${ }^{21}$ C. S. Warke, Phys. Rev. 144, 120 (1966).
${ }^{22}$ F. T. Chan, J. Chem. Phys. 49,2533 (1968).
${ }^{23}$ J. N. Bardsley, Proc. Phys. Soc. (London) 1, 365 (1968).
${ }^{24}$ G. V. Dubrovsky, V. D. Ob'edkov, and R. K. Janev, Ref. 17, pp. 342-45.
${ }^{25}$ T. F. O'Malley, Phys. Rev. 185, 101 (1969).
${ }^{26}$ J. A. Hornbeck and J. P. Molnar, Phys. Rev. 84, 621 (1951).
${ }^{27}$ R. S. Berry, Ann. Rev. Phys. Chem. 20, 357 (1969).
${ }^{28}$ See, e.g., J. S. Dahler, J. L. Franklin, M. S. B. Munson, and F. H. Field, J. Chem. Phys. 36, 3332 (1962), and references therein.
${ }^{29}$ W. Kaul, P. Seyfried, and R. Taubert, Z. Naturforsch. 18a, 432 (1963).
${ }^{30}$ P. M. Becker and F. W. Lampe, J. Chem. Phys. 42, 3857 (1965).
${ }^{31}$ M. P. Teter, F. E. Niles, and W. W. Robertson, J. Chem. Phys. 44, 3018 (1966).
${ }^{32}$ W. A. Chupka, M. E. Russell, and K. Refaey, J. Chem. Phys. 48, 1518 (1968).
${ }^{33}$ R. K. Curran, J. Chem. Phys. 38, 2974 (1963).
${ }^{34}$ J. C. Y. Chen and J. L. Peacher, Phys. Rev. 168, 56 (1968).
${ }^{35}$ E. R. Davidson, in Physical Chemistry III, edited by H. Eyring, D. Henderson, and W. Jost (Academic, New York, 1969), Chap. 3.
${ }^{36}$ W. Kolos, Intern. J. Quantum Chem. II, 471 (1968).
${ }^{37}$ W. Kolos and L. Wolneiwicz, J. Chem. Phys. 50, 3228 (1969).
${ }^{38}$ W. Kolos and L. Wolneiwicz, J. Chem. Phys. 48,

3672 (1968).
${ }^{39}$ W. Kolos and L. Wolneiwicz, J. Chem. Phys. 45, 509 (1966).
${ }^{40}$ W. Kolos and L. Wolneiwicz, J. Chem. Phys. 43, 2429 (1965).
${ }^{41}$ J. N. Bardsley, Chem. Phys. Letters 1, 229 (1967).
${ }^{42}$ G. H. Dunn and B. Van Zyl, Phys. Rev. 154, 40 (1967).
${ }^{43}$ J. M. Peck, Phys. Rev. 154, ${ }^{5 n}$ (1967).
${ }^{44} \mathrm{At} 1000^{\circ} \mathrm{K}$, the Boltzmann factor for the seventh vibrational state of $\mathrm{H}_{2}{ }^{+}$is 5×10^{-8}, compared with 5×10^{-2} for the state $v=2$. Hence, if the electronic-coupling cross-ing-point mechanism introduced by Bates were significant in the DR of $\mathrm{H}_{2}{ }^{+}+e$, the mean cross section for the process would have to be at least six orders of magnitude larger than that of the noncrossing vibronic mechanism discussed here. As the results will show, this would imply that the cross section for the Bates mechanism would have to be at least $10^{-12} \mathrm{~cm}^{2}$, for states with $v \geq 7$, or that the rate coefficient for DR of $\mathrm{H}_{2}{ }^{+}$in high vibrational states would be of order 4×10^{-6}. This is between one and two orders of magnitude larger than any rate coefficient previously attributed to DR by the Bates mechanism.
${ }^{45}$ A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1962), Vol. II, Chap. XIX.
${ }^{46}$ The following misprints in Paper I should be corrected: In the graphs of the transition amplitude integrals $T_{1}(R)$ (Figs. 2 and 3) multiply the ordinate values by a factor $\frac{1}{16}$.
${ }^{47}$ E. P. Wigner, Phys. Rev. 73, 1002 (1948).

f Values for Transitions between the Low-Lying S and P States of the Helium Isoelectronic Sequence up to $Z=10^{*}$

B. Schiff
Department of Mathematical Sciences, Tel-Aviv University, Ramat Aviv, Israel

and
C. L. Pekeris and Y. Accad

Department of Applied Mathematics, The Weizmann Institute, Rehovot, Israel (Received 11 January 1971)
f values have been computed for the transitions $m^{1} S-n^{1} P, m=1-5, n=2-5$ and $m^{3} S-n^{3} P$, $m, n=2-5$ for members of the helium isoelectronic sequence up to $Z=10$. The agreement between the results obtained using the dipole length, and velocity formulas, together with the convergence of the results as an increasing number of terms are included in the expansions of the wave functions, indicate that the values obtained are accurate to within 1% or better for the large majority of the transitions.

