90

23C. P. Poole, Electron Spin Resonance (Interscience,
New York, 1967).

2p. MacNair, IEEE J. Quantum Electron. QES5, 460
(1969).

% The standard error of a parameter 7 is defined as
C;;[8/(n—K)11/?, where & is the minimized sum of the
squares of the residuals, 7z is the number of data points,
K is the number of parameters, and C;; is the ith diag-
onal element of the inverse matrix of the normal equa-

T. A. MILLER AND R. S.

FREUND 4

tion matrix.

%H, A. Bethe and E. E. Salpeter, Quantum Mechanics
of One-And-Two-Electron Atoms (Springer, Berlin,
1957), p. 241.

2"H. Wahlquist, J. Chem. Phys. 35, 1708 (1961).

%W, R. Bennett, Jr., P. J. Kindlmann, and G. N.
Mercer, Appl. Opt. Suppl. No. 2, 34 (1965).

D, A. Landman, Phys. Rev. 173, 33 (1968).

Reference 26, p. 183.

PHYSICAL REVIEW A VOLUME 4,

NUMBER 1

JULY 1971

Screening of Many-Electron Atoms*

Carl A. Rouse

Gulf General Atomic, Incorporated, T San Dijego, California 92112
(Received 20 July 1970; revised manuscript received 11 January 1971)

The problem of the screening of many-electron atoms (ions) is considered. Using the
scaled Thomas-Fermi (STF) method of Stewart and Rotenberg for approximating the core po-
tential of an atom (ion) with nuclear charge Z and net core charge Z*, a screened scaled
Thomas-Fermi potential (SSTF) is presented: V(») =— (Ze?/r) Uggrr, Where

Usgtr=U(r) — A7,

=BU(r) 8<M)/D,

0=7r=a

rZa.

Here D is the screening radius; A and B are constants; and U(r) is given by

Ulr) =Ugppr) =@ r/ap) +qr/v,,

=9,

<
=%,

Y=,

where ¢ (»/aH) is the well-known Thomas-Fermi function, 7, is the STF core radius with
p=%(9r2/22)1/3=0.885342"1/3, « is the adjustable scaling factor, and ¢g=2Z*/Z. The constants
B and A are given by B=D[aU’ (a) - U(a)1/{DlaU’ (a) - U(a)] — aU(a)} and A=(1- B) Ula)/a,

where U’ (a) = 8U/dr at r=a.

Eigenvalues of the Schrddinger equation with the SSTF potential
are given for the 3d, 4s, 4p, 4d, 4f, and 5s orbitals of Fer and Feviir.

Comparisons between

the ions and corresponding hydrogenic orbitals show that the variations of the SSTF eigen-
values and the limiting screening radii are generally very different, with different level

crossings and different relative energies.

It is concluded that in order to obtain a correla-

tion between a limiting screening radius and the observed disappearance of linesfrom a many-

electron atom (ion), SSTF solutions are needed for the ion of interest.

It is also concluded

that until an accurate external screening function is obtained and applied to the screening of
Hartree-Fock isolated-atom (-ion) solutions, SSTF solutions will be useful for the very im-
portant astrophysical problems of calculating equations of state and opacities for high-Z

matter at stellar densities and temperatures.

I. INTRODUCTION

In this paper we consider the screening of bound
orbitals of many-electron atoms (ions) by neighbor-
ing particles. Previous studies'~'Z have analyzed
the screening of bound orbitals of one-electron
hydrogenic ions with a point nuclear charge Z; in
considering ions with two or more bound electrons,
the core is assumed to be a point with an effective
charge Z*=Z - N,+1, where N, is the number of
bound electrons. (In this paper N,<Z.) The reasons
for using hydrogenic assumptions are obvious. In
view of the considerable effort needed to accurately
understand isolated many-electron atoms (ions)
with the self- consistent-field methods of Hartree'3®

and Slater,*® it is hardly feasible to consider ac-

curate solutions with the additional interactions of
neighboring atoms, ions, and free electrons in
matter at finite densities and nonzero tempera-
tures —systems that are further complicated by the
dynamic time-dependent quality of even an equilib-
rium plasma.

