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The cross section for the double Compton effect is integrated numerically in the laboratory
system, and the effect of the radiative tail to the Compton line is discussed. The double Comp-
ton effect is also studied in the c.m. system for the cases in which the energy of one of the
emitted photons is much smaller than the electron rest energy or much smaller than the energy
of the incident photon. Expressions for the radiative corrections to the total cross section
for Compton scattering are obtained in the high-energy approximation to first order in the fine-
structure constant. The total cross section for the double Compton effect is computed by nu-
merical integration. The contribution to the absorption coefficient for high-energy photons
from double Compton scattering and Compton scattering with the emission and reabsorption of
a virtual photon is obtained.

I. INTRODUCTION

Brown and Feynman' have evaluated the differen-
tial cross section for the radiative corrections to the
cross section for Compton scattering to first order
in the fine-structure constant n = ~37. Because of
the infrared divergence the radiative corrections
alone do not have any physical meaning. This is a
consequence of the impossibility of experimentally
separating a given process which includes the emis-
sion of photons of very low energy (below the exper-
imental energy resolution) from the same process
in the absence of emitted low-energy photons. When
the effects of a virtual and a real low-energy photon
both are taken into account the infrared divergence
disappears, and a finite physically meaningful cross
section remains. More exactly, the cross section
for all processes which do not contain an infinite
number of soft photons is zero, but if the energy
loss by emission of soft photons is not too small
(the logarithm of the energy loss in units of the rest
mass of the electron should not be much larger than
1) it is, to first order in o., sufficient to assume
that a single soft photon is responsible for the ener-
gy loss. Brown and Feynman therefore also calcu-
lated the cross section for double Compton scatter-
ing (in the lab system) in which the energy of one of
the emitted photons is much smaller than the rest
energy of the electron. This restriction (k «m)
is not easily fulfilled in actual experiments, and
after quoting some known results in Sec. II we,
therefore, consider in Sec. III the effect of two-pho-
ton emission for the case of more practical energy
resolutions. The integrations have been done nu-
merically, and the radiative tail to the Compton line
is shown for a number of energies and scattering
angles.

In Sec. IV we discuss a high-energy approxima-
tion, and we obtain approximate expressions for the
cross sections.

In Sec. V we examine the double Compton effect
in the c.m. system for the case in which the energy
of one of the emitted photons is much smaller than
the energy of the primary photon, but much larger
than the electron rest energy. Combining this cross
section with the formula of Brown and Feynman we
obtain an expression for the corrections to first or-
der in a to the Compton cross section at high ener-
gies.

In Sec. VI we integrate analytically in the high-
energy approximation the expressions for the radia-
tive corrections and the soft-photon double Compton
effect, and we obtain the corrections to the total
cross section. We compute the total cross section
for the hard-photon double Compton scattering by
numerical integration, and the correction to the ab-
sorption coefficient for high-energy photons due to
double Compton effect and lowest-order radiative
corrections to the Klein-Nishina formula is ob-
tained. Section VII contains a discussion of the re-
sults.

The system of units and notation will follow close-
ly the conventions used in the book of Jauch and
Rohrlich. We shall use units for which @ = 1, c = 1,
and m =1.

II. SOME PREVIOUS RESULTS
A. Klein-Nishina Formula

The Feynman diagrams representing Compton
scattering to lowest order in a are shown in Fig. 1.
The incoming photon g,nd electron have four-mo-
menta ko and P, , and the outgoing photon and elec-
tron have four-momenta k, and Pz, respectively.
The cross section for unpolarized particles corre-
sponding to these diagrams was first evaluated by
Klein and Nishina, and may, according to Ref. 1,
be written in the following invariant form:

doo= 2m', '(dr/x') U,

where
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FIG. 1. Diagrams for single
Compton scattering.

w k) F/G. 3. Double Compton
scattering diagram.

K= 2p, kp= 2p2k, ,

7 = —2p1k1 = —2p2kp,

1 1 1 1

(2. 2)

(2. 3)

(2. 4)

(1 Pg COSQp)(dp

1 —Ps coso'i+ (ep/~i) (1- cos&~)
(2. 8)

Here np and a1 are the angles between p1 and kp and

p, and k, , respectively, ~1 is the angle between kp
and k„and Pq =

I pq I /e, . In the lab system (p, = 0)
or in the c.m. system (p, +kp=pp+k, ) the relations
above can be simplified.

