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A method is proposed for the accurate determination of atomic wave functions and energies
by the explicit introduction of interelectronic coordinates into a configuration-interaction
wave function. This is accomplished by choosing the configurations in the wave function to
be antisymmetrized projected products of one-electron functions with powers of interelectronic
coordinates. A 107-configuration wave function for the ground state of the beryllium atom
was constructed from a basis set consisting of s and p Slater-type orbitals and powers of
interelectronic coordinates: r~& (g,=0, 1, 2). The energy obtained from this wave function
(E= -14.666 54 a.u. ) is an upper bound to the "exact" nonrelativistic energy of this state and
it is believed to be within 0.0002 a.u. of the "exact" value. The advantages that the present
method offers for extending accurate Hylleraas-method calculations to atomic systems with
N &3 are discussed.

I. INTRODUCTION

The quantum-mechanical description of atoms
and molecules involves the solution of the time-
independent Schrodinger equation

for the wave function 4'=4(X„X2,X„.. . , X„),
where X, = (r„g,) is the combined space-spin co-
ordinate for electron i. In the case of light atoms,
where magnetic interactions can be neglected, X
is the nonrelativistic many-electron Hamiltonian,
which in atomic units' is

Ix=2 --,'~, -= +Z
«g &v

where is the nuclear charge and —24, is the op-
erator corresponding to the kinetic energy of elec-
tron i.

One solutiontoEq. (1) isthatobtainedbythe Har-
tree-Fock (HF) method, which has proven usef ul for
evaluating electronic properties described by many

one-particle operators (e.g. , static electric moments

and electric or magnetic polarizabilities). For
closed-shell systems, the conventional (or restricted)
HF solution to Eq. (1) is a single energy-optimized
Slater determinant made up of symmetry-adapted
spin orbitals (one-electron functions which are the

products of spatial and spin functions). For most
open-shell cases, more than one determinant is
necessary to ensure that the wave function is an
eigenfunction of L 2 and S 2 (again in the conventional

or restricted HF method). '
Although the conventional HF approximation

yields over 99'%%u~ of the total electronic energies of
first-rom atoms, it nevertheless fails to be ac-

curate enough for the prediction of two- (or N )-
electron properties. Thus, for example, the con-
ventional HF method fails to predict the low-energy
cross sections of electron-atom scattering. ' The
accurate computation of quantities like transition
probabilities, electron affinities of atoms and

ions, ~' hyperfine-structure constants, and photo-
ionization cross sections for atoms, atomic ions, '
and molecules'~ requires solutions of Eq. (1) more
accurate than the HF solution.

The two standard variational methods for im-
proving the HF solution were first introduced by
Hylleraas' ' in a series of papers on heliumlike
systems. They are (i) the configuration-interaction
(Cl) method, ' in which the wave function 4' is
expanded in terms of antisymmetrized and pro-
jected products of spin orbitals, "and (ii) the

Hylleraas (Hy) method, "'"in which the interelec-

tronic coordinates r,&
are explicitly included in the

terms of the wave function. There are theoretical
grounds ~' for thinking that both the CI and the Hy

methods are general methods capable of yielding
variational solutions which converge to the exact
solution of Eq. (1) with any desired degree of ac-
curacy if a sufficient number of terms are included.

On the basis of calculations on atomic systems
with atomic number N= 2 ' and N=3, ' it has

generally been held" that for any N, CI expan-
sions converge much more slowly than Hy-method

expansions. On the other hand, (i) the computa-

tional difficulties associated with extending the Hy

procedure to atomic systems with N &3 have been
considered so formidable that few calculations of
this type have been attempted; (ii) it has been

argued 4 that the success of the Hy method for
N= 2 and N= 3 cannot be extrapolated to heavier
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The variational solution to Eq. (1) that we are
seeking is of the form

xlx2, (XI, X2, X3x X4} Z»C»O» (Xl, X2, X3x X4)

(2)
where

4

o,=o(x') o„(x*xll' II x' .~".)
s=1

In Eq. (4), O(L2) is an idempotent orbital angular

(4)

atoms; and (iii} recently A. V. Bunge, ~ C. F.
Bunge~ and co-workers, ~ and Schaefer and
Harris'~ have developed methods for refining the
CI method to such a degree that there appears to
be no more real theoretical or practical difficulties
involved in doing CI calculations. @