Nevertheless, the hydrogenic screened Coulomb
solutions of the time-independent Schrddinger equa-
tion have been of value in gaining a crude approxi-
mation to the many-electron-atom screening prob-
lem. As the next step in this problem, this paper
will formulate a better approximation to the screen-
ing of many-electron atoms by considering the ex-
ternal screening of an atomic orbital. The electron
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that occupies the orbital interacts with the atomic nu-
cleus of charge Z and also interacts with the re-
maining N, —1 bound electrons, the latter interac-
tion being approximated by the use of the scaled
Thomas-Fermi (STF) ion potential of Stewart and
Rotenberg.'* In the Stewart-Rotenberg theory, an
approximate potential for an isolated many-elec-
tron atom (ion) is obtained by replacing the core
with a Thomas-Fermi (TF) ion whose net charge
is Z* and whose nucleus has the actual nuclear
charge. The present approximation modifies this
potential by a standard Yukawa or Debye-Hiickel-
type screening factor as used previously by
Rouse®®® for hydrogenic ions.

Results for six orbitals of Fer and Fe viir show
that the variations of the eigenvalues with changes
in the screening radius are quite different for the
two ions considered, and their limiting screening
radii also can differ drastically from the limiting

screening radii of hydrogenic ions with point nuclei.

The limiting screening radius is the extrapolated

screening radius that would yield a zero eigenvalue.

In Sec. II we formulate the problem of time-
independent screening of many-electron atoms
(ions), and in Sec. III we describe the screened
(SSTF) potential that is used to approximate the
internal and external screening of an orbital bound
to a many-electron atom or ion. In Sec. IV we
describe the results for the 3d, 4s, 4p, 4d, 4f,
and 5s orbitals of Fer and Fevriri, with the sum-
mary and conclusions given in Sec. V.

II. FORMULATION OF MANY-ELECTRON-ATOM
SCREENING PROBLEM

We consider an equilibrium plasma composed of
monatomic atoms, ions, and free electrons. We
focus on an ion of nuclear charge Z with N, bound
electrons and assume that the time-averaged posi-
tions of the remaining particles can be described
by a radially symmetric distribution function rela-
tive to the center of mass of the ion of interest;
hence the center of mass of the system is that of
the ion. We further assume that the time-averaged
radial distribution of external particles includes
the effects of elastic. collisions, but excludes the
particle interactions experienced by the ion of
interest in an ionizing, recombination, excitation,
or deexcitation event.

For the present discussion, let us start with
Hartree’s self-consistent-field method for isolated
ions where it is assumed that each bound electron
moves in a central field that can be calculated from
the nuclear potential and the wave functions of all
the other bound electrons. As is well known, the
Schrodinger equation is then solved for each bound
electron in its own central field, and the one-elec-
tron wave functions, or orbitals, are made consis-
tent with the fields from which they are calculated.

Hence the kth electron is described by a normalized
wave function uk(f'k) that is a solution of

o, Ze® . e° >
(— oy Vi, +1§¢ | u; (F))| - ar;) u, (T,

[
=€lzulz(f'k) ’ (1)

where 7;,= |T; -T,|, and the other symbols have
their standard meanings. Exchange, spin orbit,
and other terms for the isolated atom (ion) can be
added to Eq. (1) but will not be done explicitly here
in order to focus attention on the dominant interac-
tions.

We now add the dominant electrostatic interac-
tions with the remaining atoms, ions, and free
electrons of the system to Eq. (1), which then be-
comes

ﬁz 2 Zea b -\ |2 ez
e V=42 u;(T;)|°— dt
( 2m k Vs j#k,/l AR l Vi i

2 e 2
+2/ \ uiﬁs)l 22 drg "2 ZQE_) uk(fk) = €kuk(f'k) )
s Vsk p Vor
(2)

where the u¢ are the wave functions for the external
electrons that are either free or bound to one of
the external nuclei of charge Z;, and 7, and 7,,
are the distances from the bound electron (k) to

the external electrons (s) and to the nuclei (p),
respectively.

Clearly, for large average (7g) and (7)), Eq.
(2) reduces to Eq. (1) for an isolated ion. Further,
for an isolated ion (a neutral atom is an “ion” with
zero net charge), the u, would be expected to satis-
fy all the standard normalization criteria. How-
ever, with the introduction of interacting external
particles as in Eq. (2) it is not clear just how the
occupied atomic orbitals should be normalized, in
general, particularly when the outer orbitals of
nearest-neighbor ions could overlap significantly,
resulting, in the case of monatomic ions, in a time-
averaged radially symmetric overlap charge, as,
for example, found in a close-packed bec lattice
crystal. For now we only demand self-consistency
for the bound electrons and that the entire wave
function ¥ that describes all N bound and free elec-
trons be normalized to N, i.e.,

[¥'var=N, (3)

where the integration is over the occupied volume
of configuration space.