B. Virtual-Photon Radiative Corrections

In Fig. 2 we show a typical one of the Feynman
diagrams which by interference with the diagrams
of Fig. 1 give the radiative corrections to first or-
der in n. The complete set of diagrams also shown
in Fig. 2(A) of Ref. 4. The corrections have been
evaluated by Brown and Feynman, according to
whom the cross section including the corrections is
dop(1+ 5,&, ), where

and xp is the classical radius of the electron. A
product p1kp means p1kp &1(d where p1 and &1 are
the momentum and energy of the electron, and kp
and cop are the momentum and energy of the photon.
From the conservation laws p, +kp=p2+k, there fol-
lows the Compton relation

2 d01d02 l&2d&1
(4') (Op& g(1 —Pg cosQp)

X
Eg(l Pg cos8p)+ &p(l cos8p) (dg(I cos8gp)

(2 7)

Here ~2 is the angle between kp and k2, ~z is the
angle between p1 and k2, and ~» is the angle between
k, and kz. The quantity X is defined in Eqs. (8. 3)
and (8.4) of Ref. 4 as a function of the invariant
quantities

K1 p 1k 1& K2 p ik2 ~ K3 p1kp ~

K1 =p2k1~ 2 =p2k2~ 3=-p2kp
(2. 8)

The conservation laws p, +kp= p2+k, +k2 can be used
to express da„„ in terms of the variables ~„
Oz, and P (cf. Fig. 4). In terms of these variables

C. Differential Cross Section for Double Compton Effect

In Fig. 3 we show one of the diagrams for double
Compton scattering. All diagrams are shown in
Fig. 2(B) of Ref. 4. The two emitted photons have
four-momenta k1 and k2. The differential cross
section has been calculated by Mandl and Skyrme. '
According to Ref. 2 their result is

(2. 8)

and U„„(K,T) is given by Eq. (3.3) of Ref. 4.

FIG. 2. Radiative correction
diagram.

FIG. 4. Relative directions in double Compton scattering.



the quantities va and 8' appearing in Eq. (2 7)»
given by

cos8&2= cos8& cos8a+ sin8& sin8z cosg (2 9)

(op~a(l pg cosQQ) —co)E g(l —pg cos8g ) —Q)gQJO(l —cos8g)
eg(l —Pg cos83)+(dQ(l —cos82) —co,(l —cos8,a)

, D. Soft-Photon Double Compton Effect

For the case in which the energy of one of the
emitted photons is much smaller than the electron
mass,

&2&~2max&&» (2. 11)
the cross section for the double Compton effect re-
duces to the Klein-Nishina formula times a factor.
The cross section is then

d'&2 P1 P2do'~~, 80gg = a dVQ —
~ (2. 12)4m' ~2 Pk2 P2k2

where doa is given by Eq. (2. 1). Integrating over
the directions of k2 and over tk&I from 0 to ~2 ~
we get

Q ~2max« ...„=-—„«0 &Q —Ryt:oemy)&n- ~
)

»»+P1»»+P2
2p 'n»-p, 2p. '"»-p.

+-:co»y F'(P, ) 8(P,'- P,P.) ~(P,)], (2. 12)

+4y coth2y[h(2y) —1], (2 15)

where

h(y) = (1/y) f udu cothu. (2. 15)

In the c.m. system, where g1=g and 8182=81
& cos8„ the cross section becomes

do ~ „«-- ——da'Q 2(1 —2y coth2y) ln

where E{p) is given by Eq. (A3. 7) of Ref. 4, X is a
small "photon mass", and the step function 8(x) is
8(x)=+1 for x &~0.

The function y is defined by

4 sinhay = (p, —pm)
2 = —(tc+ v).

To evaluate the cross section in the laboratory sys-
tem, we must let p1- 0. We then find the same ex-
pression for do„~ „«as was obtained by Brown and
Feynman:

I

where F(P) is still given by Eq. (A3. 7) of Ref. 4„
and the quantities a, 5, and e appearing there are
a = p, cos(-,'8,), 5 = (1 —a)/(1+ a), and c = [5 tan(-,'8,)]'~a.

The cross sections given in Eqs. (2. 15) and (2. 17)
are valid for all initial photon energies eo, and if
we combine them with the virtual-photon radiative
corrections, Eq. (2. 6), the infrared divergent term
disappears, and we obtain the radiative correction
to the Klein-Nishina formula.

