which

treats both relaxations, also has been studied by
Bhatia and Tong. The most complicated circuit
in Table I treats two relaxation processes. Such

a circuit has been discussed by Frankel in connec-
tion with viscoelastic effects arising from struc-
tural changes. %e will henceforth refer to the

corresponding model as the Frankel model. Notice

that the RSC3 circuit simulating reorientations ap-
pears in series with the capacitance representing
shear modulus. This is because the shear relax-
ation is taken to be the more fundamental process.

From the analogous circuits we find the follow-

ing equation for the Frenkel model:

+ 1"~ P r, t = Pg+Kq —+Pz, l'] n r, t

(8)

82
=2G, 1+6 ~+I'0 —u„z r t, 9

r= r, +r,(1+~),

Here Go is the orientational modulus, which de-
scribes the elastic part of the shear stress due to
the reorientation of anisotropic molecules, and

~, = r, is the corresponding relaxation time. The
thermal-relaxation modulus K, may be evaluated

from the expression'8

(»)
~ =Po~o c (c„-c,)

where e& is the internal specific heat. The product

K& w&, where ~, = l", 'is the thermal-relaxation time,
gives the excess-bulk viscosity.

Equations (8) and (9), supplemented by (1) and

(3) and appropriate initial conditions, provide the

description of fluctuations in molecular liquids
which we will use to study Brillouin and depolarized
light scattering. It is tempting to regard this sys-
tem of equations as hydrodynamic equations modi-

fied to include viscoelastic effects of shear, orien-
tation, and thermal (or structural) relaxations
However, in conventional hydrodynamic theories,
o ~ is usually the Newtonian stress tensor which

is symmetric and proportional to the velocity gra-
dients. In the presence of fluctuations, spontan-
eous local stresses can exist and these are not re-
lated to the velocity gradient. For example,
angular momentum fluctuations are known to give

rise to anantisymmetric component ino z. For the
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purpose of our calculations, we therefore consider
c ~ to be an effective stress tensor mhich has a
non-Newtonian contribution, but we make no as-
sumptions regarding its symmetry at this point.

It is instructive to compare Eq. (9) with similar
equations which have been employed by I eontovich
and by Volterra. I.eontovich assumed that the
local strain in a liquid is relieved by the reorien-
tation of molecules and proposed an equation iden-
tical to (7) except that 7, is replaced by a relaxa-
tion time 7'I, . ' The latter is usually taken to be

71 3 7b 3 (lf/kg T) 7/0

mhere vD is the Debye-relaxation time and a is the
radius of a molecule assumed to be spherical. The
corresponding equations in Volterra's formulation
consist of two coupled equations involving o z and
an anisotropic tensor [Eqs. (Al) and (A2) in Ref.
V]. They may be combined to give

82 8, + [r, +r,(l+D)] —+1, 'vo o', 8(r, , f)
8t 8t

=2G =-2 + yo
—

u~~ r, t, 14
8$

where D is a parameter and 70 is a reorientation
time constant not necessarily identical to the above

This equation evidently has a structure similar
to (9). Since both Leontovich and Volterra consider
reorientations, we must conclude that the stress
tensors calculated by their models also have a
non-Newtonian contribution.

III. DEPOLARIZED LIGHT SCATTERING

It is well known that the spectral distributions
of light scattered undel various polarlzatlon con-
ditions are determined by the fluctuations && z
in the dielectric tensor

f,(q, (u)= J dte '"'&5&,(q, t) «„*,(q, O)&, (15)

= j"«e '"'&e.
t (q, f)e.'~(q, o)&[&~ o.t (q) ~')] '

= »e[e„,(q, e)/o. ,(q)], ,„=-2o.,(q, ~), (I9)

wbere o ~(q, s) is tbe Fourier-Laplace transformed
solution to (9). It seems to be conventional to re-
gard the spatial Fourier transform of « ~(r, t) to
be Hermitian. Then it is reasonable to assume that
the effective stress tensor satisfies

(l9)

Tllls does 110't necessal'lly llnply 'tllat e 8(1', f) le
symmetric. However, the Hermitian property does
require

o ~(r, f)=o',~(-r, t),

o"~(r, f) = —o"~(-r, t),
(20)

mith coupling constants A and B. Qne usually ig-
nores the dependence of the dielectric constant on
temperature at constant density; thus A = po(s&/ep)r.
The constant 8 is less well defined. If me consider
a crystal and take C ~ to be the elastic strain, then
8 mouM be a fourth-rank tensor with components
given by the Pockel elasto-optical constants. In
the present work me mill treat I3 as a scalar con-
stant, and as me shall see, its evaluation is not
needed for the analysis of the frequency profile of
certain depolarized spectra.