The problem of interest is that of obtaining an
approximate solution to Eq. (2). Two approxima-
tions are used here: (a) The STF method of Stew -
art and Rotenberg!'? is used to approximate the
screening effect of the core of bound electrons;
and (b) a Yukawa or Debye-Hiickel-type screening
factor is used to approximate the effect of the ex-
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ternal particles, where we use here the two-pa-
rameter form of the complete screened Coulomb
potential (CSCP) used by Rouse.%®?

In Sec. III the STF potential will be outlined and
then modified with a CSCP-type external screening
factor.

III. SCREENED SCALED THOMAS-FERMI POTENTIAL

In order to cast Eq. (2) in a form that parallels
the Stewart-Rotenberg theory, rewrite Eq. (2) in
two steps as

ﬁz 2 Zez H oo / e 2 ea
o= Ve——— U ( — dr
( 2m *T oy, R +Zs" o4 )l Voo °

2
- ; ?&) “k(f'k) = €1 (T) (4)

Vor
and then
(o %5220 U i) -,
2m kT, CE k>ukrk € pUp\T) »

where U ﬁ,” is the internal screening function for
the remaining bound electrons and U{® is the ex-
ternal screening function for the external particles.
The former is defined by

U,?')=1+—1-,B-g 2 |u(f‘)|2-§—z-d7
ze*\ i Py, T
+exchange, spin-orbit, etc., terms) , (6)

and from Ref. 8, the latter is defined by

Ul'~1-y/(D+a), 0<7<a

~[D/(D+a)] e(a-r)/D ,

where D is the unspecified screening radius for the
external particles, and where classically a may be
interpreted as the mean minimum radius of the ion
atmosphere, i.e., the mean minimum magnitude of
T, or Y'p, the positions of the external electrons and
nuclei, respectively, relative to the center of mass
of the ion of interest. Although a net screening
function could possibly be defined by a sum of in-
ternal and external screening functions, the prod-
uct defined in Eq. (5) was chosen partly because

it yields in a simple form the limit for a hydrogenic
ion at all # and the limit for each orbital of a many-
electron atom (ion) at large 7. It is also the form
to be expected in first order from the following in-
tuitive physical arguments: We start with an iso-
lated nucleus, charge Z, and one bound electron,
call it “A.” Their interaction is described exactly
by the Coulomb potential. Now add more bound
electrons, which reduces the mean interaction be-
tween A and Z by a factor U\ defined by Eq. (6).
Next consider the nucleus and only one bound elec-
tron A. Now add the free external particles to the
system. This again reduces the mean interaction

rza

between A and the nucleus, but now by a factor U Le’,
which is similar to Eq. (6), but which is usually
written as equivalent to an exponential term.

In the first case above, electron A, in zero order,
can be said to interact with a nucleus of effective
charge Z', where Z'=2Z(U'). Now using nucleus
Z' in the second case, the external particles can
be said to reduce the interaction between electron
A and nucleus of charge Z’ by the factor U%?’; hence
Z’U\=z(Uu?)yUu'®. But since Z (U ) would
represent a point nucleus and take us back to the
hydrogenic screening problem, ZU' () U (7) is
used as a more realistic first-order term for the
screening of a many-electron atom with finite ex-
tensioninspace. A more accurate many-body
screening function must await further study.

After presenting the STF approximation for Eq.
(6), a single screening function U4 = UP UL will
be defined. Of course, for hydrogenic ions, U}’
=1.0.

