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f values have been computed for the transitions m S-n P, m = 1-5, n= 2-5 and m S-n P,
m, n= 2-5 for members of the helium isoelectronic sequence up to Z=10. The agreement be-
tween the results obtained using the dipole length, and velocity formulas, together with the con-
vergence of the results as an increasing number of terms are included in the expansions of the
wave functions, indicate that the values obtained are accurate to within 1% or better for the large
majority of the transitions.

Various authors have computed f values for
transitions between S and P states of helium and of
heliumlike atoms using different types of approxi-
mate wave functions. ' The wide variation between
the results of the different calculations show the
computed f values to be particularly sensitive to
the wave function employed. Thus in order to ob-

tain reasonably reliable f values it is necessary to
employ wave functions of high accuracy. %e have
previously' obtained accurate wave functions for
the states 1'S and n S, n S, n'P, n P, n=2-5,
for members of the helium isoelectronic sequence
up to Z =10, and have therefore been able to carry
out a systematic calculation of the f values for
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transitions between these states.
The methods used to obtain the wave functions

have been described elsewhere, ' ' and we shall
only give a brief outline here. The nonrelativistic
Schrodinger wave equation for a two-electron atom
with an infinitely heavy nucleus is solved by assum-
ing a solution i.n the form of a series expansion
possessing the appropriate symmetry. Each solu-
tion then gives an approximation to the nonrelativ-
istic wave function for one of the states with the
given symmetry, while the corresponding eigen-
value E gives an approximation to the energy of
this state. To obtain the total energy, the con-
tributions from the relativistic effects and a cor-
rection for the finite mass of the nucleus have to
be added. The nonrelativistic wave function ob-
tained is, however, accurate enough for computing
the f values. The dependence of the wave function
on the angular coordinates of the two electrons is
determined by considerations of symmetry. Thus
it remains to determine the dependence on the three
variables 'vj Tp and ~„ the distances of the two
electrons from the nucleus and the interelectronic
distance, respectively. In view of the fact that
these three variables have to satisfy the triangle
condition tv, —mal & ~&& r&+rz, it is found convenient
to work in terms of the perimetric coordinates
u, v, and zv, which are linear combinations of ~&,

x&, and x3 so chosen as to all range from zero to
infinity. For the ground state, ' the wave func-
tion was taken to be of the form

P = e ""&'"2'F(u, v, u ),
where e = (-E)"'. For the other S states, an ex-
pansion

P=(l+P~a) e "~ "&S(u, v, se)

was taken, while for the P states, the form

tet=(1+P») e '"& e"ax, cosG,P(u, v, w)

was assumed, where 8, is the polar angle of elec-
tron one, and P» signifies interchange of electrons
1 and 2. Here, E(u, v, w) and S(u, v, w) are triple
series of Laguerre polynomials of u, v, and se,

while P(u, v, w) is a, triple series in simple powers
of these variables. The parameter $ remains to
be specified. For the excited S states, the calcu-
lations were carried out with two different choices
for $. In method C,

" ( is given the value
(- 2E —Za)'~a, so that the wave function has the
correct asymptotic behavior as one or another of
the electrons goes to infinity. In method D,

' ( is
chosen so as to optimize the energy E. In the case
of the P states, wave functions were obtained by
method D only, except for a few early calculations
for helium.

In the computations, truncated expansions were

used, and we included all terms in the series for
which the sum of the. powers of u, v, and zo are
less than some given number O. In the case of the
ground state, expansions containing up to 1078 terms,
corresponding to 0 =21, were used. For the other
S states, type-C expansions containing up to 364
terms (fI = 11) and type Dex-pansions containing up
to 220 terms (Q = 9) were used, in general, although
for some of the low-lying S states, the expansions
could only be carried out up to a smaller number
of terms due to loss of accuracy. The type-D ex-
pansions used for the P states were carried up to
364 terms.