In general the dielectric tensor «z(r, f) is sym-
metric, ' so the anisotropic tensor is also sym-
metric. In applying the Frenkel model to light
scattering me assume that the spatial and temporal
behavior of the anisotropic fluctuations are the
same as those of the traceless stress tensor. Spe-
cifically, their Fourier components are related by

«„,(q, t) = f d'~e'~ «„~(r', f)

and ( & indicates an equilibrium ensemble average.
The indices + and P now specify the polarization
directions of the incident and scattered light. The
frequency and wave-vectox transfers are defined
by &= &; —&& and q=k; —k& where subscripts j
and f refer to incident and scattered conditions.
To a good ayyroximation we have q = 2k; sin-,' 6,
where 8 is the scattering angle.

In the macroscopic approach to light scattering,
it is conventional to assume that 5& z can be ex-
pressed in terms of the thermal fluctuations in the
medium. %e mill follow Leontovich in introducing
an anisotropic (traceless) tensor t' 8, and write

« ~(r, t) =An(r, t) fl„~+Br,(r, f) (l7)

where superscripts 8 and A denote the symmetric
and antisymmetric components of the stress tensor,
respectively Given tha. t r ~(q, t) and o ~(q, t) are
Hermitian and traceless, each matrix is specified
by five independent components.

%e nom specify the scattering geometry. As
shown in Fig. 1, the scattering plane which contains
k& and k& is chosen to be the xz plane with q directed
along the z axis. With this arrangement, we can
take the five independent components of f & to bev

i'xmas

&xs& t'yes += 2(txx tyy) t 4z = (t'xx+ ~yy)

%'e expect the fluctuations g„, and X will not couple
to longitudinal waves, mhereas the effects of such
waves should appear in g„. Excitations propaga-
ting along the z direction but polarized along the x
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or y direction may be called shear waves. Their
effects should appear in 5„, and g„.

We restrict our analysis further by considering
I

only light polarizations which are parallel (II) or
normal (V) to the scattering plane. The spectral
distributions of interest are therefore

IH(8, +)=I"„(8,&d) = B [S(f„)cos'-,'8+S(t„,)sin —,'8]&

Is(8, &) = &'S(n)(cos'-,' 8 —sin'-,' 8)'+ A&[S(n, 0„)+S(l„,n)](cos'-,' 8 sin'-,'8)

x (cos —,
' 8+ —,

' sin —,
'

8) + HATS(t„) (cos —,
' 8+ —,

' sin —,
' 8)+ Ns(X) sin4 —,

' 8,

I& (8, &)=~'S(n) —2&&[s(n, L„)+S(&.„n)] +,'a' —S(C„)+a'S(X),

(21)

(22)

(23)

where

S(a, b) —= 2 J dtcos&dt&a(q, t)b*(q, 0)&, (24)

and in the case of autocorrelation only one argu-
ment is indicated in S. In arriving at these results
we have assumed that the density fluctuation and the
five components of g,z chosen above are uncorrela-
ted except in the case of n and g„. The super-
script and subscript in I are intended to denote in-
cident and scattered polarizations, but the distinc-
tion is not really necessary if (19) is valid and only
V and H polarizations are considered. The explicit
angular dependence in the intensity expressions
arises purely from geometric factors. In addition,
there is an intrinsic, though weaker, angular de-
pendence in the spectra because the various corre-
lation functions are q dependent.