A. Outline of Scaled Thomas-Fermi Potential for Isolated Ions

The discussion of the STF method is given by
Stewart and Rotenberg in Ref. 14, with applications
to the calculation of electric-dipole transition prob-
abilities (oscillator strengths) where very good re-
sults were obtained. Of interest here is the result-
ing core potential itself. From Ref. 14, the STF
potential for a positive ion is given by

Vsrr() == (22/7) [o(x) +qx/x,], x<x,
=-(2z/7q, x> X, (7)
where the energy is in Ry; 7 is the radial distance
in Bohr radii, x is the distance in STF units, with
x=r/ay, (8)

and u=3(972/22)Y3=0.8853427"/3; « is the scal-
ing factor for the charge distribution, x, is the

ion core radius in STF units, and ¢ is the fractional
degree of ionization of the core given by g=(Z - N,
+1)/Z. The ¢(x) in Eq. (7) is the TF func-
tion!3®»15:18 that satisfies the differential equation

@ (%)= p(x)¥ 2/5M 2 (9)
with the boundary conditions

@(0)=1 (10)
and

‘p(xc):oy <p'(xc)= "lI/xc . (11)

We can now rewrite Eq. (5) for the radial wave
function P,,() with U =1, which results in

d*P,, (2_Z_

“ar "\7
where 7 is in units of Bohr radii; E is in Ry; and
for bound orbitals, with E<0, P(7) is the standard
radial wave function [P(#) = »R(#)] that satisfies the

1 +1
U("+E,,,-(—1:£—)>Pn,=0, (12)



4 SCREENING OF MANY-ELECTRON ATOMS 93

boundary conditions

P(0)=0, P,()=0, [ Pydr=1, (13)
where [ is the angular momentum quantum number
and #n the principal quantum number.

As described by Stewart and Rotenberg, « is
chosen for a given orbital P,, such that the eigen-
value E,; equals the known energy of the state.
This is done here for the ionization energy of the
isolated ion, and this same value is used for all
assumed screening radii as well as for the other
orbitals of the ion.

From Eq. (7), the STF screening function for an
isolated ion, U = Ugpp, is given by

Usrr=¢(X)+qx/%,, x<x,
=q, x> X, (14)
where ¢(x) satisfies Eqs. (9)—(11).

B. Approximate Many-Electron-Atom Screening Function

For the definition of a SSTF potential, we will
look for screening factors that reduce to those for
hydrogenic ions given by Rouse for the cases a=0
and a>7,, where 7, is the core radius. For 0<a
<7, we can look for solutions of the form, with
U=Ugr,

Ze? 2
V(v)=Vi(7r)= - U(v)+ Ze®A 0<vza

ze? (a=-7)/D
= Vo(#) = - BU(v) e , rza (15)

where A and B are constants to be determined. To
determine A and B, at »=a we have the boundary
conditions

Vi(a)= Vo(a)

and
oV, _ 3V
—81’ r=a—— v r=a, (16)

which yield

Dlal’ (a) - U(a)]

B= DlaU (a) - U(4)] - aU(a)

(1)

and
A=U(a)/a-BU(a)/a= (1 -B)U(a)/a . (18)

Since U’(a)< 0 and U(a)>.0, then 0< B<1 for all a.
For az. v,

U(a)=U(r,)=q=2*/2,

(19)
U'(a)=U"(v,)=0,
which results in
1 z*
A|a>_rc:D+a = B!a?_r,,:m’ (20)

as expected.
In the limit a~ 0, B(a=0)=1 and A(a=0)=U'(0)D.

For this report, since A(a=0) is not needed for the
present eigenvalue problem, U’(0) is allowed to take
on the values for the isolated ion.

Now Eq. (15) with A and B given by Egs. (17) and
(18) defines the SSTF potential Vggpy, which (with
Usstr and 7 in Bohr radii and energy in Ry) is
given by

Vssrr= — (Zez/’l’) Usstr » (21)
where
Ussrr=UW) —Ar , 0=7=a
=BU(r)e“m"”, r=a (21%)
and

UW)~ Uspr(¥) =@ () +qx/x,, x=x,
=q, X = Xe

with x,=7,/a, the STF core radius in STF units.

In Sec. IV we present the results of numerical
solutions of Eq. (12), with U )= Ugrp given by
Egs. (17), (18), and (21).

IV. RESULTS

The Schrodinger equation with the present
screened scaled Thomas-Fermi potential (SSTFP)
was solved numerically by Numerov’s method as
described in the Appendix of Ref. 14 using the Gulf
General Atomic Univac 1108 computer. The astro-
physically important element iron was chosen. The
3d, 4s, 4p, 4d, 4f, and 5s orbitals of Fer and
Fe viir were considered to demonstrate similarities
and differences between solutions with the present
SSTFP and those with the hydrogenic CSCP. How-
ever, for comparison with hydrogenic solutions ob-
tained by others, only the solutions with a =0 will
be discussed in this report.