Before computing the f values, each wave func-
tion expansion was converted from the perimetric
coordinates to the variables x&, x2, and x3. Each
f value was computed in the dipole approximation
using the "length, " "velocity, " and "acceleration"
formulas'

2 I'g & a
fvei = .E E '4u

a
+ 48d~

p 8Z
g ~Zp

where g, and g~ are the S- and P-state wave func-
tions, respectively, E, and Ep are the nonrelativis-
tic energies of the respective states in atomic units,
Z is the atomic number, and lengths are given in
atomic units. The integration is over the whole of
the two-electron space. The three expressions
would give identical results if they could be evalu-
ated using the exact eigenfunctions of the nonrelativ-
istic Hamiltonian. However, since the latter are
not known, we have to use our approximate wave
functions, which will give a different result in each
case. In the three formulas, the main contribution
comes, respectively, from the region at large dis-
tances, at medium distances, and at small dis-
tances from the nucleus, and the relative accuracy
of the different results will depend on how closely
our wave functions approximate to the true eigen-
functions in each of the three regions of space.
Each of these three formulas was evaluated using
S- and P-state wave functions belonging to the same
value of O. The convergence of the results as 0 is
increased, together with the measure of agreement
between the values obtained using the different
formulas, give an idea of the accuracy which has
been achieved.

Some typical results which are obtained for the

f values are listed in Tables I-IV. In Table I, we
list the results for transitions from the ground
state to the 2'P and O'P states in helium, C v, and
Ne tx (values for the 1'S-5'P transition in helium
could not be computed using the expansions of or-
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TABLE l. f values for transitions from the ground state; comparison of results obtained using the length Q),
velocity I'v) and acceleration (a) formulas.

He Cv Ne xx

l
order 220 v

l
order 364 g

0. 276 10
0. 276 16
0. 276 04

0. 276 15
0.276 16
0.276 13

0. 015 Gl
O. 014 96
0. 01458

0. 64V 064
0.647 067
0. 647 047

0.647 067
0.647 067
0.647 062

0. 026 16
0. 02617
0. 026 09

0. 02617
0. 026 18
0. 026 15

0.722 624
0.722 625
0.722 613

0.722 625
0.722 625
0.722 622

0.027 18
O. 027 18
G. 02714

O. 027 18
0.027 19
0. 027 17

der 364, due to loss of accuracy in this case). The
convergence of the results is excellent, as is also
the agreement between the values obtained from the
three different formulas. : For transitions between
two excited states, we found that the acceleration

formula gave results which converged far more
slowly, if they converged at all, than the results
obtained using the length and velocity formulas.
This effect was particularly pronounced in the case
of transitions between two states possessing the

TABLE D. Convergence off values for transitions between close-lying states. The results obtained using S-state
grave functions of types C and D are listed.