The present choice of polarizations and scatter-
ing geometry corresponds to the experimental ar-
rangement of Stegeman and Stoicheff. Although
measurements have been made at several scat-
tering angles, we will carry out a detailed analysis
only for the case of 8= —,

' v. From (21) and (22) we
obtain

sg„„) s(t„,)I:&-'*',~& =-*'&&&IX«&l &&
&, «-&, &'&~ &&-, &~ &)'

(25)

briefly in Sec
The correlation functions which appear in (25)

and (26) will now be computed according to (19).
Taking Fourier and Laplace transforms of model
equations (8) and (9) we find

P(q s)= + Pr+- n(q S)p(q) K,s
+ s+F,

—;F' &(q) —Pr»(q, s), (28)

(s2+ sI'+ I', I",)a,~(q, s) = —o,~(q, t)
;, =0

+ (~+ r)o, (q)+ 2sG,[s(l+ &)+1 ]u,,(q, s) . (29}

s(g.,) s(x)
r„"&!rr,~&=!&a'&ix&4&&'&&

&~ & g& ~s&'&~xg&& &)

(26)

where we have used the relations'
VH HH

(q) I

'& =
&I &„(q)I

'& = —,'&I 4,(q) I

'& =
&I x(q)

(27)
If we are not concerned with integrated intensities,
then there is no need to evaluate the coupling con-
stant B or &IX I&~. Of course it is only at 90' that
IH arises entirely from anisotropic fluctuations and
can be properly called a depolarized spectrum. The
effects of density fluctuations and cross correla-
tions, always present in I~, appear in IH at all other
scattering angles. We will consider these effects

k;

FIG. 1. Scattering geometry with wave-vector trans-
fer q in the xz plane. Polarization arrangements shown
are for VH and HH scattering at ~=90'.
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For initial conditions we have set

u, (q, f = 0)-=u, (q ) = 0 .
r,q2(v~-v()) avoq (1 —y ')

+ I] (u'+ (aq') ' (42)

However, because the phenomenological stress
tensor contains a non-Newtonian component, we
will assume o ()(q, f) and its first time derivative
do not vanish at t= 0. The model equations have
to be supplemented by the transforms of (1), (3),
and (4):

po sv, (q, s) = iqp(q, s) &„+iqo„8(q', s) &(), , (so)

T(q, s) = —(s'+ aqua)
' [(r —I)/c'] [sn(q, s) -n(q)],

(31)

su„(q, s) =-', iq [v, (q, s) &„+v, (q, s) &„,], (32)

with v(q) = 0 and T(q) = 0.
Solutions to the system of Eqs. (28)-(32) are

easily found once the initial values for the pressure
fluctuation and the stress tensor are specified.
We will assume that at t =0 the effects of thermal
relaxation have not set in, thus p(q) = —P&n(q).
Similarly, it will be assumed that the slower of the
two relaxation processes which govern the decay
of the stress tensor can be ignored at t =0. Al-
though the magnitudes of shear and orientation re-
laxation times can have a wide range of variations
depending on the liquid, we feel it is more realistic
to assume

(33)

voq 2 a v -vo vo(1 -& ')

= vo'q'+ (u'q'(v' —v,')/((u'+ I", ) . (43)

~'r, + ~r,(I+ ~)'n', [~'- n,'(1+~)]
[(u' —n2r(1+ a)]' + ((ur, )'

We have denoted the shear-wave frequency by
OT, the low- and high-frequency sound speeds by
v, =(P,/po)'~, and v =(v()+K, /p, )'~', respectively.
The longitudinal-wave frequency (Brillouin shift)
is Ol. and is dispersive because of thermal relaxa-
tion. Notice that the presence of nz in (37) indi-
cates a coupling between longitudinal waves and
anisotropic fluctuations.

The frequency spectra of I„and IH" are obtained
by replacing [(K,~(q) I )] 'S(f,) by o 8(q, (u). It is
of interest to ask whether the experimental features
briefly mentioned in the Introduction can be cor-
related with our results. For this purpose we find
it most convenient to decompose the theoretical
expressions into two parts, the sharp component
and the broad background. In the case of VH

(or HV) polarizations we have

I„'(-', m, ~) =-&'(I z(t))l ')(,, z'l + ~., ~

0'ea q (34)

Using these initial conditions we find the correla-
tion functions defined in (18) are given by

o„,(q, (u) =-, [(r„„(q,(u) —o„(q, (u)]

r„=r,(1+~)-',

I', = r, (1+a) + ar, (1+6) ',
M=~(l+&)-', f.=(1+~)-'.