In view of the above, it seems desirable to ex-
amine whether indeed the success of the Hy method
can be extrapolated to atomic systems with N &3.
To accomplish this, an attempt has been made to
formulate a method of explicitly introducing inter-
electronic coordinates x&& into the wave function,
which will be computationally practical for atomic
calculations with N &3. This has been done by a
method which introduces x&& coordinates into the
CI method; i.e. , the configurations in the wave
function 4 are chosen to be antisymmetrized pro-
jected products of s or p Slater-type orbitals
(STO's)33 with powers of the interelectronic coor-
dinates r,J. This form of the wave function has the
following advantages over the expansions in inter-
particle coordinates"' which characterize all the
Hy-method calculations for atoms with N &3 to
date22'" ": (i) Products of one-electron functions
and at most one x,& power can be used to represent
computationally difficult terms of the standard Hy-
type wave functions such as "unlinked" products
(e.g. , rl2134) in beryllium. (ii) Use of p STO's
simplifies the problem of handling nonzero angular
momentum states, which arises when one chooses
a standard Hy-type wave function. (iii) Important
configurations from a CI calclulation in an sp
STO basis can be used directly in the wave function,
with obvious computational advantages. '

The calculations have been done on the beryllium
atom because previous applications of the Hy meth-
od to beryllium have not exposed the success
of the Hy method for N &3, and a very refined CI
calculation~ exists for comparison. Also, the
mathematical difficulties involved in introducing
x&&-dependent terms into wave functions for atoms
with an arbitrary number of electrons occur in the
beryllium atom. Thus this calculation is a test of
the general applicability (for nonrelativistic atomic
calculations) of the computational and theoretical
techniques developed.

II. WAVE FUNCTION

momentum projection operator ~ and O~ is the pro-
jection operator which guarantees the antisymmetry
of the wave function

O =(4l) 'Z, (-1)'Z,

where the summation runs over all the 4 t permu-
tations P, with p being the parity of the corres-
ponding permutation P. Also, XE is one of the two
linearly independent spin functions yl = —,

'
(Qlp2 —plQ2)

x (Q3p4 —p3Q4) and X2 —2 (Q lp4 —plQ4) (Q2p3 —p2Q3)
which span the four-electron spin space with S =S,
= 0. In Eq. (4), cp», (r,) refers to the sth basis
orbital in the Kth configuration. The orbital basis
consists of STO's of the general form

(R)"'"' . ,0 (r) =
((p )()Il2 & ~ Fl, m (6)

where the set {I', ) consists of normalized spher-
ical harmonics in the Dirac pha, se convention. "

The approach that we have followed in seeking
a variational solution to Eq. (1) of the form given
by Eq. (3) differs from attempts by other authors
to use a, correlation factor'~' ' ' or to combine
a correlation factor with the more systematic ap-
proach of the CI method. ~' The approach that
we have followed may be characterized as one
which allows for the utilization of a pair correlation
factor x,&

in those configurations which make the
greatest contribution in a CI expansion, in contrast
with the attempts to use an average factor for the
whole atom (correlation factor).

In Eq. (4) the restriction of only one 3;I coor-
dinate per term, which was first proposed by James
and Coolidge, "has been retained. A standard
Hy-type expansion in interparticle coordinates for
N &3 gives rise to two different types of products
of interelectronic coordinates: (i) the "linked" type,
in which at least one electron subscript appears in
two or more r,I's and (ii) the "unlinked" type, in
which there are no repeated subscripts. Linked
products (e. g. , r, 2r23) do not appear very impor-
tant energetically; evidence of this is the extremely
accurate lithium calculation of Larsson2~ in which
the one term with more than one z,&

coordinate
lowered the energy by only 7&10 a,.u. It is felt
that important unlinked products of r&& coordinates
can be represented within an sj STO, x&& basis by
a single x,"z factor and excited orbitals from the
STO basis. ' For these reasons, the limitation of
only one r&& coordinate per term is not felt to be
a severe limitation for the wave function of Eq. (4).

There is some indication of how well one might
expect to do with the restricted basis: The sp STO
basis 3;"&(v=0, 1, 2) has recently been given by
Bunge. 44 In his paper on the He atom, Bunge ex-
amines the six-term wave function of Hylleraas
(4 3»} in terms of angular energy limits. He finds
that the sp-limit energy error of xix3II„(when com-
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B. Choice of Spin Function

The linearly independent spin functions chosen
in this work are the valence bond (VB) spin func-
tions, 47 corresponding to 8= 8,= 0:

Xl 2 (+1P2 Pl+2) (+3P4 P3c14)

X2 2 (+1P4 Pl+ )(4+2P3 P2+3)

The two VB functions are related by a permutation;
specifically,

3214

has the effect of taking X~ into Xq .'