III. RAMATIVE TAIL

We now consider a Compton scattering experiment
in which photons emitted at a given angle ~1 with the
direction of the incoming photon are recorded. For
single Compton scattering, the energy (d, of the
emitted photon is fixed by the energy + 0 of the inci-
dent photon and 8,. According to Eq. (2. 5) we find
that the energy of the emitted photon in the single
Compton effect (d1= v, is in the laboratory system
given by

(dy ~~= Q)Q/[1+(OQ{l —COS8y)] .
We suppose that the measuring apparatus records
photons with energy in the region from w, —~E to

Thus not only single Compton photons are
counted but also some from double Compton scatter-
ing. If 4E is much smaller than» the contribution
from double Compton scattering is given approxi-
mately by Eq. (2. 15) with BE= 4dz . It should be
noted, however, that the condition ~,—&E & ~, &(d,
is not identical to the condition 0&~2& ~E, since
v, +~2 is not a constant. Therefore, in order to ob-
tain the cross sec'tlon corresponding to observation
of photons with energy between m, —4E and (d, we
add the double Compton cross section with the con-
dition m2& v2 ~, to the cross section in which u1 is
integrated from (d, —4E to an upper limit defined by

Calling the latter part do~~, „a,d we find

+ 1 2'
dors~ hara= d{cos8a)

& 1m' dO"

d0264P 1

where the condition

(OQ((d~ —(d g)

~~[1+~a(1 —cos8a) —wq(l —cos8,z)]

——ln ' + coth2y Z(P,), (2. 17)
1 1 define8.
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[1+&so(1 —cos8, )] [1+v&0(l —cosea)] —&uo(l —cos&~2)

[1+&so(1—cosa, )] [1+&so(1—cosa, ) —(1 —cos&,~)&uz ]

+real. sof t E E 1 amax
rekl, sof t

respectively. %e write the contribution from hard
photons

do real, hard
real, hard

ck CFO

6„» „,~=E„(bE)—ELn((ua ).

Using Eqs. (2. 6) and (2. 15) we have computed
E&+E& for several values of coo and ~, . The values
of E&+Ez are shown in Table I, and E~ is plotted as
a function of &E/&u, in Fig. 5. The &E-dependent
correction to the Klein-Nishina formula is given by
the sum &= &vier+ ~real, soft+ ~real, ha~ which is equal to

(8. 5)

Meister and Yennie have evaluated an approxi-
mate expression for the correction 5, retaining only
logarithmic terms Their exp. ression [Eq. (4. 8) on

p. 1224 of their paper] should be fairly accurate for
small laboratory scattering angles but relatively

TABLE I. Quantity E~+F~ vrhich is the nondivergent

part of the corrections to Compton scattering due to
radiative corrections and soft photons.

6l (deg) 30

10 (F~+I'~) 0. 63
10 (I"p+E'g) —0. 188
10 (Fv+Fs) -6 22
10'(F +S,) —14.0

0.474
—0. 287
—5. 04

—11.8

150 uo (Me&)

0. 662
6. 14

10'
10~

—O. 30
—O. 152
-4.41

—10.9

SInce do'real, ha~ can be written in the form

dobe», ha a=+H E Ln(~ama*)

we have subtracted the infrared part from the inte-
grand in Eq. (3.2) and computed numerically the
quantity A.H which is not dependent on &3 ~ but de-
pends on ~E. %e have used the Monte Carlo meth-
od. That is, we choose random values for the vari-
ables of integration and take the mean value of a
large number (about 10000) of samples. We also
compute the rms deviation. At high energies the
accuracy is improved by use of fln[1+~o
x (1 —cos&2)])/Ln(l+ 2&so) as a variable instead of
cos02. The accuracy in the correction to the Comp-
ton cross section is then about 10%%uo for 1-Bev pho-
tons, and better than that for lower energies.

The corrections to the Compton cross section
from a virtual and a real soft photon can be written
RS 6vl~ =Ey +El' Rnd

I

poor for larger angles. Comparing with the results
of this paper we find, for example, that for an ini-
tial photon energy coo= 100 MeV, relative energy
resolution &E/(u, =0.05, and scattering angle 8,
= (2/&u 0) = 5. 8', their expression gives 6 = —l. 48%%u&&

to be compared with 5= —1.1/o from this paper.
However, for HI=90 their expression gives for the
same resolution 6= —2. 76% as compared with our
value 5= —1.6%%uo.

The energy spectrum do„» „„~/d&u„which is the
rRdiRtive tRil to Compton scatteriDg ean be found by
differentiation of da„„„„dwith respect to ~E. The
quantity

doreal, hard dao8/
dQ, dw, dQl

IlRs beeD tabulated iD TRble II for severR1 values of

v» vo, and ~, . These spectra are useful if one

applies a detector which does not have a rectangular
response function. Carrassi and Passatore have
calculated some such spectra before and part of
their results are confirmed by ours.

When u&, approaches v, the spectrum do„»/dQ, d&u,

increases portionaLLy to 1/(&u, —&u, ). One should,
however, remember that this seemingly large effect
is not physically meaningful since it is compensated
by the effects of virtual photons, and therefore the

number of photons emitted in dQ& with energy be-
tween m, and u, —&E is finite.