5'S-5'I 2 S-2P

0. 375 082
O. 375 697

G. 376 124
0. 376 152

0.375 810
0.377 290

0.376 371
0.376498

1.02342 l. 025 76
1.036 49 1.100 58

1.058 20 l. OVOOV

1.052 11 l. 093 50

He

0.5391059
0. 5395456

0.5390877
0.5391253

0.539088 3
0. 539 555 8

0. 5390869
0. 539126 0

l.5152
1.5654

1.5407
1.5423

1.5152
1.6253

1.5406
1, 5466

order 220 l

order 364
V

0. 376 354
O. 376 358

0. 376413
0. 376414

1.06680 l. 07965 0.5390861
l. 06666 1.087 50 0. 539 0866

0.539 0861
0. 539 086 2

l. 5328
1.5346

l. 533 0
l. 534 9

order 56 0. 212 214
0. 212 363

0. 212447 0. 623 9
0.212748 O. 6134

0. 6247
0.634 7

Li xz

0. 307 9408
0. 307 9244

0. 307 939 9
0.307 9259

0. 89370 0.89474
0.903 65 0. 91917

order 120
V

order 364
l

0. 212 503
0. 212 514

0. 212558
O. 212 560

O. 212 565
0. 212 589

G. 6283
0. 625 2

0.6307
0. 6302

0.633 1
0.632 9

0.633 5
0.6384

G. 635 0
0. 6364

0. 307 9401
0. 307 9403

0. 30V 940 2
0. 30V 9403

0.307 940 2
0. 307 940 4

0.89263 0.89271
0.894 29 0.894 74

0.890 06 O. 890 06
0.89043 0.89046

0. 889 VO

0.88973

order 56 l

order 220
l

order 364 l
V

O. 092 998
0. 093 005

O. 093 044
0. 093 045

0. 093 052
0. 093 052

0. 285 66
0. 275 52

0. 284 97
0.284 26

0. 285 29
0. 285 04

G. 28572
0. 285 74

O. 28574
0. 27978

0. 286 00
0. 286 61

0. 286 04
0.286 06

Cv

0.1313811
0. 1313624

O. 131381 1
0. 131381 0

0.131381 1
0. 131362 5

0. 38517 0. 385 27
0. 385 91 0.387 98

0.383 76 0. 383 77
G. 38473 0.38475

0. 38333 0.383 33
0.383 39 G. 383 39

0.383 29
0.383 30
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TABLE III. Convergence of f values for transitions between excited singlet states. The results obtained using
S-state wave functions of types C and D are listed.

2 S-5P 3 'S-4'P 3'S-5'P 5 iS-2 iP

lorder 56
V

order 120
l
V

order 220 l
V

order 364
l
V

0. 023 19
0. 022 91

0. 02027
0. 022 06

0. 02075
0. 022 19

0. 023 30
0. 02288

0. 02274
0. 02224

0. 147 60
0. 148 69

0. 145 64
0. 144 63

0.14440
0. 144 31

0. 144 09
0. 144 07

0. 11675
0. 146 04

0. 136 12
0. 143 94

0. 14174
0. 143 96

He

0. 04720
0. 048 81

0. 044 24
0. 04943

0. 04843
0. 050 28

0. 05532
0. 05249

0. 055 82
0. 05039

0. 053 39
0. 05034

0. 009514
0. 008 495

0. 009516
0. 009330

0. 009 520
0. 009 532

0. 009 577
0. 009 606

0. 009772
0. 008 780

0. 009 667
0.009 532

0. 009 620
0. 009 628

lorder 56

l
order 120

V

order 220
l

order 364 l

0. 03178
0. 032 33

0. 03035
0. 03148

0. 030 96
0. 031 51

0. 03253
0. 03239

0. 03176
0. 03157

0. 269 500
0. 267 073

0. 265 901
0. 265 278

0. 265 237
0. 265 176

0. 265 130
0. 265 135

0. 248 384
0. 267 115

0. 261 263
0. 265 240

0. 264 153
0. 265 102

0. 07281
0. 078 86

0. 074 94
0. 07921

0. 078 73
0. 07971

0. 07964
0. 07976

0, 08658
0. 081 65

0. 084 04
0. 07968

0. 081 62
0. 07974

0. 007 199
0. 006755

0. 007 167
0. 007 111

0. 007 168
0. 007 181

0. 007 188
0. 007 201

0. 007 262
0. 006 831

0. 007 217
0. 007 171

0. 007 200
0. 007 208

order 56

lorder 120

0. 037 76
0. 038 34

0. 037 30
0. 03778

0. 038 29
0. 038 37

Cv

0.381 778 0. 372 923 0. 098 24
0.379876 0. 380460 0. 10295

0.379491 0. 377 993 0. 10082
0.379329 0.379411 0. 10272

0. 107 60
0. 104 15

0. 105 07
0. 10287

0. 005 326 0. 005 333
0. 005 169 0. 005 179

0. 005 288 0. 005 296
0. 005 275 0. 005 285

order 220
l

order 364
V

0. 03759
0. 037 74

0. 379 271
0.379 257

0.379 250
0.379 251

0. 102 57
0. 102 90

0. 10287
0. 102 90

0. 005 284 0. 005 290
0. 005 290 0. 005 295

0. 005 289
0. 005 294

ss.me principal quantum number (n'S-n'P or
n'S-n'P), where the energy difference is very
small. Some typical results for transitions of
this type are given in Table II. It will be seen that
in the case of the triplet transitions, the results
obtained from the length formula converge much

more rapidly than those obtained using the velocity
formula. For the singlet case, however, the two

sets of results converge about equally well. This
result is of particular interest, as it has been pre-
viously assumed' '" that the length formula is al-
ways to be preferred for transitions between states
with a small energy difference. Some typical re-
sults for transitions of the type m'S-n'P and
msS-n 'P (m. not equal to n) are listed in Tables
III and IV, respectively. It will be noted that,
whereas for the singlet transitions of this type,
the velocity results are almost invariably superior,

for the triplet transitions sometimes the length and

sometimes the velocity results converge better.
Thus, in general, the triplet transitions quite often
favor the length formula, whereas for the singlet
transitions, the velocity formula almost invariably
gives at least as good and often a better result.