Various authors have computed f values for transitions between S and P states of helium and of heliumlike atoms using different types of approximate wave functions. ${ }^{1-7}$ The wide variation between the results of the different calculations show the computed f values to be particularly sensitive to the wave function employed. Thus in order to ob-
tain reasonably reliable f values it is necessary to employ wave functions of high accuracy. We have previously ${ }^{8}$ obtained accurate wave functions for the states $1^{1} S$ and $n^{1} S, n^{3} S, n^{1} P, n^{3} P, n=2-5$, for members of the helium isoelectronic sequence up to $Z=10$, and have therefore been able to carry out a systematic calculation of the f values for
transitions between these states.
The methods used to obtain the wave functions have been described elsewhere, ${ }^{9-12}$ and we shall only give a brief outline here. The nonrelativistic Schrödinger wave equation for a two-electron atom with an infinitely heavy nucleus is solved by assuming a solution in the form of a series expansion possessing the appropriate symmetry. Each solution then gives an approximation to the nonrelativistic wave function for one of the states with the given symmetry, while the corresponding eigenvalue E gives an approximation to the energy of this state. To obtain the total energy, the contributions from the relativistic effects and a correction for the finite mass of the nucleus have to be added. The nonrelativistic wave function obtained is, however, accurate enough for computing the f values. The dependence of the wave function on the angular coordinates of the two electrons is determined by considerations of symmetry. Thus it remains to determine the dependence on the three variables r_{1}, r_{2}, and r_{3}, the distances of the two electrons from the nucleus and the interelectronic distance, respectively. In view of the fact that these three variables have to satisfy the triangle condition $\left|r_{1}-r_{2}\right| \leqslant r_{3} \leqslant r_{1}+r_{2}$, it is found convenient to work in terms of the perimetric coordinates ${ }^{9}$ u, v, and w, which are linear combinations of r_{1}, r_{2}, and r_{3} so chosen as to all range from zero to infinity. For the ground state, ${ }^{9,10}$ the wave function was taken to be of the form

$$
\psi=e^{-\epsilon\left(r_{1}+r_{2}\right)} F(u, v, w),
$$

where $\epsilon=(-E)^{1 / 2}$. For the other S states, an expansion

$$
\psi=\left(1 \pm P_{12}\right) e^{-\xi r_{1}-Z r_{2}} S(u, v, w)
$$

was taken, while for the P states, the form

$$
\psi=\left(1 \pm P_{12}\right) e^{-\xi r_{1}-z r_{2}} r_{1} \cos \theta_{1} P(u, v, w)
$$

was assumed, where θ_{1} is the polar angle of electron one, and P_{12} signifies interchange of electrons 1 and 2. Here, $F(u, v, w)$ and $S(u, v, w)$ are triple series of Laguerre polynomials of u, v, and w, while $P(u, v, w)$ is a triple series in simple powers of these variables. The parameter ξ remains to be specified. For the excited S states, the calculations were carried out with two different choices for ξ. In method $C,{ }^{11} \xi$ is given the value $\left(-2 E-Z^{2}\right)^{1 / 2}$, so that the wave function has the correct asymptotic behavior as one or another of the electrons goes to infinity. In method $D,{ }^{12} \xi$ is chosen so as to optimize the energy E. In the case of the P states, wave functions were obtained by method D only, except for a few early calculations for helium.

In the computations, truncated expansions were
used, and we included all terms in the series for which the sum of the powers of u, v, and w are less than some given number Ω. In the case of the ground state, expansions containing up to 1078 terms, corresponding to $\Omega=21$, were used. For the other S states, type- C expansions containing up to 364 terms ($\Omega=11$) and type- D expansions containing up to 220 terms ($\Omega=9$) were used, in general, although for some of the low-lying S states, the expansions could only be carried out up to a smaller number of terms due to loss of accuracy. The type-D expansions used for the P states were carried up to 364 terms.
Before computing the f values, each wave function expansion was converted from the perimetric coordinates to the variables r_{1}, r_{2}, and r_{3}. Each f value was computed in the dipole approximation using the "length," "velocity," and "acceleration" formulas ${ }^{13}$

$$
\begin{aligned}
& f_{\text {1en }}=2\left(E_{p}-E_{s}\right)\left|\int \psi_{p}^{*}\left(z_{1}+z_{2}\right) \psi_{s} d \tau\right|^{2}, \\
& f_{\text {vel }}=\left(\frac{2}{E_{p}-E_{s}}\right)\left|\int \psi_{p}^{*}\left(\frac{\partial}{\partial z_{1}}+\frac{\partial}{\partial z_{2}}\right) \psi_{s} d \tau\right|^{2}, \\
& f_{\mathrm{acc}}=\left(\frac{2}{\left(E_{p}-E_{s}\right)^{3}}\right)\left|Z \int \psi_{p}^{*}\left(\frac{z_{1}}{r_{1}^{3}}+\frac{z_{2}}{r_{2}^{3}}\right) \psi_{s} d \tau\right|^{2},
\end{aligned}
$$