The spectrum do„»/dQ, d&u, also diverges as 1/(u,
if ~, approaches 0. This divergence does not pro-
duce any difficulties since only photons with a finite
energy can be observed, and therefore the divergent
region can not be reached experimentally. Some
care must be taken if one also wants to integrate the
spectrum over de, and dQ, . The expression (2. 7)
gives the probability for emission of two photons of
energy co, and era into solid angles dQ, and dQ2, re-
spectively. However, when we integrate over a re-
gion of angles and energies we may sometimes count
identical final states twice. In order to obtain the
correct integral cross section we therefore have to
multiply our integrand by a factor of —,

' each time a
configuration of final states is produced twice. The
overlap of final states is of no importance as long
as at least one of the variables stays fixed, but when

the integral over the last variable is performed a
factor of ~ must be supplied. Addition of the diver-
gence at the upper and lower end of the spectrum
Rnd division by 2 then produces a divergent term
which exactly cancels the divergent term from the
integral of the radiative corrections. Thus all di-
vergences are removed in the total cross section
as they should be, since the total cross section is
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o e order i/(o ' oo +0 or larger give a

ily verified for
e ormula, and we

or e radiative c' e corrections and the



K. J. MORE

TABLE Q. Double Compton spectrum dao/d~~d~~=R(dao/dO~)as a function of ~~/~~ for some values of the primary
energy +, and the scattering angle 0~ Oab system). Here ~ is the energy of one of the scattered photons in double Comp-
ton scattering, and ~~ is the energy of the scattered photon in single Compton scattering.

(d g/CO&

102R
10 R
10 R
102R
10 R
10 R
10 R
10 R
10 R
102R
10 R
10 R

0. 134
0. 688
1.04
0.316
1.38
4. 94
0. 515
2. 31
2. 5
0. 612
3.65
7.82

0.75

0.146
0.825
1.26
0.405
2.41
4.84
0.71
3.23
3.78
0.795
5, 48
9.65

0.80

0.169
1.012
l.76
0.57
3.19
4. 94
0.98
5.08
7.2
1.08
8, 2

13.1

0. 85

0. 241
l. 50
2. 53
0.80
5.13
6.34
1,42
8. 03

14.4
2, 04

12.3
19.6

0.90

0.412
2. 56
4. 10
l. 28
8.48

13.9
2. 22

14.1
26. 0
3.43

20. 5
35. 1

0.935
6, 38

10.35
3.16

17.7
36.5
5. 33

35, 2
51.3
8. 56

52. 0
84. 0

0. 97

1.63
10.87
19.25
5.56

34. 3
58. 0
8.60

66.5
123

15, 3
95.6

150

0. 99

5. 13
32. 9
52. 8
17.3
95.5

193
24, 9

198
341
63. 6

200
500

30
90

150
30
90

150
30
90

150
30
90

150

0.662
0, 662
0, 662
6. 14
6. 14
6. 14

100
100
100

1000
1000
1000

8g

(deg ) ~0(MeV)

double Compton effect by detailed examination of
these cross sections. Thus ln oui approxlIIlatlon
we can always put no~, » 1 in the lab system. In the
c.m. system we find correspondingly that the cross
section has a maximum at angles 8,= g, and that
angles in the region 8,=0(l/+0) or m —8, &O(1/&oo )

need not be taken into account when we are inter-
ested in the total cross section. This means that
4 sinh y = —(z+ v)» 1, and according to Ref. 1, h(y)
is given approximately by h{y) = —,'y+m /12y. There-
fore the Brown-Feynman expression for the radia-
tive corrections can be written

do„„=duo 8,~, = —2oyo ~ 2(1 —2y) U ink+ —4 —5t ——— 3- ~ + 4(2 —U) y —4y + z U ——
3

ada 3 2

+ 1-——— ln I(: + 2t+ —-2+—
3 L, B 1+&t + 1 —~t+4y —+——1 ln &

t 1 3 1 2 1
2 t Kt t 2

2 2 1
+ 1-—+—3+ +4y t —1+—lnvt . 4. 1

1+ vt 2t

Here
y= —'In[~K~{1—t)], f = —7/K, U=f+I/f, {4.2)

and in the lab system & is —2+0 and 7 is 2&so/[I

+ ~o(1 —cos8,)], and in the c.m. system t&= —2&&(uo

—2G)0 and 'r = 2tg(do(1 + Pg cos8y) 2(00 (1 + Qcos8g).
The approximate expression for the cross section

for the soft-photon double Compton effect in the lab
system becomes

=( / )d 0[2(l —2y)ln(2+ /X)

—1 —2y —4y'+~~']. (4. 3)

The formula (2. 17) can also be simplified consid-
erably at high energies and not too small scattering
angles. The quantities 5 and c become

b = tan'(-,'8,)+ cos(-,'8, )/[4(o, 'sin'(-,'8,)]+ O(1/(g, '),

c = tan (-,'8,) + cos(2 8,)/[8|do'sin (-,'8,)]+ 0(1/(oo').