Tables II-IV include the results obtained using
S-state wave functions of types C and D. As we

have pointed out elsewhere, ' the results obtained
for the energy E converge more rapidly if type-D
wave functions are employed than is the case if
type-C wave functions are used. On the other hand,

the final results are generally more or less the

same, due to the availability of type-C expansions
containing a larger number of terms. Similarly,
it is found that the f values obtained using the

largest S-state expansions available of types C and

D are usually almost equal to one another, despite
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TABLE IV. Convergence off values for transitions bebveen excited triplet states. The results obtained using $-state
wave functions of +pcs C and D M'e listed.

2 3$5 3+

order 120 E

order 220 E

order 364
V

0. Oll 779
0. 010845

0. 012 185
0. 011978

0. 012 375
0. 012 351

0. 012463
0. 012468

O. 011799
0. 010856

0. 012 331
0. Oll 985

0. 046 03 0. 046 47
0. 046 21 0. 04618

0. 049 72 0.04946
0. 049 26 0. 049 28

0. 05004 0. 04998
0. 049 99 0. 049 99

0. 050 08
0. 050 07

He

0. 022 S4
0. 020 07

0. 02220
0. 022 08

0. 022 67
0. 022 67

0.02288
O. 02288

0. 021 29
0. 01999

0. 02287
0. 022 09

0. 022 99
0. 02267

0. 011419 0.011754
0. 010778 0. Oll 086

0. 011333 0.011356
0. Oll 285 O. Qll 320

0. 011311 0. 011311
G. 011334 0. Oll 337

0. 011322
0. 011343

0. 025 375
0. 024 647

0. 025450
0. 024 657

0. 185 394
0. 184 248

0. 184 S04 0. 060678
O. 184 323 0. 059 916

0. 061 331
0.059 940

0. 008 049 0.008 127
0. 007 898 0.007 967

order 120

order 220

O. 025452
0. 025 338

0. 025 553
0. 025 556

0. 025 551
0. 025 342

0.186766
0. 186462

0. 186 851
0.186 830

0.186 859
0.186860

0.186 589
0. 186478

0. 186 824
0. 186832

0.060838
0. 060 959

0. 061 321
0. 061364

O. 061414
O. 061418

0.061648
0.060 962

0. 061 519
0. 061 363

0. 008 062 0. 008 067
0. 008 052 0.008 057

O. OOS 052 0.008 052
0. 008 061 0. 008 061

0. 008 055
0. 008 062

order 56 0. 035 37
O. 035 02

0. 035 36
0. 035 33

0. 03542
0. 035 03

0. 34062 0.34015
0.33978 0.33983

O. 340 69 0.340 63
0. 340 64 0.340 64

O. 340 69
0.34070

Cv

O. 094 66
0. 09481

0. 094 97
0. 095 04

0. 095 18
0. 095 20

0. 095 61
0.094 83

0. 095 36
0. 095 04

0. 005425 0. 005434
0. 005 391 0.005 398

0. 005 420 0. 005 420
O. 005 420 0. 005 420

0.005417 0.005417
G. 005421 O. 005421

0. 005419
0. 005421

the more rapid convergence of the results obtained
with the type-D wave functions. There are, how-
ever, some cases where the type-C results con-
verge to one or two more significant digits than
the corresponding values for type D. In view of
the excellent agreement between the results ob-
tained with the two different types of S-state wave
functions, the f values for ions with Z &6 were cal-
culated with the type-C functions only. %e have
not, therefore, included results for values of Z&6
in Tables II-IV. The results for these higher
values of Z are completely satisfactory. Indeed,
it is found that, in general, as the atomic number
increases, the I esults obtained using a given for-
mula converge more rapidly, and also the results
obtained by evaluating the three alternative formu-
las agree more closely with one another. The con-
siderable improvement in the results as one goes
from helium to Li » is particularly noticeable.