where ψ_{s} and ψ_{p} are the S - and P-state wave functions, respectively, E_{s} and E_{p} are the nonrelativistic energies of the respective states in atomic units, Z is the atomic number, and lengths are given in atomic units. The integration is over the whole of the two-electron space. The three expressions would give identical results if they could be evaluated using the exact eigenfunctions of the nonrelativistic Hamiltonian. However, since the latter are not known, we have to use our approximate wave functions, which will give a different result in each case. In the three formulas, the main contribution comes, respectively, from the region at large distances, at medium distances, and at small distances from the nucleus, and the relative accuracy of the different results will depend on how closely our wave functions approximate to the true eigenfunctions in each of the three regions of space. Each of these three formulas was evaluated using S - and P-state wave functions belonging to the same value of Ω. The convergence of the results as Ω is increased, together with the measure of agreement between the values obtained using the different formulas, give an idea of the accuracy which has been achieved.

Some typical results which are obtained for the f values are listed in Tables I-IV. In Table I, we list the results for transitions from the ground state to the $2^{1} P$ and $5^{1} P$ states in helium, C v , and Ne ix (values for the $1^{1} S-5^{1} P$ transition in helium could not be computed using the expansions of or-

TABLE I. f values for transitions from the ground state; comparison of results obtained using the length (l), velocity (v) and acceleration (a) formulas.

		He		Cv		Ne Ix	
		$1^{1} S-2{ }^{1} P$	$1{ }^{1} S-5{ }^{1} P$	$1{ }^{1} S-2{ }^{1} P$	$1{ }^{1} S-5{ }^{1} P$	$1{ }^{1} S-2{ }^{1} P$	$1{ }^{1} S-5{ }^{1} P$
order 220	l	0.27610	0.01501	0.647064	0.02616	0.722624	0.02718
	v	0.27616	0.01496	0.647067	0.02617	0.722625	0.02718
	a	0. 27604	0.01458	0.647047	0.02609	0.722613	0.02714
order 364	l	0.27615		0.647067	0.02617	0.722625	0.02718
	v	0.27616		0.647067	0.02618	0.722625	0.02719
	a	0.27613		0.647062	0.02615	0.722622	0.02717

der 364, due to loss of accuracy in this case). The convergence of the results is excellent, as is also the agreement between the values obtained from the three different formulas. For transitions between two excited states, we found that the acceleration
formula gave results which converged far more slowly, if they converged at all, than the results obtained using the length and velocity formulas. This effect was particularly pronounced in the case of transitions between two states possessing the

TABLE II. Convergence of f values for transitions between close-lying states. The results obtained using S-state wave functions of types C and D are listed.

		$2{ }^{1} S-2{ }^{1} P$		$5{ }^{1} S-5{ }^{1} P$		$2{ }^{3} S-2{ }^{3} P$		$5{ }^{3} S-5{ }^{3} P$	
		C	D	C	D	C	D	C	D
order 56	$l$$v$	He							
		0.375082	0.375810	1. 02342	1.02576	0.5391059	0.5390883	1.5152	1.5152
		0.375697	0.377290	1. 03649	1.10058	0.5395456	0.5395558	1.5654	1.6253
order 120	l	0.376124	0.376371	1.05820	1. 07007	0.5390877	0.5390869	1.5407	1.5406
	v	0.376152	0.376498	1. 05211	1.09350	0.5391253	0.5391260	1.5423	1.5466
order 220	l	0.376354		1. 06680	1.07965	0.5390861		1.5328	1.5330
	v	0.376358		1. 06666	1.08750	0.5390866		1.5346	1.5349
order 364	l	0.376413				0.5390861			
		0.376414				0.5390862			
order 56	l	Li II							
		0.212214	0.212447	0.6239	0.6247	0.3079408	0.3079399	0.89370	0.89474
		0. 212363	0.212748	0.6134	0.6347	0.3079244	0.3079259	0.90365	0.91917
order 120	l	0. 212503	0.212565	0.6283	0.6335	0.3079401	0.3079402	0.89263	0.89271
	v	0.212514	0.212589	0.6252	0.6384	0.3079403	0.3079404	0.89429	0.89474
order 220	l	0.2125580.212560		0.6307	0.6350	0.3079402		0.89006	0.89006
	v			0.6302	0.6364	0.3079403		0.89043	0.89046
order 364	l			0.6331				0.88970	
				0.6329				0.88973	
order 56	$l$$v$	Cv							
		0.092998	0.093035	0.28566	0.28574	0.1313811	0.1313811	0.38517	0.38527
		0.093005	0.093058	0.27552	0.27978	0.1313624	0.1313625	0.38591	0.38798
order 120	l	$\begin{aligned} & 0.093044 \\ & 0.093045 \end{aligned}$		0.28497	0.28600	0.1313811		0.38376	0.38377
	v			0.28426	0.28661	0.1313810		0.38473	0.38475
order 220	l	$\begin{aligned} & 0.093052 \\ & 0.093052 \end{aligned}$		0.28529	0.28604			0.38333	0.38333
	v			0.28504	0.28606			0.38339	0.38339
order 364	l			0.28572				0.38329	
				0.28574				0.38330	

TABLE III. Convergence of f values for transitions between excited singlet states. The results obtained using S-state wave functions of types C and D are listed.