(45)

cr (
cg [5ng —(u (5 + ng)] + c 2 (u (5ng + n~ —(u ))= c~+c~ 2 7cj+c2

(37)

where

rp+~r

n, = (G,/p, )"'q,
(ss)

(s9)

c = (u —(u [n + I', 1" + I",n + —n (1 + 6)], (40)

c,=-~'(r, +n, )+r, n', +n, r, r, +-,'n', r, , (41)

r.+~r rp
((u' —I', I',)'+ ((uI')' '

o.,(q, ~) = o,.(q, ~)

(u'r, +(u'(5r, r, + ~rn', )
((u'I —n2r )s+(u'[(u2 —I', I', —(1+4)n ]

(36)

In carrying out the approximate spectral decom-
position we have made use of condition (33). The
first term in (44) gives the sharp component while
the remaining terms describe the broad back-
ground. The width of the sharp component r„ is
seen to be proportional to rp the reorientational-
relaxation frequency, and the background width I',
is determined mainly by I'„ the shear-relaxation
frequency.

By referring to (35) and (36) we see that o„, gives
a I.orentzian contribution to both the sharp com-
ponent and the background. Half of the first term
and the last term in (44) are the cnntributions from
o„,. The last term is seen to be negative for

~' «', n(I+ ~)'[n', n(I+ ~)+ r,r.,]-'
= n', ~(I+ ~)'/r, r,

and has a maximum around nr(1+ 4)' 2. At higher
frequencies it decays like a I.orentzian of width
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I'b. It is evident that the behavior of this term will
give rise to a doublet which we will associate with
the observed splitting in the central component.
'We expect the doublet will appear around the fre-
quency Qr (1+b)' ~, which depends on both the shear
and orientational moduli. Equation (44) also pre-
dicts that the integrated intensity ratio of sharp
component to background is 6, the ratio of orienta-
tion and shear moduli. This ratio gives a measure
of the relative importance of the two relaxation
mechanisms and is consistent with the interpreta-
tion that I'„and I'b be primarily governed by orien-
tation and shear processes, respectively.

In a similar manner we can decompose the spec-
trum for the case of HH polarizations. We find

fs( ,' )T, (o)-

=-', a'((~x(q)(~*)(4M, , I „'~— &)
SC

IV. BRILLOUIN SCATTERING

The isotropic component of the dielectric-tensor
fluctuations is usually assumed to be proportional
to the density fluctuations. This component gives
rise to Brillouin scattering, and consequently at-
tempts to study

1
p 00

S(n) -=S(q, ~)=-
2m

e '"'
(n(q, f) n*(q, 0) )

S(q)

,(,) (.(, )) (51)

Indeed, Stegeman did not observe a doublet in his
measurements at 176'.

In Sec. V we will apply the above results to the
experimental spectra of Stegeman and Stoicheff.
Even though the decomposed expressions are found
to be quite accurate, we will nevertheless use the
original expressions (35)-(37) for numerical com-
putations.

((o —Q2) r&+ &o Qi(Q —Q2)
(o2((d2 Q2)2+ [(g2(Q p I' ) Q2 r ]2 (47)

with

(48)

Again one can distinguish the sharp component from
the background. The term J comes from 0„,
which is coupled to density fluctuations. We ob-
serve that since 0& « I'b, to a good approximation
we have

(~2 —Q', )'r,
~2(~2 Q2)2 (O)2 Q2 }2r2

(4g)

Equation (49) shows that (r, /3L) J is always posi-
tive and has a maximum of unity at the origin and

again at =Q. It is zero at +=~~& and for»~
it is essentially a Lorentzian of width I'b. Al-
though the structure of J is different from the last
term in (44), the cusp behavior around Q2 will also
give rise to a peak in the spectrum of 1s. Since Q

is not much greater than Q~, this peak in principle
can be quite sharp, but is possibly considerably
broadened by resolution effects. In any event, we
see that (46) does reproduce the observed struc-
tureo in the vicinity of the Brillouin frequency.