TABLE V. f values for transitions in helium.

1'$
2~$
3~$
4'$
5'$

0. 276 2
0.3764
0.1454
0. 0258
0.0096

0. 073
0. 1514
0. 626
0. 306
0. 055

0. 030
0. 049
0. 144
Q. 85
0.47

0. 015
0. 02
0. 05
0. 15
1.1

2 3$

3 3$

4 3$

5 3$

0.539 086
0.208 54
0.0317
O. 0113

0.06446
0.890 9
0.435 7
0. 068

0.02577
0. 0501
l. 2153
0. 67

0. 0125
0. 023
0. 044
l. 53

~See Ref. 16.

Another general feature of the results is that the
f values obtained for a given triplet transition con-
verge more rapidly than those for the corresponding
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TABLE VI. f values for transitions in Li xx. TABLE VIII. f values for transitions in Bxv.

1 S
2'S
3'$
4'$
5 1$

2 S
3 S
4 3$

53S

2 iP

0.4566
0.2126
0. 0947
0. 018 8
0. 0072

23P

0.307 940
0.11710
0.02147
0.008 06

0. 1106
0. 257 07
0.3624
0.205
0. 0413

3 P

0. 187 1
0.5128
0. 255 0
0. 048 0

4 ip

0. 0437
0. 073
0. 2651
0. 500
0.322

4 P
0. 0575
0. 186 86
0.703 6
0.400

5 ip

0. 0217
0. 031
0. 080
0. 285
0. 63

0. 026
0, 0614
0. 1962
0.890

1'S
2'S
3'S

1$

5iS

23$
3 3$

43S
5 S

2 iP

0.608 91
0.11436
0.068 54
0.01443
0. 005 65

0.162 6
0. 075 438
0. 015 22
0.00587

3iP

0. 1354
0 ~ 333 71
0. 198 1
0. 1520
O. 0326

3 P
0. 2912
O. 271 71
0. 170 14
0. 0353

4'p

0. 0520
0. 0871
0.357 09
0. 275
0. 242

43P

0. 079
0. 31029
0. 373 9
0. 2717

5 ip

0. 0255
0. 037
0. 0987
0. 3917
0. 35

53P

0. 0337
0. 08910
0.339 02
0.473 6

singlet case. This is again similar to the behavior
of the energy E and of the expectation values of
various operators, where for both S and P states
the triplet values converge more rapidly. '

Our final results for the f values are given in

Tables V-XIII. They are based on the computa-
tions with the S-state wave functions of type C.
(The final results obtained with the aid of type-C
and type-D wave functions almost invariably agreed
with one another to the number of figures to which
they had both converged, the maximum discrepancy
being two in the last digit. ) The values listed are
estimated to be accurate to within an error of not
more than one, or occasionally two, in the last
digit quoted. The number of digits which we give
in these tables was determined in each case in
order to satisfy two requirements. First, that to
the number of digits quoted, the length and velocity
formulas gave results agreeing with one another to
within one or two in the last place. Secondly, that
for each of these two formulas, the results ob-
tained with the aid of the largest expansions em-
ployed agree to within one or occasionally two in
the last digit quoted with the "extrapolated" value;
i.e. , with the value which we estimate would have
been obtained if expansions containing an infinite

number of terms had been used. Satisfaction of
this second requirement is, we feel, particularly
important, since the measure of the agreement be-
tween the results obtained by evaluating two differ-
ent formulas using the same wave functions is not
a sufficiently reliable guide to the accuracy of the
final result. This point is well illustrated by the
convergence of the results given in Tables II-IV.
As an example, we may consider the 2'S-2'P
transition in helium, shown in Table II. Using
type-C wave functions for the 2'S state, for order
120, the length and velocity formulas give
0. 376 124 and 0. 376 152, respectively, from which
one might be tempted to conclude that the final re-
sult is 0. 376 14, with an error of not more than
+ 0. 00002. However, using the corresponding ex-
pansions of order 220, we obtain 0.376 354 and
0. 376358, respectively, from the two formulas,
which by the same reasoning would lead to an es-
timate of 0. 376 356+ 0. 000002 for the final result.
Again, the results for order 364 are 0. 376413 and
0. 376 414, which would give 0. 376 414+ 0. 000 001.
However, consideration of the results for the dif-
ferent orders indicates that one could confidently
quote a result of 0. 3764, but that the next digit
cannot be given with certainty. We have therefore

TABLE VII. f values for transitions in Be xxx. TABLE IX. f values for transitions in Cv.