same principal quantum number ($n^{1} S-n^{1} P$ or $n^{3} S-n^{3} P$), where the energy difference is very small. Some typical results for transitions of this type are given in Table II. It will be seen that in the case of the triplet transitions, the results obtained from the length formula converge much more rapidly than those obtained using the velocity formula. For the singlet case, however, the two sets of results converge about equally well. This result is of particular interest, as it has been previously assumed ${ }^{14,15}$ that the length formula is always to be preferred for transitions between states with a small energy difference. Some typical results for transitions of the type $m^{1} S-n^{1} P$ and $m^{3} S-n^{3} P$ (m not equal to n) are listed in Tables III and IV, respectively. It will be noted that, whereas for the singlet transitions of this type, the velocity results are almost invariably superior,
for the triplet transitions sometimes the length and sometimes the velocity results converge better. Thus, in general, the triplet transitions quite often favor the length formula, whereas for the singlet transitions, the velocity formula almost invariably gives at least as good and often a better result.

Tables II-IV include the results obtained using S-state wave functions of types C and D. As we have pointed out elsewhere, ${ }^{8}$ the results obtained for the energy E converge more rapidly if type- D wave functions are employed than is the case if type- C wave functions are used. On the other hand, the final results are generally more or less the same, due to the availability of type- C expansions containing a larger number of terms. Similarly, it is found that the f values obtained using the largest S-state expansions available of types C and D are usually almost equal to one another, despite

TABLE IV. Convergence of f values for transitions between excited triplet states. The results obtained using S-state wave functions of types C and D are listed.

		$2{ }^{3} S-5{ }^{3} P$		$3^{3} S-4{ }^{3} P$		$3^{3} S-5{ }^{3} P$		$5{ }^{3} S-2{ }^{3} P$	
		C	D	C	D	C	D	C	D
order 56	l	He							
		0.011779	0.011799	0.04603	0.04647	0.02284	0.02129	0.011419	0.011754
		0.010845	0.010856	0.04621	0.04618	0.02007	0.01999	0.010778	0.011086
order 120	l	0.012185	0.012331	0.04972	0.04946	0.02220	0.02287	0.011333	0.011356
	v	0.011978	0.011985	0.04926	0.04928	0.02208	0.02209	0.011285	0.011320
order 220	l	0.012375		0.05004	0.04998	0.02267	0.02299	0.011311	0.011311
	v	0.012351		0.04999	0.04999	0.02267	0.02267	0.011334	0.011337
order 364	l	0.012463		0.05008		0.02288		0.011322	
	v	0.012468		0.05007		0.02288		0.011343	
		Li In							
order 56	l	0.025375	0.025450	0.185394	0.184804	0.060678	0.061331	0.008049	0.008127
	v	0.024647	0.024657	0.184248	0.184323	0.059916	0.059940	0.007898	0.007967
order 120	l	0.025452	0.025551	0.186766	0.186589	0.060838	0.061648	0.008062	0.008067
	v	0.025338	0.025342	0.186462	0.186478	0.060959	0.060962	0.008052	0.008057
order 220	l	0.025553		0.186851	0.186824	0.061321	0.061519	0.008052	0.008052
	v	0.025556		0.186830	0.186832	0.061364	0.061363	0.008061	0.008061
order 364	l			0.186859		0.061414		0.008055	
	v			0.186860		0.061418		0.008062	
		Cv							
order 56	l	0.03537	0.03542	0.34062	0.34015	0.09466	0.09561	0.005425	0.005434
	v	0.03502	0.03503	0.33978	0.33983	0.09481	0.09483	0.005391	0.005398
order 120	l	0.03536		0.34069	0.34063	0.09497	0.09536	0.005420	0.005420
	v	0.03533		0.34064	0.34064	0.09504	0.09504	0.005420	0.005420
order 220	v			0.34069		0.09518		0.005417	0.005417
				0.34070		0.09520		0.005421	0.005421
order 364	l							0.005419	
								0.005421	

the more rapid convergence of the results obtained with the type- D wave functions. There are, however, some cases where the type- C results converge to one or two more significant digits than the corresponding values for type D. In view of the excellent agreement between the results obtained with the two different types of S-state wave functions, the f values for ions with $Z>6$ were calculated with the type- C functions only. We have not, therefore, included results for values of $Z>6$ in Tables II-IV. The results for these higher values of Z are completely satisfactory. Indeed, it is found that, in general, as the atomic number increases, the results obtained using a given formula converge more rapidly, and also the results obtained by evaluating the three alternative formulas agree more closely with one another. The considerable improvement in the results as one goes from helium to Li II is particularly noticeable.

Another general feature of the results is that the f values obtained for a given triplet transition converge more rapidly than those for the corresponding

TABLE V. f values for transitions in helium.