1234

X(421122P3P4 1»1P2423P4 Pl+2P3+4+PlP2+3~4)

2(+1P2+3P4 +lP2P3c14 P24»2+3P4+ P1+2P3+4)

Xi ~ '(8)

It should be noted that a term (configuration)
formed from the second spin function X2 and a par-
ticular choice of x,&

factor and Hartree product,

4

F (™rl, r2, r3, r4)=r;; II 91»,(r, )
s=1

is equivalent to the term formed from the first spin
function X& and the choice of x&~ factor and Hartree

pared with his estimate of the "exact" s p limit)
is identical to the total energy error of @6Hy to six
decimal places (a.u. ). He then concludes that one
should be able to compute helium wave functions
with energy errors smaller than 10 6 a. u. by taking
the direct product of a suitable s p basis and the
@3„„(ans basis and 3'", 2, v = 0, 1, 2). While there
are still questions concerning the validity of ex-
trapolating the successes of calculations on helium
to other atomic systems, ~ this analysis clearly in-
dicates that such a restricted basis might be an ex-
cellent one for states of first-row atoms.

III. METHOD OF CALCULATION

A. O(L ) Projection

Since 0(L2) is a product of terms involving the
operator L, '7 the commutation of 0(I.') and 3,&

Efollows from the commutation of L and x,&. Since
0(L') and 0 commute, the 0(L') projection in
Eq. (4) reduces to a projection on the four-orbital
Hartree product

4

p», (r,).
s=i

The results of this projection have been tabulated
by Bunge4~; the Bunge explicit formulas were used
in this calculation. '

product I',3J"E. This can be seen from the relation-
ships

I = 10 (L )0 $2F }I
=

I 0 (L )O„b,,P, F~) I,
(10)

which follow from Ell. (8) and an identity for the
antisymmetrizer 0 = (-1) P"P' (P" permutes only
the space coordinates and P' permutes only the
spin coordinates). Thus it is possible to converge
upon the exact wave function by employing only one
spin function.

In practice one usually chooses I E such that the
energy lowering is appreciable and such that the
correct localization of the electron orbitals is given
(through the values of inner- and outer-shell or-
bital exponents). The configuration formed from
Il& and X&, or, equivalently, the configuration
formed from P13F» and Xl, would not be expected to
give a good energy lowering. Thus, when a few
configurations containing the second spin function
were tried, their effect was negligible (to 10 a.u. ).
These observations and results parallel those of
Larsson for the S ground state of lithium, al-
though he found that the second spin function made
important adjustments to the Fermi contact term.
Since the emphasis here is on obtaining a good en-
ergy, the final 107-configuration wave function re-
sulted from only terms with the spin function Xz.

The method used to generate VB spin functions
and to evaluate matrix elements over VB spin func-
tions was developed by E. A. Scarzafava. 4' The
explicit formula for the Hamiltonian matrix element
after integration over spin coordinates is (X»= Xz,
= Xl),

46

&»2 = (C»IX I@2)

= (1/4!)(0(L )A A2S1F» I XIS1F2),

where A'A = (1 —F,"3) (1 —P24) is a product of space-
pair antisymmetrizers (un-normalized), and S,"
= 2(1+P,"2) (1+P34) is a product of commuting space-
pair symmetrizers (normalized).

C. Integral Treatment

To complete the evaluation of the Hamiltonian
matrix element H«a scheme is needed to handle
the two-, three-, and four-electron integrals of the
form

ff (r ) f2 (r ) f3 (r3) f4 (r,) g, (3 „)
X g2 (Y23) g2 (f'34) dv. (12)

A good scheme for the evaluation of three-electron
integrals of this form containing nonspherically
symmetrical STQ's has been formulated by Ohrn and
Nordling. Their scheme has been extended in this
work to the treatment of four-electron integrals.
Also, the Ohrn and Nordling scheme for the evalua-
tion of their V and W auxiliary integrals involves
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TABLE I. 11-configuration wave function for the
ground state of atomic beryllium with the energy for
various basis-set orbital exponents.

Wave function (@&&)

Configuration
No. Configuration'

Energy for various basis-set
orbital exponents

Cs fs" Energy (a. u. )

1
2
3
4
5
6
7
8
9

10
ll

123 "2"
ls 4s" 2s"
ls 5s" 2s"
1 2 6 rr 2 rr

2sls 2s"2

3sls 2s"
4sls 2s"3

1 22 //2

ls 2s"3xi&
lsd 2srr

12

ls 2s 'v
34

3.6847 0. 9562 —14.644 518
3.6848 0. 9560 —14.644 507
3.7 0. 9 —14.644 077

aFor a definition of the notation used, see Sec. IV.