Introducing these quantities in Eq. (A3. 7) of Ref.
4 we find an expression for F(p, ) which can be sim-
plified further by means of relations between the
dilogrithms. ' The cross section in the c.m. sys-
tem becomes finally

do'„,)„,f ~
= —(o/m)doo [2(1 —2y) In(2(ua /X) + 2 ln'8

—21m+-.'~'- —,
' ln'(1- f) —f.,(t)], (4.4)

where &=cg+(t)p 2Qpo ls the total energy in the c.m.
system.

V. CORRECTIONS IN c.m. SYSTEM

%HEN BOTH G)g AND M2 MAY BE LARGE

The formula (4. 4) for the double Compton cross
section is only valid if &z ~& 1. In order to find
the cross section for the case in which both emitted
photons may have high energies, but the energy of.
one of them is still much smaller than E, we return
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to Eq. (2. I).
Imposing the condition

& ~&& AE,

where

(5. 1)

This formula is not valid in the exact forward or
backward directions. In the forward direction
P, =Pz and do„„((4)z~~)=0 according to Eq. (2. 13).

We also find that do„„(nE, (4)3 ) vanishes, so
that

1&& QE«E (5. 2) d(y ~ (nZ)8 ()
-—0 . (5. 6)

we find from the conservation laws and Eq. (2. 10)
that co~«&, =~0=&3=~,= ~E, and the expression for
the cross section can be simplified considerably.
The integrated cross section

~~0' dn,
p l(dpX,

~3maz

(5. 3)
which contains part of both soft and hard photons,
can be evaluated analytically in the high-energy ap-
proximation if we keep only terms which. give a non-
vanishing contribution to the total cross section.
By detailed examination of each term in X [cf. Eq.
(2. 6)] we have shown that the integration of (5. 3)
gives just

do,.„(nZ, ~z ) = —(n/v) doo 2(1 —2y) In(AE/&pa„).

(5.4)

This means that the effect of increasing the upper
limit of integration of co& from +3 ~ to ~E is only
to replace ~3 by &E in Eq. (4. 4). In the labora, —

tory system such a simple extension of ~& from
«1 to 1«&3 ~«co0 evidently cannot be done,

since the absolute upper limit of e~ is (4)p/[1+ u&0

x (1 —cos83)] which is smaller than one for angles 8z
larger than —,'z. In the c.m. system we now have

da„~(nE) = ——d&ro 2(1 —2y) ln + 2ln EQ

In order to get the cross section in the backward
direction we put 8, = v in Eq. (5. 3), and examine
once more the integral for the case in which 1« ~E
«E. We find that the cross section is again given
by the formula (5. 5) plus the term

—(n/v)do, in'(2b 8). (5. V)

The formula (5. 5) can also be used to get an anal-
ytic expression for the cross section in the lab sys-
tem for the case in which both emitted photons are
not soft. The cross section do„~(&E) is an invari-
ant under a Lorentz transformation, and we there-
fore only need to express the quantities in Eq. (5. 5)
by the corresponding quantities in the lab system.
The energy of the primary photon transforms like
u&0'

' —-(~+0 ), so E=(2&so )'~ . In the c.m. sys-
tem 4E is the isotropic upper limit of the energy
of the photon k3. In the lab system this corresponds
to an anisotropic energy resolution in which the
vector kz is confined to an ellipsoid.

The cross section for the double Compton effect
contains the nonphysical photon mass X. In order
to obtain the physical cross section to first order
in n we have to add the double Compton cross sec-
tion to the expression for the radiative corrections.
Thus X disappears as it should. We shall examine
more closely the correction in the c.m. system at
high energies. The expression for the correction

ra—21nE+ ———,
' In'(I —f) —L,(f) . (5. 5)

do„~(az)
+vir

0

is, according to Eqs. (4. 1) and (5. 5),

(5.6)

5' '= ——2(1 —2y) Uln(24E)+ —4 —3t ———
q 3+4(2 —U)y —4y+~U+ 3 3+4 1 ——ln Ee.m. m' 1 2 2 3 2 2

m~ 6 t Et Et 2t

+ 2t+ —-2 —
~ 3 Lp 1 —E t + 2 —5t ——+4y —+t —2 lnE —~Uln 1 —t —U L3 g

1 2 3 2 2
t E t

2 2 E' 1'( ———&4, —
&4

—~ 4) ) —1 ~ —)n(Z't)), (5. ())

where t= —,'(1+B,cos8&), y =1n[Esin( —,'8~)], U=t+ I/f,
and 4E«E.