	$2^{1} P$	$3^{1} P$	$4^{1} P$	$5^{1} P$
$1^{1} S$	0.2762^{2}	0.073^{2}	0.030	0.015
$2^{1} S$	0.3764^{2}	0.1514	0.049	0.02
$3^{1} S$	0.1454	0.626	0.144	0.05
$4^{1} S$	0.0258	0.306	0.85	0.15
$5^{1} S$	0.0096	0.055	0.47	1.1
	$2^{3} P$	$3^{3} P$	$4^{3} P$	$5^{3} P$
$2^{3} S$	0.539086	0.06446	0.02577	0.0125
$3^{3} S$	0.20854	0.8909	0.0501	0.023
$4^{3} S$	0.0317	0.4357	1.2153	0.044
$5^{3} S$	0.0113	0.068	0.67	1.53

${ }^{2}$ See Ref. 16.

TABLE VI. f values for transitions in Li II.

	$2^{1} P$	$3^{1} P$	$4^{1} P$	$5^{1} P$
$1^{1} S$	0.4566	0.1106	0.0437	0.0217
$2^{1} S$	0.2126	0.25707	0.073	0.031
$3^{1} S$	0.0947	0.3624	0.2651	0.080
$4^{1} S$	0.0188	0.205	0.500	0.285
$5^{1} S$	0.0072	0.0413	0.322	0.63
	$2^{3} P$	$3^{3} P$	$4^{3} P$	$5^{3} P$
	0.307940	0.1871	0.0575	0.026
$2^{3} S$	0.11710	0.5128	0.18686	0.0614
$3^{3} S$	0.02147	0.2550	0.7036	0.1962
$4^{3} S$	0.00806	0.0480	0.400	0.890
$5^{3} S$	0.0			

singlet case. This is again similar to the behavior of the energy E and of the expectation values of various operators, where for both S and P states the triplet values converge more rapidly. ${ }^{8}$

Our final results for the f values are given in Tables V-XIII. They are based on the computations with the S-state wave functions of type C. (The final results obtained with the aid of type-C and type- D wave functions almost invariably agreed with one another to the number of figures to which they had both converged, the maximum discrepancy being two in the last digit.) The values listed are estimated to be accurate to within an error of not more than one, or occasionally two, in the last digit quoted. The number of digits which we give in these tables was determined in each case in order to satisfy two requirements. First, that to the number of digits quoted, the length and velocity formulas gave results agreeing with one another to within one or two in the last place. Secondly, that for each of these two formulas, the results obtained with the aid of the largest expansions employed agree to within one or occasionally two in the last digit quoted with the "extrapolated" value; i.e., with the value which we estimate would have been obtained if expansions containing an infinite

TABLE VII. f values for transitions in Be iII.

	$2{ }^{1} P$	$3{ }^{1} P$	$4{ }^{1} P$	$5{ }^{1} P$
$1{ }^{1} S$	0.55155	0.1269	0.0492	0.0243
$2{ }^{1} S$	0.14854	0.3059	0.082	0.035
$3{ }^{1} S$	0.07737	0.2560	0.32322	0.0920
$4{ }^{1} S$	0.01595	0.1699	0.355	0.352
$5{ }^{1} S$	0.0062	0.0357	0.269	0.45
	$2{ }^{3} P$	$3{ }^{3} P$	$4^{3} P$	$5{ }^{3} P$
$2{ }^{3} S$	0.21314	0.2526	0.072	0.0309
$3{ }^{3} S$	0.088705	0.35570	0.26409	0.07931
$4{ }^{3} S$	0.01733	0.19744	0.4889	0.2852
$5{ }^{3} S$	0.00662	0.0396	0.3132	0.6190

TABLE VIII. f values for transitions in BIv.

	$2^{1} P$	$3{ }^{1} P$	$4^{1} P$	$5^{1} P$
$1^{1} S$	0.60891	0.1354	0.0520	0.0255
$2^{1} S$	0.11436	0.33371	0.0871	0.037
$3^{1} S$	0.06854	0.1981	0.35709	0.0987
$4^{1} S$	0.01443	0.1520	0.275	0.3917
$5^{1} S$	0.00565	0.0326	0.242	0.35
	$2^{3} P$	$3^{3} P$	$4^{3} P$	$5^{3} P$
	0.1626	0.2912	0.079	0.0337
$2^{3} S$	0.075438	0.27171	0.31029	0.08910
$3^{3} S$	0.17014	0.3739	0.33902	
$4^{3} S$	0.01522	0.170		
$5^{3} S$	0.00587	0.0353	0.2717	0.4736

number of terms had been used. Satisfaction of this second requirement is, we feel, particularly important, since the measure of the agreement between the results obtained by evaluating two different formulas using the same wave functions is not a sufficiently reliable guide to the accuracy of the final result. This point is well illustrated by the convergence of the results given in Tables II-IV. As an example, we may consider the $2{ }^{1} S-2^{1} P$ transition in helium, shown in Table II. Using type-C wave functions for the $2{ }^{1} S$ state, for order 120 , the length and velocity formulas give 0.376124 and 0.376152 , respectively, from which one might be tempted to conclude that the final result is 0.37614 , with an error of not more than ± 0.00002. However, using the corresponding expansions of order 220, we obtain 0.376354 and 0.376358 , respectively, from the two formulas, which by the same reasoning would lead to an estimate of 0.376356 ± 0.000002 for the final result. Again, the results for order 364 are 0.376413 and 0.376414 , which would give 0.376414 ± 0.000001. However, consideration of the results for the different orders indicates that one could confidently quote a result of 0.3764 , but that the next digit cannot be given with certainty. We have therefore

TABLE IX. f values for transitions in Cv .