The decomposed forms of the various correlation
functions are also useful for the discussion of spec-
tra at other scattering angles. For example, at
8 = v Eq. (21) shows that Is and I» are proportional
to O.„„or

g(, ~)=&((x(q)(')(~„, -, r, , ', )
. (50)

in liquids' & and gases ' have been made. Here
S(q) = 1+ I'(q), where I'(q) is the Fourier transform
of the equilibrium pair -distribution function. The
density-correlation function S(q, (o) is also the quan-

tity which governs the inelastic scattering of ther-
mal neutrons, although the values of q and & in-
volved are some three orders of magnitude greater.

In the calculation of S(q, o)), it is convenient to
discuss various models in terms of a frequency-
and wave -number -dependent damping function

D(q, (d). ' We define this quantity as

D(q, (o) = Re [D(q, s)], ;„,
where

2 2 2 2
-1

vS(q, (o) = — —Im (d — + sq D(q, s)Vpg' 1 2 Vpg 2

(d y s=4)

(53)

The Frenkel model, (28)-(32), gives

+ ', +
3 Qr[r, +s(1+6)], (54)s+aq

where

2 2 voq sq (v —vo}2 2 2 2 2

r(s }=(s +s r+ r,r,} s + + s+

+'"', +—sQ', [r,+s(1+~)]. (55)
S +Qg

Thus we have

av()q (1 —7 ') (v„—vo}7,
('+ (aq }' 1+ ((u», )'
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4G, ~ I (1+ 6) + I"0(FOI', —(u )
3p ( r,r,)', ( r)'

It is straightforward to interpret the various terms
appearing in (56}. The first term gives the familiar
damping effects due to thermal-conduction process-
es. The second term represents the effects of
thermal relaxation. ' The third term describes the
coupled effects of shear relaxation and reorienta-
tion. The coupling is a consequence of the model,
as is the dispersion effect due to thermal relaxa-
tion in the spectrum of anisotropic fluctuations.
In the case of vanishing anisotropic fluctuations we
expect 6-0 and 10-0. Then (56} reduces to the
model discussed by Bhatia and Tong. ' If we fur-
ther ignore the shear relaxation by replacing the
third term by ~/po, then (56) becomes identical to
the so-called Mountain model. ' The damping func-
tions corresponding to the models discussed in Sec.
II are given in Table I.

In terms of the notation of Sec. III, the polariza-
tion arrangements which enable S(q, w) to be ob-
served are VV and also HH for 8 +-,'m. Equations
(22) and (23} show that in addition to S(q, (u) the
measurement will always contain contributions from
anisotropic fluctuations, o„and X, and cross cor-
relations. The cross correlations can be obtained
from the Frenkel model in a similar way. We find

S(n, o„)+S(o„,n}

= 2Re F '(s) — ' 0 S(q) [I"0+s(1+h)]
4G, voq

4G
+ 3(~a„(q)~s) (s+6} . (57)

Po

To determine the observed absolute intensity of
Brillouin scattering, we must also have the numer-
ical values of coupling constants A. and J3. Since
we do not expect new features to emerge from such
calculations, we will not pursue this calculation any
further.

V. NUMERICAL RESULTS

Recently Stegeman and Stoicheff have made light-
scattering measurements on several nonassociated
organic liquids of rather high viscosity. ' Among
the observed spectra of I~ and IH many showed the
doublet feature discussed in Sec. III. As an appli-
cation of the above analysis we will compute the
90' scattering spectra of quinoline and nitroben-
zene, which are among the best resolved data. Al-
though these two cases show similar features, their
integrated intensity ratios of sharp component to
background are quite different. The ratio is 0. 54
for quinoline and 2. 84 for nitrobenzene. '

The physical constants needed for the computation

TABLE II. Physical constants and parameters for
quinoline and nitrobenzene.