(13)

where C & is a properly antisymmetrized and pro-
jected product of X„STO's defined by Eq. (6), and
an x&z factor. By minimizing the energy with re-
spect to the coefficients C~, one is led to the usual
secular equation with the Ith lowest root being an
upper bound to the exact energy of the respective
state. The secular equation is solved by Jacobi's
method after the overlap matrix has been triangu-
lated and the Hamiltonian matrix transformed by the
method of Michels, Van Dine, and Elliott.

In order to determine the orbital exponents of the
STO basis, three 11-configuration calculations were
performed. The wave function is given in Table I,
where under configuration is listed only the unique

infinite summations; in this work, McKoy's'
closed-form formulas for certain of these auxiliary
integrals were used. In some instances McKoy's
formulas were found to lead to significant differenc-
ing errors; a stable computational procedure was
found for this region by using Euler's method" to
transform McKoy's formulas. ' We intend to de-
scribe our integral treatment in more detail in an-
other paper. '

IV. CHOICE OF PARAMETERS AND CONFIGURATIONS

The wave function employed here for the 'S ground
state of beryllium is of the form [Eq. (3)j

the first set (see Table I). Therefore, $,=3.664'
and 0,-=0.9562 were chosen for the remaining cal-
culations.

The effect of not having done an exhaustive mini-
mization at this point is not felt to be significant be-
cause other investigators have found that the orbit-
al exponents have very little dependence on the pres-
ence or absence of an r,&

coordinate. ' In addi-
tion, configurations containing inner-shell ns' orbit-
als (t', .= V. 8) and some of the "open-shell" config-
urations of Gentner and Burke (L, =„3,. 3 in outer-
shell orbitals) were added to larger calculations and
found to give insignificant energy improvements.

Next, the various 12-configuration calculations
displayed in Table II were performed in order to
(i) determine g~„and (ii) test how well the r,4 terms
can represent the mell-known 2s-2P near degeneracy
in beryllium. Since the Weiss 5~-=1.1 proved su-
perior to 4~-=0. 9562, in the remaining calculations
(~„=1.1 was used and the Weiss value g~= 6. 2 was
used for the K shell. Also it should be noted that
neither 1s 2s" r~4 nor 1s 1s" x34 does nearly as
well as 1s 2p" .

Next, configurations related to the best of the 12-
configuration wave function and also some new con-
figurations were added to the 12-configuration wave
function; those which gave only a small energy im-
provement were dropped. The process was contin-
ued until almost all conceivable combinations were
tried, resulting in a final 10V-configuration wave
function. The terms in the best 10V-configuration
wave function were grouped by type and by the mag-
nitude of their coefficients; configurations were then
successively removed one by one until the 1s 2s"
configuration was reached.

V. RESULTS

The final 107-configuration wave function is dis-
played in Table III, along with the energy E(n) for
the n-configuration wave function (configurations
1-n) and the estimate of the energy contribution of
each configuration obtained from E(n) —E(n —1).

The 1-configuration wave function is an approxi-
mation to the HF function and the energy of the 1-
configuration wave function, E = —14. 556 74 a. u. ,
is close to the HF energy of —14. 57302 a.u. ' The
22-configuration energy of —14.588316 a.u. is not

s=l

part of err (Zr= Z, ) as defined by Eq. (4). The STO
basis is, in the Weiss notation, ' the basis set 1s,
2s, . . . , ns; 1s", . . . , ns". The first basis-set or-
bital exponents K, =3. 6847, 0,"=0.9562, ' ' were
chosen to repeat the 11-configuration calculation of
Karl. Next two other sets of orbital exponents
were tried: the set Ls= 3. 6848, C,"=0.9560 and the
set 0, =3.7, K,"=0.9. Neither case did as well as

Energy (a. u. )

—14. 6465
—14. 6480
—14. 6514
—14. 6529

0.9562
l. 1

Wave function

+1S22s"S S %34
S2 1str2 &211 34

2
2pl

/2

~ „+1s'2p"'
From Table I; K =3.6847 g .=0. 9562.

TABLE II, 12-configuration wave functions and
energies for the ground state of atomic beryllium.
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TABLE III. 107-configuration wave function for the ~8 ground State of atomic beryllium, with the energy contribution of
each configuration.