1'S
1$

3 S
4 S
5'S

2 S
3 S
43$
53$

0.551 55
0.148 54
0. 077 37
0. 015 95
0.006 2

23P

0. 213 14
0. 088 705
0.017 33
0. 00662

3ip

0. 126 9
0. 305 9
0. 2560
0. 1699
0. 0357

33P

0. 2526
0.355 70
0. 19744
0. 0396

4 ip

0. 0492
0. 082
0.323 22
0.355
0. 269

0. 072
0. 264 09
0.488 9
0. 3132

5 P
0. 024 3
0. 035
0. 0920
0.352
0.45

5 P
0. 0309
0. 07931
0.285 2

0.6190

1iS
2 is
3 is
4 iS
5'S

2 $
3 S
4 S
5 S

2 iP

0.647 07
0. 093 05
0.063 16
0.01347
0.005 29

23p

0.1314
0.067 84
0.013 96
0.00542

3 iP

0. 1405
0. 351 68
0. 16155
0, 1411
0. 0307

0.3165
0. 21968
0. 15437
0. 0327

4 ip

0. 0535
0. 0901
0. 37925
0. 2247
0. 226

4 3P

0. 0837
0.3407
0. 3024
0. 2477

0. 0262
0. 038
0. 1029
0.417 9
0. 29

5 P
0. 0354
0. 095
0. 37456
0.3833
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TABLE X. f values for transitions in Nvx. TABLE XII. f values for transitions in Fvxu.

1iS
2 8
3'8
4'8
5 S

238
3 8
4 S
5 S

0.674 20
0. 078 47
0. 05953
0. 012 80
0.005 05

23P

0.1102
0. 062 950
0. 013 13
0. 005 12

3iP

0. 143 8
0. 364 23
0. 13641
0. 1337
0. 0293

3 P

0.334 2
0.184 32
0. 144 13
0. 0309

4'P

0. 054 5
0. 0921
0. 394 87
0. 1899
0. 2147

4 3p

0. 0868
0.362 13
0. 2539
0. 2320

0.0266
0. 038
0. 1057
0.4364
0. 24

5 P
0. 0365
0. 09937
0. 39969
0. 3218

1'8
2 8
3'8
4'8
5 S

2 8
338
4 S
538

2'P

0.710 13
0.05978
0.054 94
0.01194
0.004 72

2 P
0.083 27
0.057 036
0.012 104
0. 004 742

3fP

0. 147 9
0. 380 60
0. 104 02
0. 12455
0. 027 6

3 P

0. 3575
0. 13940
0. 13166
0. 0287

4ip

0. 0556
0.0947
0.41543
0. 1449
0. 2008

4 3P

0. 0908
0.390 31
0.1921
0.2128

5 ip

0. 027 0
0. 039 2

0. 1094
0.4609
0. 18

5 3p

0. 0379
0. 104 67
0.432 79
0. 243 6

preferred to quote the result in such a case as
0. 3764. It should be added that in cases where the
acceleration results had also converged to the num-
ber of figures quoted in the tables, the value ob-
tained was found to agree with the length and veloc-
ity results to within one or two in the last digit.

The most accurate previous calculations of f
values for the helium isoelectronic sequence are
those of Weiss, who used basis functions similar
to those employed in the current work, but only in-
cluded up to 54 terms in the expansions of the wave
functions, and of Sanders and Scherr, ' who used a
perturbation expansion in powers of Z '. The re-
sults of the three calculations for helium, C v, and
Ne ix are compared in Table XlV. Our results
quoted in this table are those which were obtained
from the largest expansions employed, and are
estimated to have converged to within the number of
digits quoted in each case. The results of the three
calculation are in excellent agreement.