The correction 5' ' above is valid for all angles
which give a significant contribution to the total
cross section. This correction contains terms pro-
portional to ln E, and these terms will be very large
at extremely high energies. To see what happens
when E-~ we consider the following four cases:

(a) 8= I, 8, =0: In the forward direction do„,~
x (6E)= 0 according to Eq. (5. 6) and only the radia-
tive corrections contribute to 6' . From the exact
formula of Brown and Feynman, Eq. (2. 6), we find
at high energies

5„' = 5„„=(n/v) (21n E+InE+$gv —~), .(5 10)

and the correction is seen to be proportional to



K. J. MORK

(n/v) ln E when E- ~.
(b) t-O(1), 8, is not close to v and not very

small: For this case Eq. (5.9) is valid and keeping
only the ln E terms we get

5 =4(o./v)1n(E/bE) lnE. (5. 11)

The correction is of order (n/m)lnE since In(b E/ E)

is taken to be of order one.
(c) t«1, &q is close to v: Keeping terms such

as ln E and ln t in Eq. (5.9) we find

5c=4(o./v) [lnEI n(& E/E)+ —,ln t]. (5. 12)

Here the first term is of the order (o./v) lnE, but the

last term becomes of the order (o./v) ln E when &,

is of the order m —1/E. As is shown in Sec. VI,
Eq. (6. 13), the ln t term is large in a sufficiently
large region of the angles to give a contribution of
the order (o./v) In E to the correction to the total
cross section.

(d) t«1, g, =v: For this case formula (5. 9) gives
5' '=4(n/v) [InElnbE ——,'ln E], but according to

Eq. (5. t) we should add another term —(o./v)
x ln2(2bE) from the double Compton effect.

Hence we have

6& = (o./v) [ln E+ 21nE 1n(bE/E) —ln (&E/E)]

rithms and trilogarithms. To check our results we
have performed this integration and made the high-
energy approximation in the final result.

In the c.m. system (&E«E) we get, by integra-
tion of the cross section in Eq. (5. 5),

o,",~' (bE) = —(neo /E ) [41n E —3ln E+ (—',v —1)lnE

+,~ v —2L3(1) ——,
' + (- 8 ln E+ 21nE

+~2+ —,'~') In(2bE/x)]. (6.4)

Integration of da„~ „«of Eq. (4. 3) gives the total
cross section for the soft-photon double Compton
effect in the laboratory system,

+real, soft = (&&0 /&d0) [ln 2+0- —,
' ln 2QJp

-(3++v~)ln2~0+ 2L, (1)+-,'v~+ 2+ (- 21n~2+0

+ 2 ln2&0+ —', + 3w ) In(2&v~ ~/&)] . (6. 5)

In order to obtain the total cross section for dou-
ble Compton scattering in which both emitted pho-
tons may have high energies we integrate the exact
expression of Eq. (2. 7) numerically. Using the
variables &~, 82, y (of Fig. 4), and to2 we compute
in the laboratory system

1 ab
Oreal, hard

= (o./v) ln'E, (5. 13)

and we find that ln E terms are also present in the
backward direc tion.

VI. TOTAL CROSS SECTIONS

In the following we integrate the high-energy dif-
ferential cross sections given above, and we obtain
the corrections to the total Compton cross section
to first order in n.

At high energies the integration of the Klein-
Nishina formula Eq. (2. 1) yields.,=(2.~,'/l. l) (lnl. l+-,'), (6. 1)

where w= —E in the c.m. system and w= —2&0 in
the lab system.

The integration of the radiative corrections Eq.
(4. 1) can be performed analytically. The result is

o.=- (2«0'/I ~l) [3»'I ~I --'»'I &I -~6»I &I

+L,(I)+-,'v~ ++~+ (- 21n Ivl+Inl tel+ —,+—,'m )Ink] ~

(6. 2)

The trilogarithm L3 is equal to the Riemann f func-
tion of argument 3 '

L,(1)= C(3) =1 202. (6. 3)

It is also possible to integrate the exact expres-
sion of Brown and Feynman, Eq. (2. 6), analytically
for all energies, expressing the result by diloga-

+1 2II'

= —o,y, ~ — d(cos Hz) d(cos 8,) dy
2 2w

td fmax (d gQ)P
& ~0[1+~0(l —cos &~) —v, (1 —cos gqp)]

&pmax

(6 6)

Here &u, is given by Eq. (3.4). We have multi-
plied the cross section by a factor —,

' since by inte-
gration over all possible magnitudes and directions
of k~ and k2 we include identical final states exactly
twice. It is convenient to subtract the term contain-
ing the ur2 dependence in Eq. (6. 6) before making
the numerical integration. This procedure improves
the accuracy of the method. We also computed the
rms deviation to get a measure of the accuracy [see
text following Eq. (6. 19)].