	$2^{1} P$	$3{ }^{1} P$	$4^{1} P$	$5^{1} P$
$1^{1} S$	0.64707	0.1405	0.0535	0.0262
$2^{1} S$	0.09305	0.35168	0.0901	0.038
$3^{1} S$	0.06316	0.16155	0.37925	0.1029
$4^{1} S$	0.01347	0.1411	0.2247	0.4179
$5^{1} S$	0.00529	0.0307	0.226	0.29
	$2^{3} P$	$3^{3} P$	$4{ }^{3} P$	$5{ }^{3} P$
$2^{3} S$	0.1314	0.3165	0.0837	0.0354
$3^{3} S$	0.06784	0.21968	0.3407	0.095
$4^{3} S$	0.01396	0.15437	0.3024	0.37456
$5^{3} S$	0.00542	0.0327	0.2477	0.3833

TABLE X. f values for transitions in Nvi.

	$2^{1} P$	$3^{1} P$	$4^{1} P$	$5^{1} P$
$1^{1} S$	0.67420	0.1438	0.0545	0.0266
$2^{1} S$	0.07847	0.36423	0.0921	0.038
$3^{1} S$	0.05953	0.13641	0.39487	0.1057
$4^{1} S$	0.01280	0.1337	0.1899	0.4364
$5^{1} S$	0.00505	0.0293	0.2147	0.24
	$2^{3} P$	$3^{3} P$	$4{ }^{3} P$	$5{ }^{3} P$
	0.1102	0.3342	0.0868	0.0365
$2^{3} S$	0.062950	0.18432	0.36213	0.09937
$3^{3} S$	0.01313	0.14413	0.2539	0.39969
$4^{3} S$	0.00512	0.0309	0.2320	0.3218
$5^{3} S$				

preferred to quote the result in such a case as 0.3764 . It should be added that in cases where the acceleration results had also converged to the number of figures quoted in the tables, the value obtained was found to agree with the length and velocity results to within one or two in the last digit.

The most accurate previous calculations of f values for the helium isoelectronic sequence are those of Weiss, ${ }^{6}$ who used basis functions similar to those employed in the current work, but only included up to 54 terms in the expansions of the wave functions, and of Sanders and Scherr, ${ }^{7}$ who used a perturbation expansion in powers of Z^{-1}. The results of the three calculations for helium, $\mathrm{C} v$, and Ne ix are compared in Table XIV. Our results quoted in this table are those which were obtained from the largest expansions employed, and are estimated to have converged to within the number of digits quoted in each case. The results of the three calculation are in excellent agreement.

Extensive calculations of f values for helium have also been made by Green et al. ${ }^{3}$ In Table XV, we compare the results of the two calculations for the singlet transitions. (A comparison of the results for the triplet transitions would show similar features.) We felt a detailed comparison of the two sets of results to be worthwhile, as it illus-

TABLE XI. f values for transitions in Ovir .

	$2{ }^{1} P$	$3{ }^{1} P$	$4{ }^{1} P$	$5{ }^{1} P$
$1{ }^{1} S$	0.69445	0.1461	0.0552	0.0269
$2{ }^{1} S$	0.06786	0.37349	0.0936	0.0388
$3{ }^{1} S$	0.05691	0.11803	0.40648	0.1078
$4^{1} S$	0.01231	0.1285	0.1644	0.4502
$5{ }^{1} S$	0.00486	0.0284	0.2067	0.21
	$2{ }^{3} P$	$3^{3} P$	$4^{3} P$	$5{ }^{3} P$
$2{ }^{3} S$	0.09485	0.3474	0.0891	0.0373
$3{ }^{3} S$	0.059542	0.15875	0.37804	0.10239
$4{ }^{3} S$	0.01254	0.13696	0.2187	0.41837
$5{ }^{3} S$	0.004903	0.0297	0.2210	0.2773

TABLE XII. f values for transitions in F viri.

	$2^{1} P$	$3{ }^{1} P$	$4^{1} P$	$5^{1} P$
$1^{1} S$	0.71013	0.1479	0.0556	0.0270
$2^{1} S$	0.05978	0.38060	0.0947	0.0392
$3^{1} S$	0.05494	0.10402	0.41543	0.1094
$4^{1} S$	0.01194	0.12455	0.1449	0.4609
$5^{1} S$	0.00472	0.0276	0.2008	0.18
	$2^{3} P$	$3{ }^{3} P$	$4^{3} P$	$5^{3} P$
$2^{3} S$	0.08327	0.3575	0.0908	0.0379
$3^{3} S$	0.057036	0.13940	0.39031	0.10467
$4^{3} S$	0.012104	0.13166	0.1921	0.43279
$5^{3} S$	0.004742	0.0287	0.2128	0.2436

trates the relative accuracy of the wave functions employed. One can see quite clearly that Green et al. obtain results superior to those of the current work for transitions between two highly excited states. In other cases, the results of the current work are better. This difference reflects the comparative accuracy of the wave functions. The wave functions of Green et al. are based on a configuration interaction scheme, and are therefore particularly suited to describe the higher excited states, where the interaction between the electrons is relatively unimportant. Our wave functions, on the other hand, are derived using a correlated basis, and hence are best suited to describe the low-lying states, where correlation effects are known to be important. Thus, for the case of helium, the calculations of Green et al. and the present work may be regarded as being complementary to one another.