Extensive calculations of f values for helium have
also been made by Green et al. ' In Table XV, we
compare the results of the two calculations for the
singlet transitions. (A comparison of the results
for the triplet transitions would show similar
features. ) We felt a detailed comparison of the
two sets of results to be worthwhile, as it illus-

trates the relative accuracy of the wave functions
employed. One can see quite clearly that Green
et al. obtain results superior to those of the cur-
rent work for transitions between two highly ex-
cited states. In other cases, the results of the
current work are better. This difference reflects
the comparative accuracy of the wave functions.
The wave functions of Green et al. are based on a
configuration interaction scheme, and are there-
fore particularly suited to describe the higher ex-
cited states, where the interaction between the
electrons is relatively unimportant. Our wave
functions, on the other hand, are derived using a
correlated basis, and hence are best suited to
describe the low-lying states, where correlation
effects are known to be important. Thus, for the
case of helium, the calculations of Green et al.
and the present work may be regarded as being
complementary to one another.

To summarize, we have carried out a system-
atic calculation of the f values for transitions be-
tween low-lying S and I' states for members of
the helium isoelectronic sequence up to Z=10.
We have also made an estimate of the accuracy
of the values obtained. In the large majority of
cases, an accuracy of 1% or better has been
achieved.

TABLE XI. f values for transitions in Ovzr. TABLE XIII. f values for transitions in Ne Ix.

1 S
2 is
3'8
4 S
5 8

2 S
3 S
438
5 S

2 1P

0.69445
0. 067 86
0.056 91
0.012 31
0. 00486

0. 094 85.
0. 059542
0. 01254
0.004 903

3iP

0. 146 1
0. 37349
0. 118 03
0. 128 5
0. 0284

3 P

0. 3474
0.158 75
0.13696
0. 0297

0. 0552
0. 0936
0.40648
0. 1644
0. 2067

4 P

0. 0891
0.378 04
0. 2187
0. 2210

5'P

0. 0269
0. 0388
0. 1078
0.450 2
0. 21

0. 0373
0. 10239
0.418 37
0. 2773

1 18
2'8
3'8
4'8
5'8

2 8
33S
438
5 S

0.722 63
0. 053 430
0. 053 390
0. 01165
0. 004 61

2 P

0. 074 20
0.055 116
0.011764
0.004 617

3 iP

0. 149 2
0. 386 24
0. 092 98
0. 12147
0. 0271

3 3P

0. 3655
0. 124 25
0. 127 59
0. 028 0

0. 0560
0. 0956
0.422 55
0. 1295
0. 1961

0. 0921
0.400 05
0. 1713
0.2065

51P

0. 0272
0. 0396
0. 1107
0.4694
0. 165

5 P

0. 0383
0.10646
0.444 25
0. 217 17
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TABLE XIV. Comparison of the results of the present work with those of Weiss (Ref. 6)
and of Sanders and Scherr (Ref. 7).

Weiss

Sanders
and Scherr

Present
work

Weiss

Weiss

0. 2759
0.2761

0. 276 113
0. 276 182
0. 276 012

0.2761
0. 276 165
0.2761

0.647 0
0. 6470

0.647 051
0.647 068
0.647 038

0. 647 07
0.647 067
0.6471

0.7226
0.7226

0.722617
0.722 625
0.722 606

0. 0734
0. 0730

0. 074
0. 073436
0. 0734

0. 1406
0. 1404

0.1405
0. 140478
0. 1405

0. 1492
0. 1492

0. 3764
0. 3774

0.3764
0. 3764

0. 0930
0. 0932

0. 093 05
0. 093 05

0. 0534
0. 053 5

0 ~ 147 8
0.150 6

0.1514
0.1514

0.3495
0.3524

0.351 68
0.351 68

0.384 1
0.386 9

0. 5391
0.5401

0.540553
0. 543 145
0. 549 327

0.5390861
0. 539 086

0.131381
0. 131383
0. 131063

0. 131381
0. 1314

0. 074 2
0. 074 2

0. 074 198
0. 074 199
0. 073 863

0. 0641
0. 0634

0. 064461
0. 064 46

0.3163
0.3163

0.3165
0.31648

0.3651
0.3656

Present
work

0.722 62
0.722 625
0.7226

0. 1492
0. 149160
0. 14916

0. 053430 0.386 24
0. 053430 0.386 24

0. 074 198
Q. 074 20

0. 365 50
0.3655

TABLE XV. Comparison of the results of the present work with those of Green et al. (Ref. 3)
for singlet transitions in helium.