T ('C)
pp(gm/cm3)
vp(1 0 4cm/sec)
v (10 cm/sec)
g(cp)
7'&(10 " sec)
&~(10 sec)

vp(10 ~~ sec)

A or D

~I, (GHz)
~&(0Hz)
O(GHz)

Quinoline

22 ~ 3
1.093

13.6
16.7
3.57
5. 4
0. 149
2. 5a
2. 5
0. 149
0. 54
0. 54
6. 4
0. 81
6. 5

Nitrobenzene

20. 0
1.2

14.75
15. 15
2. 01
4. 4
0. 103
1 03
1.036
0. 103
2. 84
2. 84
5. 6
0. 32
5. 64

Values for the Volterra model.

are given in Table II. The adiabatic sound speeds
vo are obtained from ultrasonic data, ' while the
high-frequency sound speeds v„are derived from
the observed Brillouin frequency shift assuming
~~ = v„q. The thermal-relaxation times have been
deduced from an analysis of the width of Brillouin
components. In determining the shear- and orien-
tation-relaxation times, we estimate 7, =7}/G, by
using the experimental value of g and an approximate
G, taken to be & of the bulk-modulus value estimated
by Stegeman. According to the Frenkel model,
is the integrated intensity ratio which is known ex-
perimentally. We then use (45) to obtain 70 after
assuming that the observed diffuse linewidth quoted
in Ref. 3 is roughly I'„.

The IH spectra of quinoline and nitrobenzene are
shown in Figs. 2 and 3. Since the experimental
spectral distributions in Ref. 3 are traces for which
the base lines are not shown, in comparing theoreti-
cal spectra with these data it was necessary to es-
tablish two reference intensities. We have, there-
fore, matched the theoretical and observed inten-
sities at the position of maximum intensity and at
the half-width at half-maximum. This procedure
does not involve fitting another parameter in the
Frenkel model to the data. The theoretical spectra,
which are obtained using the full expressions (35)-
(3V), have been convolved with a Lorentzian resolu-
tion function having the same width as the experi-
mental resolution spectrum. For quinoline and ni-
trobenzene the half-widths at half-maximum of the
resolution function are 0. 39 and 0. 37 0Hz, respec-
tively. The doublet position in each case is found
to be very nearly the expected value, Qr(l+ 6)'~ .
In fact the calculations shown in Figs. 2 and 3 are in
essentially perfect agreement with the experimental
traces. For this reason there is no need to show
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FIG. 2. Spectral distribution IH (&~, co) in arbitrary
units for quinoline at 22. 3 'C. The theoretical result
has been convolved with a Lorentzian resolution function
of half-width at half-maximum equal to 0.39 GHz.

assumptions underlying our analysis. The first is
that the behavior of anisotropic fluctuations in the
dielectric constant can be described by an effective
stress tensor. The stress tensor represents the
usual elastic (Newtonian) stress as well as local
stresses arising from molecular reorientations.
The second assumption concerns the use of visco-
elastic equations to evaluate the temporal evolution
of thermal fluctuations. These equations are de-
rived with the aid of phenomenological analogous
electric circuits which simulate the effects of shear,
orientation, and thermal relaxations.

In the absence of optical rotations, the dielectric
tensor is symmetric and it seems reasonable that
its spatial Fourier transform is Hermitian. In re-
lating the anisotropic fluctuations to the effective
stress tensor, we have assumed that o' z(q, t) is also
Hermitian. As mentioned in Sec. III, this assump-
tion does not necessarily imply that the stress ten-
sor is symmetric, but the symmetric and antisym-
metric components must satisfy (20). Our analysis
of depolarized light scattering was based on the as-
sumption that & z(ci, t) has five independent compon-
nents. This is true if 0 ~ is either Hermitian or
symmetric. Since our calculations proceed in the
same way under either condition, our assumption

1.0

the data explicitly.
In the case of IH, both theoretical and experimen-

tal results are given in Figs. 4 and 5. The normal-
ization procedure is the same. The experimental
points are obtained from the traces given in Stege-
man's thesis, and the size of the points indicates
our estimate of the uncertainty in reading the traces
arid also in the fluctuations of the data themselves.
.-'-.'.s a result of the coupling with longitudinal waves
in 0„, a shoulder now appears at approximately the
frequency AI. . The sharpness of the structure is
quite sensitive to the resolution function. For com-
parison we have included the results obtained from
the Volterra model. Since Volterra does not consider
dispersion in the sound speed we have modified his
expressions by shifting the shoulder position to Q~.
The physical constants for the Volterra model are
also given in Table II. These values lead to spec-
tra of I& which are indistinguishable from those
shown in Figs. 2 and 3.