To summarize, we have carried out a systematic calculation of the f values for transitions between low-lying S and P states for members of the helium isoelectronic sequence up to $Z=10$. We have also made an estimate of the accuracy of the values obtained. In the large majority of cases, an accuracy of 1% or better has been achieved.

TABLE XIII. f values for transitions in Ne IX.

	$2^{1} P$	$3^{1} P$	$4^{1} P$	$5^{1} P$
$1^{1} S$	0.72263	0.1492	0.0560	0.0272
$2^{1} S$	0.053430	0.38624	0.0956	0.0396
$3^{1} S$	0.053390	0.09298	0.42255	0.1107
$4^{1} S$	0.01165	0.12147	0.1295	0.4694
$5^{1} S$	0.00461	0.0271	0.1961	0.165
	$2^{3} P$	$3^{3} P$	$4^{3} P$	$5{ }^{3} P$
	0.07420	0.3655	0.0921	0.0383
$2^{3} S$	0.055116	0.12425	0.40005	0.10646
$3^{3} S$	0.011764	0.12759	0.1713	0.44425
$4^{3} S$	$5^{3} S$	0.004617	0.0280	0.2065

TABLE XIV. Comparison of the results of the present work with those of Weiss (Ref. 6) and of Sanders and Scherr (Ref. 7).

			$1{ }^{1} S-2{ }^{1} P$	$1{ }^{1} S-3{ }^{1} P$	$2{ }^{1} S-2{ }^{1} P$	$2{ }^{1} S-3{ }^{1} P$	$2{ }^{3} S-2{ }^{3} P$	$2{ }^{3} S-3{ }^{3} P$
He :	Weiss	l	0.2759	0.0734	0.3764	0.1478	0.5391	0.0641
		v	0.2761	0.0730	0.3774	0.1506	0.5401	0.0634
	Sanders and Scherr	l	0. 276113				0.540553	
		v	0.276182				0.543145	
		a	0.276012				0.549327	
	Present work	l	0.2761	0.074	0.3764	0.1514	0.5390861	0.064461
		v	0.276165	0.073436	0.3764	0.1514	0.539086	0.064 46
		a	0.2761	0.0734				
Cv :	Weiss	l	0.6470	0.1406	0.0930	0.3495	0.1314	0.3163
		v	0.6470	0.1404	0.0932	0.3524	0.1315	0.3163
	Sanders and Scherr	l	0.647051				0.131381	
		v	0.647068				0.131383	
		a	0.647038				0.131063	
	Present work	l	0.64707	0.1405	0.09305	0.35168	0.131381	0.3165
		v	0.647067	0.140478	0.09305	0.35168	0.1314	0.31648
		a	0.6471	0.1405				
Nerx:	Weiss	l	0.7226	0.1492	0.0534	0.3841	0.0742	0.3651
		v	0.7226	0.1492	0.0535	0.3869	0.0742	0.3656
	Sanders and Scherr	l					0.074198	
		v	0.722625				0.074199	
		a	0.722606					
	Present work	l	0.72262	0.1492	0.053430	0.38624	0.074198	0.36550
		v	0.722625	0.149160	0.053430	0.38624	0.07420	0.3655
		a	0.7226	0.14916				

TABLE XV. Comparison of the results of the present work with those of Green et al. (Ref. 3) for singlet transitions in helium.

			$2^{1} P$	$3{ }^{1} P$	$4^{1} P$	$5{ }^{1} P$
$1{ }^{1} S$	Green et al.	l	0.27537	0.07292	0.02957	0.01481
		v	0. 27586	0.07296	0.02960	0.01487
		a	0.26908	0.07047	0.02835	0.01419
	Present work	l	0.2761	0.074	0.030	0.015
		v	0.276165	0.073436	0.0299	0.015
		a	0.2761	0.0734	0.030	0.015
$2{ }^{1} S$	Green et al.	l	0.3773	0.1513	0.0493	0.0224
		v	0.3950	0.1540	0.0506	0.0231
	Present work	l	0.3764	0.1514	0.049	0.02
		v	0.3764	0.1514	0.0492	0.022
$3{ }^{1} S$	Green et al.	l	0.1457	0.6279	0.1429	0.0499
		v	0.1446	0.6448	0.1433	0.0506
	Present work	l	0.1453	0.626	0.144	0.05
		v	0.1454	0.626	0.144	0.05
$4^{1} S$	Green et al.	l	0.0260	0.3081	0.8603	0.1455
		v	0.0256	0.3092	0.8754	0.1445
	Present work	l	0.0259	0.306	0.85	0.15
		v	0.0258	0.306	0.85	0.15
$5{ }^{1} S$	Green et al.	l	0.00967	0.0554	0.4767	1.0869
		v	0.00951	0.0556	0.4780	1. 0901
	Present work	l	0.0095	0.056	0.47	1.07
		v	0.0096	0.055	0.47	1.1