Tables I and II present the eigenvalues obtained
with various assumed screening radii. Table III
presents the limiting screening radii”® as defined
for numerical solutions by linear extrapolations of
eigenvalues obtained with screening radii near the
limiting values. For comparison, Table III also
presents hydrogenic screened Coulomb limiting
screening radii from Refs. 8 and 10, with modifi-
cations for the ion’s core charge. Figures 1 and 2
present graphs of the SSTF eigenvalues given in
Tables I and II for the six orbitals of Fer1 and
Fe viii, respectively.

In Tables I and II the screening radius D= 10%°
yields the isolated ion eigenvalues for the orbitals.
We note that the 47 orbital degeneracies at infinite
screening are removed as in the real ion. At the
level of the present investigation, this can be seen
by noting that the core potentials derived by Pro-
kofjew,'""!® by Herman and Skillman as reported by
Slater**™ and by Stewart and Rotenberg!* can be
approximated with a core screening function (U )
given by
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FIG. 1. E,; vs D for the 34,
= 4s, 4p, 4d, 4f, and 5s orbitals
& o2k of Fe1r. The linearly extrapo-
§ lated limiting screening radii
2 (dashed lines) are given in
z oak Table III. The STF core ra-

p dius 7,=5.6098a,. E,; is the
v energy in Ry, and D is the

—04l screening radius in Bohr radii.

‘e
4s
-05 IL 1 1 1 1 1 1 1
(] 5 0 15 20 25 30 35 20 45 50
D (Bohr radii)
U= z*%/7+[(Z -2%)/Z]e™" (22) electron experiences a screened Coulomb-type po-

where B would represent the reciprocal of an effec-
tive core screening radius. (Hence in this approxi-
mation, U0 ~{z*/Z+[(Z -2*)/Z]e™* }e"P.)

Consequently, for any finite nonzero positive B, the

TABLE L
orbitals. STF core radius 7, =5.6098a,.

of Fel is 1s22s%2p83s?3p% 3d% 45%5D,.

tential near the origin, wherein/ degeneracy is
removed.

The remaining values of Tables I and II are
graphed in Figs. 1 and 2. In Fig. 1, we note the
very obvious crossing of the Fer1 4p and 5s levels

Fel SSTFP eigenvalues E, ; from solutions with @ =1. 02 and with a=0 for 3d, 4s, 4p, 4d, 4f, and 5s
E, ;inRy and negative. Screening radii Dina.u. Ground-state configuration

D
(a=0) 3d 4s 4p 4d af 5s
1010 0.5404 0.5483 0.27335 0.1090 0. 06253 0.1687
50. 0 0.3939 0.4904 0.2280 0.07188 0.029 00 0.1301
45.0 0.026 00

40.0 0.02245

35.0 <0.01820

30.0 0.3029

25.0 0.2597 0.4363 0.1869 0.04187 0.09750
20.0 0.1989 0. 029 25

18.0 0.1678

17.0 0.1469

16.0 0.1270

15.0 0.1055 0.1388 $0.0147 0.06277
14.0 0.08238

13.0 0.05808 0.05179
12.0 0.03390 0.04556
11.5 <0.02278

11.0 0.1014 0.03878
10.0 0.2965 0.08885 0.03147
9.0 0.746 25 £0.02375
8.0 0.05844

7.5 0.04960

7 $0.0402

5 0.1327

4 0.7804

3.75 0.063 47

3.5 0. 04890

3.25 0. 036 25

3 0. 022 69

2.75 $0.0110
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FIG. 2. E,,; vs D for the 3d,
1 4s, 4p, 4d, 4f, and 5s orbitals

for Feviir, The linearly extrap-
olated limiting screening radii

(dashed lines) are given in Table

III. The STF core radius 7,
=1.8221a,. E,; is the energy
in Ry, and D is the screening
radius in Bohr radii.
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1
PSS S L ! 1 1 ! ! 1 !
0 5 10 5 20 25 30 35 40 45
D (Bohr radii)

by the 3d level at screening radii that are over
twice the STF core radius. In the hydrogenic solu-
tions, a crossing first occurs between the 4f and
5s states, >'° which do not cross at all with the Fer
SSTF core. Note further that the 5s SSTF level
falls between the 4p and 4d levels. A check of
Moore’s tables'® for Fe1 show this is to be ex-
pected, in general, for terms with the same total
spins and angular momenta and the same core con-
figurations.