VI. DISCUSSION

0.5

8
FREQUENCY (GHz)

I

l2

Ne have presented a calculation of the frequency
spectra of light scattered under various polariza-
tion conditions by liquids composed of optically an-
isotropic molecules. There are tw o fundamental

FIG. 3. Spectral distribution IH(2~, ) in arbitrary
units for nitrobenzene at 20'C, convolved with a Lorent-
zian resolution function of half-width at half-maximum
equal to 0. 37 GHz.
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The importance of the antisymmetric component in
studying depolarized light scattering, however, is
still not fully understood.

Although our analysis of depolarized scattering
is similar in spirit to the work of Volterra, we have
reached different conclusions regarding the effects
of reorientations and shear fIuctuations in the de-
polarized spectra. The difference arises from the
assumption of the relative magnitudes of ~0 and 7„
the reorientation and shear-relaxation times. Our
results have been obtained under condition (33),
whereas Volterra assumed T', » 70. Thus we arrive
at the interpretation that the sharp component and
broad background are governed predominantly by
reorientation and shear effects, respectively. This
interpretation of the sharp component is in agree-
ment with the work of Ben-Ruven and Gershon, and
Keyes and Kivelson. In Volterra's work the inter-
pretation of the sharp component and broad back-
ground would be the reverse of our result. Even
though it is difficult to make a general statement,
we believe that (33) is valid for many liquids in view
of the fact that reorientation times are often of the
order 10 "sec and shear-relaxation times, at least
in simple liquids, can be as small as 10 ' sec.
Pinnow, Candau, and Litovitz have found that ~z can

FIG. 4. Spectral distribution I~(2&, &) in arbitrary
units for quinoline at 22. 3'C. The results of Frenkel
model (solid curve) and of Volterra model (dashed curve)
have been convolved with the same Lorentzian resolution
as in Fig. 2. The circles represent the experimental
data of Stegeman and Stoicheff and their size indicates
the uncertainty in reading the measured traces as well
as the fluctuations in the data.

l.o

of (19) is not essential. The alternative is to take
0 ~ to be symmetric. So far as the Frenkel model
is concerned, we see from (9) that a' z(q, f) will be
symmetric if the initial conditions are symmetric.

Ailawadi, Berne, and Forster' have discussed
depolarized light scattering using a stress tensor
which has an antisymmetric component. This com-
ponent is a direct consequence of angular momentum
fluctuations. Andersen and Pecora have also con-
sidered an antisymmetric part of the stress tensor,
and they showed that the results of Leontovich and
of Volterra can be obtained from a purely symmet-
ric stress tensor. In an approach such as Leonto-
vich, Volterra, or the present analysis, a phenom-
enological equation is used to calculate o z, and
molecular reorientations are considered implicitly
through an additional relaxation mechanism. ' Since
5e z is symmetric, the question of the antisymmet-
ric component does not come up during the calcula-
tions. On the other hand, in a molecular approach
where one considers rotational variables, this com-
ponent occurs explicitly in the coupled equations.

0.5

8
FREQUENCY (GH z)

I

l2

Spectral distribution IH(2x, ~) in arbitrary
units for nitrobenzene at 20'C. The notations are the
same as in Fig. 4.
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be larger than or comparable to 7;, depending on
whether reorientations occur in small steps or large
jumps.

The existence and origin of the narrow doublet in
the depolarized spectra have been a subject of con-
siderable theoretical analysis. There is general
agreement that it arises from the coupling between
reorientational motions and shear modes. Although
the initial interpretation ' ' has emphasized the
connection with shear-wave propagation, more re-
cent study suggests that the coupling should be re-
lated to dissipative motions instead of wavelike ex-
citations. " Our spectral decomposition of I„sup-
ports this conclusion. From (44) we have seen that
the origin of the apparently resonant behavior does
not depend on the existence of propagating waves.
Specifically, the doublet behavior is found to be
simply a consequence of the last term in (44) being
~~g~ti~e in the vicinity of the origin. It is also in-
teresting that the observed peak in IH in the vicinity
of the Brillouin frequency has an entirely different
structure, as shown by (47) or (4S).