Configuration
No. n

10
11
12
13
14
15
16
17
18
19

20
21

23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39

40

43

44
45
46
47
48
49

50
51
52
53
54
55
56

Configuration~

2 2 IP2

PI

2 4 tt 2SIt
]S2 5SII 2S PP

ls2 6S IP 2S I/a

is 2 Vs IP 2S It

is'8stt 2stt
2Sls 2S
3sls 2S

2sis 3S 2S
tt 2S tt

2sls 5s" 2stt
2sis 6stt 2s"

2 4 II 3 PP

PP 3 PP

is' istt 2stt
] 2 3 tl2

2 4 II2
Pt2

2S2 3S II 2

3sls 3S
2S2 is IP 2

1S2 2SIP2 &2
34

is 2S f'34
]S2 2SPP2 ~i2

2 2 I@2 ~2
$2

is 3s 2S t'
2 4

is2 5stt 2s

2 3 II 2 It 2
34

]S2 4S II 2S IPi ~2
2 3 IP 2 IP ~2

is2 4s It 2S Il ~2
PP 2 II 2

2sis 2s t'g2

3Sls 2s I'g2

4sls 2S t'l2
2sis 2s
3sis 2S

4s is 2s
2S2 2S II 2 ~
2S2 2SPP2 &2

$2
2S2 2 II2 ~

2 2 II2
34

is2 3s PP2 ~
1S 3S l2
is 1S t'

12
is2 ]SIP2 ~34

is IP2 ~234

2sls 3S
is 4S 'F34

is2 4 It2 ~2
$2

2slS 2S t'34

38is 28
2s 3s t' 12
2S2 3s It 2 ~34

Energy EQ)
of @-configuration

function (a.u. )

—14.556739 82
—14.556 739 86
—14.556 857 85
—14.558 370 51
—14.559 457 17
—14.559 990 03
—14.560 174 84
—14.560 224 57
—14.571 71370

—14.571 848 14
—14.572 010 75
—14.572 18532
—14.572 356 78
—14.574 959 44
—14.575 399 88
—14.575 536 30
—14.575 536 96
—14.575 61662
—14.588 132 27

—14.588 169 33
—14.588 295 77
—14.588 31653
—14.607 556 94
—14.620 767 20
—14.647 872 00
—14.650 381 51
—14.653 676 28
—14.654 554 23
—14.654 993 26

—14.655 060 61
—14.65516708
—14.655 172 84
—14.655 207 15
—14.655 31746
—14.655 417 64
—14.655 546 67
—14.655 630 55
—14.655 790 79
—14.655 830 54

—14.655 859 40
—14.655 861 93
—14.655 939 30
—14.656 11119
—14.656 122 75
—14.656 178 44
—14.656 180 07
—14.656 399 18
—14.657 329 58
—14,658 512 81

—14.658 727 68
—14.658 730 29
—14.658 769 72
—14.659 282 83
—14.659 99156
—14.659 992 27
—14.660 003 54

Energy contribution
E()-E( -1),

(a.u. )

—0.000 000 04
—0.000 11799
—O. 001 512 66
—0.001 086 66
—0.000 532 86
—0.000 184 81
—0.OQQ 049 73
—0.Oil 489 13

—0.000 13444
—0.000 162 61
—Q. 000 174 51
—0.000 17146
—0.002 602 66
—0.000 440 44
—0.000 13642
—0.000 000 66
—0.000 079 66
—0.012 515 65

—O. 000 037 06
—0.000 126 44
—0.000 020 76
—Q. 019240 41
—0.013 210 26
—0.027 104 80
—0.002 509 51
—0.003 29477
—0.000 877 95
—0.000 439 03

—0.000 067 35
—0.000 10647-0.000 005 76
—0.000 034 31
—0.000 11031
—0.000 100 18
—0.000 129 03
—0.000 083 88
—0.000 160 24
—0.000 039 75

—0.000 028 86
—0.000 002 53
—0.000 077 37
—0.000 17189
—0.000 01156
—0.000 055 79
—0.000 001 63
—Q. 000 219 ll
—0.000 930 40
—0.001 183 23

—Q. 000 214 87
—0.000 002 61
—0.000 039 43
—O. 000 513 11
—0.000 708 73
—0.000 000 Vl
—0.000 01127

Coefficient
107-term

(unnormal ized)
wave function

1.375968 83
5.910075488 x10-'

- i.413423 429 10'
4. 505907738x10~

—6.411900926 x10'
3.443485406 x10~

—6.168 935 363 x10"
—9.515335 546 X 10

1.670736912xlO ~

—1.117889 188
5.929 294 805 x10-'