The 3d level may also cross the 4d level near
their limiting screening radii, but additional calcu-
lations are needed to give the correct answer.

Another interesting aspect of the Fe1 3d level is
the rapid divergence of the 3d-4 s eigenvalues. At
infinite screening, their values are about equal—in
agreement with Hartree-Fock solutions.*'® But
under screening the energy of the 3d level increases
much faster than that of the 4s level.

Finally, the disappearance of the Fe1 levels does

50

not follow the hydrogenic sequence. With decreasing
screening radius, the corresponding hydrogenic
levels considered here disappear in the order 4f,
5s, 4d, 4p, 4s, 3d; whereas the present Fe1 SSTF
levels disappear in the order 4f, 3d, 4d (or 4d, 3d),
5s, 4p, 4s. In addition, whereas the Fe1 3d limit-
ing screening radius appears to differ by less than
1 a.u. from the hydrogenic value, the remaining
limiting radii are very different, as shown in Table
III1.

Next we discuss the Fevii curves in Fig. 2. This
ion with one electron outside a complete argon core
was expected to yield solutions similar to hydrogen-
ic screened-Coulomb solutions. From Fig. 2 we
note this to be more or less true except that (a) 7
degeneracy is removed at D=, (b) the energy of
the 5s level is only slightly greater than that of the
41 level; and (c) the levels disappear in a different
sequence. However, as with the hydrogenic solu-
tions, the 4f level does cross the 5s level, but at

TABLE II. Feviir SSTFP eigenvalues E, ; from solutions with @ =1.235 and with =0 for 3d, 4s, 4p, 4d, 4f, and 5s
orbitals. STF core radius 7,=1.8221ay. E,; in Ry and negative. Screening radii D in a.u. Ground-state configuration

of Fevur is 152252 2p%3s%3p% 34 2Dy, 5.

D
(a=0) 3d 4s 4p 4d 4f 5s
1010 11. 066 7.1452 6.3974 5.1737 4.1051 3.9858
50 10.670 6.8181 6.0697 4. 8469 3.7900 3.6707
25 10.281 6.50125 5.7527 4.5319 3.4870 3.3729
15 9.7716 6.0939 5.3487 4.12995 3.1026 3.0022
10 9.1497 5.6089 4.8660 3.6555 2.6532 2.5801

5 7.3848 4.3086 3.5823 2.4135 1.4955 1.5494

3 5.2771 2.9045 2.2173 1. 1429 < 0.3751 < 0.6399

2.5 1.6679 < 0.6638

2.0 3.0414 1.60035 $0.9961

1.8 2.3967 1.2646

1.6 $1.665 0.9080
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a relatively large screening radius, andtheydisap-
pear at much different limiting screening radii, as
shown in Table III.

It is noteworthy that comparing the Fe viir iso-
lated-ion STF eigenvalues for the 4p, 4f, and 5s
orbitals with the corresponding states listed by
Moore!® shows very good agreement, For the first
three excited states listed by Moore for Feviii,
relative to a ground-state energy of - 11.1 Ry, the
corresponding energies are - 6,44, —4.13, and
- 3.96 Ry, respectively. Now with an «a that gives
a ground-state energy of —11.07 Ry, the corres-
ponding STF energies are - 6,40, -4.10, and
- 3.99 Ry, respectively.

Finally, in Table III we note that the hydrogenic
limiting screening radii for Feviii, except for the
3d and 4f levels, are very different from the SSTF
levels. However, additional calculations near the
limiting screening radii would be desirable in order
to define more accurate SSTF limits.

V. SUMMARY AND CONCLUSIONS

The SSTFP is used here as a first-order approxi-
mation for the combined effects of bound core elec-
trons of a many-electron atom (ion) and neighboring
free particles (atoms, ions, electrons) on the eigen-
values of an occupied orbital of the many-electron
atom. Previous studies considered the screening
of one-electron hydrogenic ions with the results used
to define a finite electronic partition function® and
were applied to the problem of an equation of state
of monatomic matter, particularly at high densities
where pressure ionization becomes important. %
Noteworthy was the excellent correlation of the hy-
drogenic results with the disappearance of hydrogen
lines observed in the solar photosphere and chromo-
sphere, 2% but not with a Debye-Hiickel screening
radius, but with a screening radius given by the
radius of the mean atomic volume, 7, where
$m3N;=1, and N; is the number of nuclei per unit
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volume. This density-dependent screening radius
is discussed qualitatively by Rouse®”?? in terms of
the overlap of nearest-neighbor atomic orbitals.