The integrations in this section are quite similar
to those made by Andreassi et a/. ' when calculating
the corrections to the cross section for electron-pos-
itron pair annihilation. As a check.of both their
calculations and our method of integration we have
also computed the three-photon annihilation total
cross section by numerical integration. For this
case, however, the domain of integration in phase
space is more complicated, and we were not able to
subtract the contribution from low-energy photons
before making the numerical calculation. Conse-
quently the accuracy of the method became much
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TABLE III. Quantities G~~ and G' ' as functions of
E. The correction to the Compton scattering cross sec-
tion in the c.m. system is given by & ' ' =G~z'+G
xln2~.

0—

-20

Z(Me V)

I 10
50

100
250
500

103
104

2Gc m
VS

—3.90
—12. 0
—16. 8
—24. 4
—30.6
—37. 9
—67. 6

102Gc.m.

2. 13
3.70
4.37
5.25
5. 86
6.53
8.71

-60

-80
I02 I03

u)0, MeV
I04 Io'

poorer, of the order 20-40% for energies below 100
MeV, and even larger for higher energies. Within
the limits of error our results confirm those of
Andreassi et aE.

From the relations given above there now follow
the corrections to the total cross section at high en-
ergies. The cross section including corrections to
first order in 0. is

FIG. 7. Correction A~b to the total cross section for
Compton scattering as a function of &p ~ The curves a,
b, and c correspond to &2 ~= 10, 10", and 10, re-
spectively.

energies the ln E and lnEln~E terms in 4' ' are
dominant. Hence we have

&z' „'= (n/v) [—', ln E+41nEln(AE/E)]

o = co(1+ &),
where

& = (&/oo) (o,&, + o,.~).
In the c.m. system we find

gc,m. Gc,m, + Gc m, ln(2gE)

where ~&«~ and

Gc,m. (+/ Vc.m.
) POln3E 5 ln2E

(6. 7)

(e. 8)

(e. s)

= (2o./3m) ln E, (6. 13)

((u, m, ) = Gv g+ G' ln(2(u, m ),
where

(6.14)

GP$ (Q/vV ) [3 ln 2+0 —ln 2+0 —(3+v ) ln2&uo

+ 3LS(&)+~),7r'+q], (6. 15)

G' = —(n/mV ')[-21n 2~0+21n2~0+2+ 33f ] (6. 16)

since in(bE/E) is of order one.
In the laboratory system we obtain the correction

—(1+v )ln E —Lz(l)+pm + j], (6.10)

'= (o'/« '
) [- eln E+21nE+ —,'+cv ], (6. 11)

V ccmc (6. 12)

The functions G&'& ' and Gc™are tabulated in Ta-
ble III, and &' ' is plotted in Fig. 6 as a function
of E for several values of 4E/E. At extremely high

V' =ln 2+o+ 2, (6. 17)

and (d& ~ is the isotropic upper limit of the energy
of one of the emitted photons. The functions G&&

and G' are tabulated in Table IV and 6' (uz m) is
plotted as a function of coo fo" several values of

ez ~ in Fig. 7.

IO—
0—

TABLE IV. Quantities Gz~z, G a, and Gz~ as functions
of primary photon energy cop. The quantity Gz~&+G

x ln22 m~ gives the correction to the total Compton cross
section from radiative corrections and soft photons, while
Gz"- G "Inw2~ gives the correction from hard photons.

~p(Me V) 102G lab 02Glab 02G lab

-40
IO I02 I03

E, MeV
i04 l05

FIG. 6. Correction b,™to the total cross section for
Compton scattering as a function of E. The curves a, b,
and c correspond to (~/E) =10 ', 10", and 10", respec
tively.
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100
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500

103
104

—1.21
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—6. 73
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—12. 80
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—28. 20
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I.O VII. DISCUSSION
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FIG. 8. (a) Correction A«t &
to the total cross section

for Compton scattering as a function of the photon energy
~o for ~o in the range 10-100 MeV. The correction in-
cludes contributions from lowest-order radiative correc-
tions and the total cross section for the double Compton
effect. (b) Correction 4&«& tcf. Fig. 8(a)t for ~() in the

range 10-1000 MeV.

(6.16)

where o,",b~ b~ is given by Eq. (6.6). We write

+lab G1ah
G lab ln(

where GH is the quantity computed numerically
and it is given in Table IV. The rms error in this
quantity increases from 3%%u& at 500 MeV and about
20% at 1000 MeV.

The correction including radiative corrections to
first order in o. and the complete double Compton
effect is then

~togai = Gvs + G' ln2+ G (6. 20)

This quantity is plotted as a function of (do in Fig.
8.