—l.691288 463 x10-'
i.880 474865 x10-'
7.413 007 028 x10

—2. 196819680 x10-'
—2. 106580433x10 ~

1.494 281 330 x 10-2
—1.495 501172x10-i
—4.668 310312x10-'

2.405264606 9x10-2
—2.089966004xl0-'
—8.506222906 xl0 3

1.242 582659
7.353 963 998 x10
3.113830 843 x10-'

—1.424319 613x10-~
3.623 219 838 x10-'

—1.265 531509

—2. 240 200835 x10 ~

—l.970 202 929 x10"~
—i.169538943xiO-~

5.214 784 011x10-'
—8.219871428x10 3

l.443 626 383 x10"i
V. 648054921 x10~

—2.470 285 589 x10-'
4.436421887 xlQ 2

—l. 291 085 746 x10"l

1.261 377 873 x 10"
2. 654 673 541 x10 2

—2.026 828 034 x 10 2

—5.773 520 713 x10"2
5.823 923 946 x10-'

—3.657 164415x10
3.751225625 xlO 2

—l.359 655042x10 2

—V. 555111368x10-'
—2.362 562 296 x 10

1.862067 443 x10-'
6.550 189 84Qx 10

—5.084412 549 x 10"3

3.532 770 113x 10 2

3.672 615 695 x10
—8.963 829 877x 10 3

3.068 319941x 10"3
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TABLE III. (Continued)

Con.figuration
No. n

57
58
59

Configur ation~

282 ]8 II2 r2
281s 2s ~34
3sls 2s " r34

Energy E(n)
of n-configuration

function (a.u. )

—14.660 033 05
—14.660 054 60
—14.660 075 22

Energy contribution
E(n) -E( -1),

(a.u. )

—0.000 029 51
—0.000 021 55
—0.000 020 62

Coefficient
107-term

(unnormalized)

wave function

—6.703 544743x 10 3

—1.300 546033x 10 2

8. 192479 333x 10-3

60
61
62

64
65
66
67
68
69

4sls 2s"
182 38 II2r2
ls 38
182 28II2

2 1 it 28
ls 3s 2s rf3

2 4
ls 58"2s" r

2 6 II 2 tt

ls2 2s II2 r 2rf3

—14.660 11178
—14.660 11195
—14.660 11250
—14.661 208 65
—14.662 435 93
—14.662 436 02
—14.662 452 19
—14.662 463 82
—14.662 464 59
—14.662 494 34

—0.000 036 56
—0.000 000 17
—0.000 000 55
—0.001 096 15
—0.001 227 28
—0.000 000 09
—0.000 016 17
—P. 000 01163
—0.000 000 77
—0.000 029 75

—5.401 901 555 x 10-'
—7. 906 469 502 x 10-3
—1.398 060 670 x 10-'
—2.429 212 061

1.010 637 493
2, 333 595 641x 10

—8.317 840 025x 10'
1.226 970 702x 10

—6.688 201 230x 10'
—1.pip 450 p88x 10'

70
71
72
73
74
75
76
77
78
79

lS 3S 2S
24 lt2 Il 2

2 5 il2 ll 2
f3

18 38 28
18 48 "28" r2
] 2 5 It 2 Il 2

2sls 2s rf3
] 2 II2 2

js2 3slt2 r2f3
2sls 2s rf3

—14.662 508 85
—14.662 529 67
—14.662 590 20
—14.662 648 72
—14.662 691 66
—14.662 707 98
—14.662 768 58
—14.662 800 60
—14.662 816 88
—14.663 067 10

—0.000 014 51
—0.000 020 82
—0.000 060 53
—0.000 058 52
—0. 000 042 94
—0.000 016 32
—0.000 060 60
—0.000 03202
—0.000 016 28
—0.000 250 22

3.919367 631x 10'
—5.921 306 844x 10'

3.269 302 918x 10f

V. 076 308 541 x 10-'
—7.641 050 527 x 10
—7.032 753 091x 10
—2. 701382819x10 '

3.183 369 817x 10-2
—2.636 753 100x 10-'

8.671072 552x 10-'

80
81
82
83
84
85
86
87
88
89

3sls 2s rf3
182 lstl2 r2f3
ls 3s r
ls2 4s" 2 rf3
2s2 2s"2 rf3
ls2 ls "2 r

II2
4 Il 2 ti

ls' 5s"2s" r24
2sls 2s"' r24

—14.663 067 28
—14.663 498 43
—14.663 498 84
—14.663 502 13
—14.663 502 96
—14.663 513 79
—14.663 516 16
—14.663 537 70
—14.663 545 85
—14.663 566 73