*Work supported in part by the National Bureau of Standards under Grant No. NBS(G)-105.
${ }^{1}$ E. Trefftz, A. Schlüter, K. H. Dettmar, and K. Jörgens, Z. Astrophys. 44, 1 (1957).
${ }^{2}$ B. Schiff and C. L. Pekeris, Phys. Rev. 134, A638 (1964).
${ }^{3}$ L. C. Green, N. C. Johnson, and E. K. Kolchin, Astrophys. J. 144, 369 (1966).
${ }^{4}$ A. Dalgarno and E. M. Parkinson, Proc. Roy. Soc. (London) A301, 253 (1967).
${ }^{5}$ M. Cohen and P. S. Kelly, Can. J. Phys. 45, 2079 (1967).
${ }^{6}$ A. W. Weiss, J. Res. Natl. Bur. Stds. 71A, 163 (1967).
${ }^{7}$ F. C. Sanders and C. W. Scherr, Phys. Rev. 181, 84 (1969).
${ }^{8}$ Accad, C. L. Pekeris, and B. Schiff, Phys. Rev. A

4, 516 (1971).
${ }^{9}$ C. L. Pekeris, Phys. Rev. 112, 1649 (1958).
${ }^{10}$ C. L. Pekeris, Phys. Rev. 126,1470 (1962).
${ }^{11}$ C. L. Pekeris, Phys. Rev. $\overline{127}, 509$ (1962).
${ }^{12}$ B. Schiff, H. Lifson, C. L. Pekeris, and P. Rabinowitz, Phys. Rev. 140, A1104 (1965).
${ }^{13}$ S. Chandrasekhar, Astrophys. J. 102, 223 (1945).
${ }^{14}$ P. Jennings and E. B. Wilson, J. Chem. Phys. 47, 2130 (1967).
${ }^{15}$ R. J. S. Crossley, Advan. Atomic Molecular Phys. $\underline{5}$, 237 (1969).
${ }^{16}$ For a recent experimental verifications of the f values for the $1^{1} S-2^{1} P$ and $1^{1} S-3^{1} P$ transitions in helium, as well as the isotope shift of the $2^{1} S-2^{1} P$ line, see J. M. Burger and A. Lurio, Phys. Rev. A 3, 64 (1971); 3, 76 (1971).

Structure of Heavy Atoms: Three-Body Potentials*

Marvin H. Mittleman
The City College of the City University of New York, New York, New York 10031
(Received 8 March 1971)
A discussion of the problem of the construction of a configuration-space Hamiltonian describing a many-electron atom with relativistic effects included is given. It appears that the total three-body energy in such an atom must be small if the problem of the construction of this Hamiltonian is to be simply solvable. To that end, a relativistic three-body potential is constructed for a three-electron system. It has novel terms which arise from a pathology of the two-body Hamiltonian previously noted. It is shown that a speculative generalization to the many-electron system results in a total three-body energy which may be many rydbergs but which is still a small perturbation on the total result.

I. INTRODUCTION

A fundamental problem of atomic physics is the question of just what configuration-space Hamiltonian (CSH) should be used as a starting point for the calculation of properties of a heavy atom. The advent of large digital computers has made this more than just an academic problem since it is now possible to do Hartree-Fock calculations in such systems provided the original CSH is not too complicated. ${ }^{1}$ If we accept the belief that the fundamental description of a many-electron system is the field-theoretic one of quantum electrodynamics (QED), the problem becomes one of the extraction of a CSH from a Fock-space formulation. This is a problem which is not unique to atomic physics; it exists for any elementary-particle problem. However, it may well be solvable for QED where the coupling constant is small. It is clearly beyond our present skills in strong-interaction physics.

In either problem, the Hamiltonian formulation may not be the most useful one. Alternative ap-
proaches such as a many-particle generalization of the Bethe-Salpeter equation may, in the end, prove to be the more fruitful configuration-space formulation. However, this method yields a manytime equation for which numerical techniques are still in their infancy. By contrast, operating single-time (Hamiltonian) numerical approximation methods already exist. For this reason we shall concentrate upon the Hamiltonian approach here. The construction of the CSH will not be accomplished here. In this first paper we shall only take the first steps of the delineation of the total problem and a small step towards its solution. In the process we construct the three-body potential. This has been done before nonrelativistically ${ }^{2,3}$; however, when relativistic effects are introduced, novel potentials are encountered. The problem we start with is QED in the presence of an infinitely heavy point charge $+Z e$ where $Z \gg 1$ such that $Z \alpha$ is approximately unity. The parameters of the problem are then $Z \alpha, \alpha$, and $N \alpha$, where $\alpha \simeq \frac{1}{137}$ is the finestructure constant and N is the number of electrons