We have obtained numerical results from the

Frenkel model which can be compared with experi-
ment. Figures 2-5 show excellent agreement be-
tween the calculated spectra and the measurements.
We have also repeated the calculations using Vol-
terra's model. The values of ~0 and 7, are obtained
by reversing the assignment for the Frenkel model
(cf. Table II). We then found that Volterra's model
gave results which are indistinguishable from those
in Pigs. 2 and 3, and there is only a slight differ-
ence in I~. We can therefore conclude that, aside
from the interpretation of the physical mechanisms
underlying the sharp- component width, the two mod-

els are essentially equivalent. If we compute the

shear modulus from qI'„assuming I', is proportion-
al to ~„, then we would obtain a value which is
smaller than the bulk modulus by at least an order
of magnitude. This observation would indicate that
the sharp component has little direct connection with

shear modes. '
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Two alternative expressions for the two-photon decay rate of the 2 Sp metastable state of

helium are evaluated by performing the summations over intermediate P~ states. The values
obtained from the "length" and "velocity" expressions for the decay rate are 50.85 sec ~ and
50.89 sec, respectively, in good agreement with a recent experimental value and with pre-
vious calculations done by different methods. Incidental results are given for the photoioniza-
tion cross sections of the 1 Sp and 2 Sp states of helium in the energy region 0-0.2 By.

I. INTRODUCTION

The radiative lifetime of the 2'Sp metastable state
of helium is of fundamental interest because single-
photon decay to the 1'Sp ground state is strictly
forbidden by the selection rule J =0 ~J =0. This
selection rule is violated only by the presence of
nuclear spin. Breit and Teller' pointed out that
the 2'Sp state of helium should decay predominantly
by two-photon electric-dipole emission. This de-
cay process gives rise to a continuous emission
spectrum, since the only restriction on the photon
energies is that their sum equal the energy dif-
ference between the 2'Sp and 1 Sp states.

The two-photon decay of the 2'Sp state proceeds
through virtual transitions to intermediate I'&

states. In order to evaluate directly the expression
for the decay rate, an infinite summation over the
intermediate 'P& states (which includes integrations
over the continua) has to be performed for each
pair of photon energies. Dalgarno first attempted
a direct evaluation of the expression for the two-
photon decay rate of the 2 Sp state by explicitly
carrying out the summations over the intermediate
states. In subsequent calculations, Dalgarno and
Victor ' avoided doing the infinite summations
over intermediate states by carrying out variational
calculations for the complete perturbed wave func-
tion for each pair of photon energies. In a recent
calculation of the two-photon decay rates of the
2'Sp and 2 S& states of heliumlike ions, Drake,
Victor, and Dalgarno' conveniently performed the
summations over intermediate states by replacing
the sets of true excited-state wave functions by

discrete sets of variationally determined functions.
In the calculation of the two-photon decay rate

described in this paper, the summations over the
intermediate 'I'q states are explicitly performed.
Use is made of the oscillator strengths recently
obtained by Schiff, Pekeris, and AccadB for the
electric-dipole transitions from the 1 Sp and 2'Sp
states to the lowest four discrete 'I'& states. An
expansion into a complete discrete basis set (a
modification of the close-coupling method used to
describe electron scattering by hydrogenlike ions)
has been carried out for the I', continuum wave
functions. These wave functions have been applied
with success in an evaluation of the photoionization
cross sections of the 1 Sp and 2 Sp states of helium.

Pearl has reported an experimental value of
(38 + 8) && 10 s sec for the radiative lifetime r of the
2'Sp metastable state of helium. However, a more
recent series of measurements made by Van Dyck
and co-workers ' has yielded the result v'=(20+ 1)
x10 sec, which is in good agreement with the
theoretical value of r= 19.5X 10 ' sec calculated by
Drake, Victor, and Dalgarno. '

II. THEORY OF TYCHO-PHOTON EMISSION

The probability for the simultaneous electric-
dipole emission of two photons with one photon
in the frequency range from v& to v&+dv& is given
(in sec ') by'

210 ~B~4
A(v&)dv& —

z 6 v& v2 dvz

(1'SIR fain')(n'IR t, i2'S)
tl vn's+ va