—0.000 000 18
—0 00043115
—0.000 000 41
—0.000 003 29
—0.000 000 83
—0.000 010 83
—0.000 002 37
—0.000 021 54
—0.000 008 15
—0.000 020 88

—1.042 006 362x 10 '
2.772 584 514 x 10

—1.188 093 091x 10
1.206 853 851x 10-f

7.058385812x 10 3

—2. 828 054 601x 10 f

—8.479 834 642 x 10
5.482 149 284 x 10"2

8.709 265 657 x 10"2
—1.054300751x 10 '

90
91
92
93
94
95
96
97
98
99

ls 6s"2s" r24
2818 2s " r24
2818 38 "28" r24
ls2 3p
1S2 2p II2

2 3p II
2p

It

182 2plt2 r 2

s2 2pli2 r
2$' ls 2p
3sls 2p

"2

—14.663 567 59
—14.663 572 62
—14.663 583 03
—14.663 583 11
—14.663 630 11
—14.663 678 88
—14.664 912 82
—14.666 097 10
—14.666 300 86
—14.666 463 91

—0.000 000 86
—0.000 005 03
—0.000 010 41
—0.000 000 08
—P. 000 047 00
—0.000 048 77
—0.001 233 94
—P. 001 184 28
—0.000 203 76
—0.000 163 05

1.684944651xlp 2

4. 183 593 501x 10 2

l.314304853x 10-2

5.218 659 990 x 10-'
—1.409 783 443 x 10
—1.954 639 743 x 10

l.815 973 512x 10
—6.389 885 865x 10 2

6.631 045 101x 10"2
—2. 992 109 286 x 10

100
101
102
103
104
105
106
107

2p 28"
p' 2s"

ls 2p2p" 2s"
18 3p3p 28

2p2 2 ii
]8 2pli2 2 lt

3818 38 28
3818 48 "28"

—14.666 474 28
—14.666 513 25
—14.666 513 84
—14.666 514 72
—14.666 539 25
—14.666 544 84
—14.666 546 47
—14.666 546 58

—0.000 010 37
—0.000 038 97
—0.000 000 59
—0.000 000 88
—0.000 024 53
—0.000 005 59
—0.000 001 62
—0.000 000 12

7.725 719 831x 10-'
—7.914756166xlp 3

—1.033 981 466 x 10-2
—7. 282 806 240 x 10"3

2.172123776x 10-'
—1.771 692 106x 10 3

9.255 210 743 x 10 2

—3.268 371 201 x 10 2

~For a definition of the notation used, see Sec. IV.
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TABLE IV. Comparison of various ab initio varia-
tional calculations on the ground state of the beryllium
atom.

Reference Wave function employed Energy (a. u. 3

35 13-term Hy type —14.649 7

Sabelli and
Hinze

10-term multiconfigura- —14.654 64
tion self-consistent field

33

34

20

61

27-term Hy type.
no intershell terms

37-term CI

25-term Hy type:
includes intershell
terms.

55-term CI

28-term augmented
separated pair.

—14.656 5

—14. 65740

—14.6579

—14.660 90

—14.661 79

Present work 59-term Hy type.

Present work 92-term Hy type.

26c 180-term CI

P resent work 107-term combined
CI Hy type.

Upper bound, 26'

"Exact, "26'

"Exact, "61

—14.663 25

—14.663 58

—14.664 19

—14.666 54

—14.666 39

—14.666 7

—14.667 31

By ab initio is meant fL. C. Allen and A. M. Karo,
Rev. Mod. Phys. 32, 275 (19603] use of the exact non-
relativistic Hamiltonian, consideration of all electrons
simultaneously, and evaluation of all integrals as accur-
ately as necessary.

"N. Sabelli and J. Hinze, J. Chem. Phys. 50, 684
(19693.

'Thought to be the most reliable estimate (see Sec. V).

as good as the Weiss value of —14.59110 a.u. for
his more extensive s-basis set. This is because
(i) the Weiss configurations containing s' and s'"
orbitals were added to more extensive wave func-
tions containing powers of r» and x34 In these cal-
culations, the effect of configurations containing s'
and s'" orbitals was observed to be negligible (to
10 a. u. ). (ii) The 107-configuration wave function
can be simplified without appreciably effecting the

energy; thus, for example, a 94-configuration
truncation of the 107-configuration wave function
was found with an energy of E = —14.666 505 a. u.