21P

Green et al.

Present work

Green et al.

Present work

Present work

Green et ai.

Present work

0. 275 37
0. 27586
0.269 08

0. 2761
0. 276165
0, 2761

0. 377 3
0. 3950

0.3764
0.3764

0.1457
0. 1446

0. 145 3
0. 1454

0. 0260
Q. 0256

0. 0259
0. 0258

0. 00967
0. 00951

0. 0095
0. 0096

0. 072 92
0. 07296
0.07047

0. 074
0. 073436
0. 0734

0.1513
0. 154 0

0.627 9
0.6448

0.626
0.626

0.308 f
0.3092

0.306
0.306

0. 0554
0. 0556

0. 056
0. 055

0. 029 57
0. 02960
0. 028 35

0. 030
0, 0299
0. 030

0. 0493
0, 0506

0. 049
0. 0492

0. 1429
0.143 3

0. 144
0. 144

0.8603
0, 8754

0. 85
0.85

0.476 7
0.478 0

0.47
0, 47

0.014 81
0. 01487
0.014 19

0.015
0. 015
0.015

0.0224
0, 0231

0. 02
0. 022

0.0499
0. 0506

0. 05
0. 05

0.1455
0. 144 5

0.15
0.15

1.0869
1.0901

1.07
1.1
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Structure of Heavy Atoms: Three-Body Potentials
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A discussion of the problem of the construction of a configuration-space Hamiltonian describ-
ing a many-electron atom with relativistic effects included is given. It appears that the total
three-body energy in such an atom must, be small if the problem of the construction of this
Hamiltonian is to be simply solvable. To that end, a relativistic three-body potential is con-
structed for a three-electron system. It has novel terms which arise from a pathology of the
two-body Hamiltonian previously noted. It is shown that a speculative generalization to the
many-electron system results in a total three-body energy which may be many rydbergs but
which is still a small perturbation on the total result.

I. INTRODUCTION

A fundamental problem of atomic physics is the
question of just what configuration-space Hamil-
tonian (CSH) should be used as a starting point for
the calculation of properties of a heavy atom. The
adve~t of large digital computers has made this
more than just an academic problem since it is now
possible to do Hartree-Fock cal,culations in such
systems provided the original CSH is not too com-
plicated. ' If we accept the belief that the funda-
mental description of a many-electron system is the
field-theoretic one of quantum electrodynamics
(QED), the problem becomes one of the extraction
of a CSH from a Fock-space formulation. This is
a problem which is not unique to atomic physics;
it exists for any elementary-particle problem.
However, it may well be solvable for QED where
the coupling constant is small. It is clearly beyond
our present skills in strong-interaction physics.

In either problem, the Hamiltonian formulation
may not be the most useful one. Alternative ap-

proaches such as a many-particle generalization
of the Bethe-Salpeter equation may, in the end,
prove to be the more fruitful configuration-space
formulation. However, this method yieMs a many-
time equation for which numerical techniques are
still. in their infancy. By contrast, operating
single-time (Hamiltonian) numerical approximation
methods already exist. For this reason we shall
concentrate upon the Hamiltonian approach here.
The construction of the CSH will not be accomplished
here. In this first pa,per we sha. ll only take the
first steps of the delineation of the total problem
and a small step towards its solution. In the pro-
cess we construct the three-body potential. This
has been done before nonrelativisticallya'; how-
ever, when relativistic effects are introduced, novel
potentials are encountered. The problem we start
with is QED in the presence of an infinitely heavy
point charge + Ze where Z» 1 such that Zo. is ap-
proximately unity. The parameters of the problem
are then Ze, 0., and N, where +=rsv is the fine-
structure constant and N is the number of electrons