The correction n'~(ez ) of Eq. (6. 14) contains
only the contribution from radiative corrections and

soft photons. Part of the contribution from hard
photons can be obtained from the cross section in-

the c.m. system by a Lorentz transformation as
explained in Sec. V. If we want to include the com-
plete contribution from double Compton scattering
we have to add to &'~(&oz ) the quantity

In the previous sections we have established ex-
pressions for the corrections to the Klein-Nishina
formula arising from lowest-order radiative cor-
rections and double Compton scattering.

The corrections as a function of the relative en-
ergy resolution nE/&o, (v, is the maximum energy
of the emitted photon) for a rectangular-type energy
resolution is shown in Fig. 5 for several energies
and scattering angles. An exponential-type energy
resolution would not change these results much, but
would tend to reduce the contribution from the dou-
ble Compton scattering. At energies of 1 MeV or
lower the correction is below 1%, and it varies only
some tenths of a percent if bE/u&, varies by 10 to
20%. It is probably hard to detect this effect since
it will be masked by other effects such as back-
ground, multiple scattering, electron motion, atomic
bindings, etc. The correction is large only for
extremely high energy resolutions. The correc-
tions increase with increasing energy and also the
dependence on nE/up, becomes stronger. This gen-
eral behavior was also found by Anders' who cal-
culated the corrections to Compton scattering for
the case in which the energy of the recoiling elec-
tron is recorded. Present experiments on the dif-
ferential Compton cross section are not very ac-
curate, see, e. g. , the experiment of Peyman et
a/. In this experiment photons of 17 MeV are scat-
tered at small angles. and recorded in coincidence
with the outgoing electrons. The uncertainty in the
experimental results is 15%, while the authors cal-
culate the corrections to be about 5%.

The corrections to the cross section in the c.m.
system show a behavior which seems to be quite
regular for high-energy processes in quantum elec-
trodynamics. At scattering angles which are not
too close to 0 or m the corrections are of order
(o./w) lnE where E is the total energy, while at
angles close to 0 or w the corrections are of order
(o.'/m) ln'E. The same type of behavior is also
found for the corrections to the electron-positron
pair-annihilation cross section. " Eriksson' has
shown that for electron scattering in a potential
the effective expansion parameter at high-momen-
tum transfers is (o/v) Inqb, where q is the invari-
ant momentum transfer of the process. According
to our results for Compton scattering a high-mo-
mentum transfer is not sufficient to make the low-
est-order corrections of order (n/m) lnq, but if
not only q = (p, -pb) =(ko —k, ) is large, but also
(p, —k, ) = (ko-pb) is large, then the corrections
reduce to the order (n/w) lnE. This means that
all angles between incoming and outgoing particles
must be large. For the case of pair annihilation
the concept of momentum transfer is somewhat
obscure, but also here the corrections are of order
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(o,/w) lnE if all angles between incoming and out-
going particles are large. If one of the angles is
small, then the corrections become of order
(n/w) ln E. Since both for Compton scattering and

pair annihilation, small angles give an important
contribution to the total cross section, the correc-
tions to the total cross sections for both processes
are of order (o./m) ln E. The similarity between
these processes is underlined by the fact that the
coefficient multiplying the largest terms turns out
to be the same, namely, (2o./3m)ln E in the c.m.
system.

Recently Cheng and Nu' have made a systematic
study of all two-body elastic scattering amplitudes
in quantum electrodynamics at high energies. Ac-
cording to these authors the differential cross sec-
tion do/dt, where —t is the square of the momentum
transfer, is finite for all processes in the limit of
infinite energy. For the Compton effect the sec-
ond- and fourth-order diagrams considered in the
present article give a vanishing cross section
do/dt at infinite energies. According to Cheng and
Wu the sixth-order diagrams lead to a constant
cross section, and these diagrams therefore be-
come dominant at a certain very high energy.
This energy is not known since numerical results
have not yet been given by Cheng and Wu.

The correction to the total cross section for

Compton scattering is shown in Fig. 8. This cor-
rection which is the sum of the radiative correc-
tions and the total cross section for double Compton
scattering, should be included in the absorption co-
efficient for y rays. Compton scattering does not
contribute much to the absorption coefficient for
energies over about 500 MeV, but for lower ener-
gies the process is important, and therefore also
its radiative corrections. Photon absorption mea-
surements may be performed very accurately, ac-
curacy better than 1%, and they give a valuable
check on quantum electrodynamics. The various
electrodynamic processes which contribute to the
absorption, photoelectric effect, Compton effect,
pair production, triplet production, etc. , are now

known with an accuracy of about 1% or better for
a large range of energies and materials. For a
review of theoretical and experimental data on the
photon absorption process see the paper of Hubbel'6

in which the effects of the present corrections to
Compton scattering are included.
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