The energy results obtained with a 107-term
wave function are tabulated in Table IV and com-
pared with a number of ab initio variational calcula-
tions. Previous Hy-method calculations ' have
not been able to match the success of the Weiss
55-configuration calculation, whereas in the present
work we have found a 59-term Hy-type wave function

with an energy improvement of 0. 002 35 a. u. over
the Weiss wave function. The 92-term wave func-
tion contained in the final 107-term wave function is
of the type employed in all the previous Hy-method
calculations for atoms with

¹
3. ' Comparing

it with the 59-term wave function indicates that the
convergence is slow towards the end of the conven-
tional Hy-type expansion. In contrast, inclusion of
the p STO's, which Bunge has shown give an excel-
lent basis (when combined with a conventional Hy
basis) for the K shell, and which for small calcula-
tions (Table III) are more important than r~4 terms
in the I- shell, apparently speeds the convergence.

Inspection of Table III shows that the 2s-2p degen-
eracy has been represented to a great degree by
terms containing x34. Apparently the importance of
the p STQ basis for this calculation is primarily due
to the configurations 1s 2p'' x» and 1s 2p"
which are the four-excitations arising from a cor-
related electron-pair wave function 0

0 = 0„$K(I, 2) I, (3, 4)), (14)

but without the strong orthogonality condition.
Their relative importance can be explained by the
fact that the 2p" configuration alone contributes
-90'I/q of the I-shell correlation energy' '8 and con-
figurations containing x» and x» are very important
in the E shell.

The final 107-term wave function obtained after
examining approximately 145 terms formed from
an s P STO, r";& (v =0, 1, 2) basis and keeping the
most important, yields an energy of —14. 66654 a. u.
This compares favorably with the Bunge~e 180-term
CI wave function obtained after examining approxi-
mately 1000 terms (Table IV).

The "exact" energy for the nonrelativisitic
Hamiltonian in Eq. (2) has been estimated by sever-
al authors ' '+ from experimental data by making
corrections for relativistic effects. Only the latest
estimate of this type,

' based upon the nonrelativis-
tic corrections of Hartmann and Clementi com-
puted with a HF wave function, has been included in
Table IV.

In contrast, Bunge has estimated the exact ener-
gy by studying patterns of convergence based upon
his 180-term Be wave function and his work on
Be". Since this is an extrapolation from a highly
accurate direct solution of Eq. (1), with an error
which is estimated to be not greater than 0. 0003
a. u. , E = —14. 666 39 a. u. is taken as an upper
bound to the exact nonrelativistic energy. Adding
to this the error estimate G. 0003 a.u. yields a
lower bound of -14.6667 a. u. , and our final wave
function yields an energy within 0. 0002 a.u.
(= 0. 005 eV) of the Bunge exact energy.

In building up the wave function, terms which con-
tributed only slightly were dropped and the energy
loss on dropping them was computed. In this way
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38 terms were dropped; their inclusion in a 145-
term wave function could lower the energy no more
than 0. 000 0V2 a. u. (the sum of the energy losses
on dropping these terms at various stages of the
computation) .This tends to indicate that our wave
function is converging to an exact energy within the
limits of the Bunge estimate.

VI. CONCLUSIONS

On the basis of the results presented here, it
seems reasonable to conclude that the introduction
of r;& coordinates into an atomic wave function with
N& 3 is computationally practical. The basis con-
sisting of an s P STO basis and r";& (v = 0, 1, 2) is in-
deed excellent for beryllium, yielding an upper
bound to the ground state of greater accuracy than
can be practically obtained by CI expansions at pres-
ent. (Compare the sPdfg energy limit of Bunge,
E = —14.665 96 a. u. )

The inclusion of p STO's gives more flexibility to
the wave function and leads to simpler expansions
for the KL shells. But the real significance of in-

eluding the p STO's appears to be in dealing with the
four-excitations arising from a correlated electron-
pair wave function (K(1, 2) I (3, 4)). Thus it has been
found that the terms 1s 2p" r» and 1s 2P" r, z are
important four-excitations. In a standard Hy-meth-
od calculation the effect of these terms would have
to be represented by configurations containing pro-
ducts of r;~ coordinates (such as r,~r~4 and r,ar, 4),
which have pxoven computationally difficult to deal
with.

In conclusion, the present method appears to of-
fer distinct advantages for extending accurate Hy-
method calculations to atomic systems with N& 3.
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