Clearly, it would be of interest to see if similar
correlations can be found for electronic energy lev-
els of many-electron atoms and ions. The present
calculations demonstrate that in order to have any
chance of obtaining such a correlation for nonhydro-
genic atoms, the hydrogenic solutions cannot be
used, but SSTF solutions are needed for the partic-
ular ion of interest. It would also be of interest to
obtain more SSTF solutions for other ions in order
to search for possible patterns, for generalization
of the present results would be premature. Even-
tually, screened Hartree-Fock self-consistent-field
solutions will be desirable to explain more details—
particularly to study the effects of screening on two
or more orbitals simultaneously. However, before
the screening of Hartree-Fock many-electron-atom
solutions is considered, it would be desirable to
obtain a more realistic effective one-electron
screening function: A screening function with the
exponential factor having 7, as the screening radius
is as distinct from the Debye potential as the Debye
potential is distinct from the Yukawa potential.

In closing, since the partition-function problem
for nonisolated hydrogen atoms is difficult enough,
the present approximate results for many-electron
atoms and ions indicate that a general accurate
analytic solution is even more remote.

Note added in manuscript. From Eq. (4), the
exact form of the net screening function U{"°’ can
be written as

2
(i,e) _ AT by e
U =P [1 - Zeku,ﬁi’ <Zslf| ui(?’s)lz;s‘k‘ drs

$E) @

e
7 o

which shows how the external screening function

TABLE III. Linearly extrapolated limiting SSTF P screening radii D§STF from the eigenvalues given in Tables IandII
for et and IeVin, respectively, in a.u. The zD¥ are the hydrogenic screened Coulomb potential limiting screening
radii obtained by Rouse (Ref. 8) and by Schliiter and Tsoi (Ref. 10) in a.u. The ZD¥/Z* are the limiting screening radii

that would be obtained in the hydrogenic approximation with a net point core charge Z*,

Hydrogenic Fer Fe viiz
Orbital zD¥ D3STF zD{/z* DESTF zDf /z*
3d 10,942 10.5° 10.94 1.3° 1.37
4s 12.7° 2,50 12.7 1.0 1.59
4p 15, 0° 4, 8P 15.0 1.3® 1,875
4d 17.0° 10,07 17.0 1.7% 2.125
4f 20,1° 27.5" 20,1 2,47 2.51
Bs 19.7¢ 6.0° 19,7 1.5" 2.48

8From Ref. 8.
bLinear extrapolations use the lower limit of eigenvalue

for SSTF solutions with the minimum screening radii

assumed in Tables I and II,
¢From Ref., 10.
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U® given in Eq. (5) depends on the internal screen-
ing function U.". Consequently, for » =7, U’ =g
and ZU{P=2*; hence Uy = U U® is exact. For
7 <7, in first order we can neglect the variation of
U in UL by replacing ZUS" with Z’, an effective
nuclear charge, leaving U'® = U U® . Also note
that in the core as 7, decreases to zero, U,§“ in-
creases to 1.0 and the probabilities of finding free
particles of the plasma decrease to zero. Hence,
near the nucleus Uy®’~ U? and the variation in U
is important for U,ﬁ“’ only in the outer part of the
core.

This note supports the intuitive arguments for the
net product screening function discussed in Sec.
III. More importantly, this note suggests that in a
given plasma of a mixture of elements all ions with
the same net core charge Z* are influenced by ap-
proximately the same external screening function.
Hence, an accurate external screening function de-
termined for an hydrogenic ion of the system should
be applicable in first order to a many-electron ion
with the same Z*. Studies of solar and laboratory
spectra may provide a test for this possibility.

Finally, in a generalization of Eq. (23), given a

potential V in the form of a finite sum,

V=mZe?/r+V i+ Vote ootV ; (24)
then

V=~ (Ze¥/r)U'UR .. U, (25)
where

Ut=1-(r/zedv, ,
Utuc= U1 - (r/ze2UNV,] ,

UtvUt = UMUR[1 - (v/ ZePUt UV, ],
and

n n=1 n=1

II U‘:(H U’>[1 —(r/ZeZII ut)v, |.

i=1 i=l i=1
This general form will be given further considera-
tion.
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