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We discuss the solution of the "superradiance master equation" derived in a preceding paper.
During the first few photon transient times the cooperative atomic decay goes through a non-
adiabatic oscillatory regime. For later times the decay takes place monotonically in time
with the electromagnetic field following it adiabatically. The emitted light pulse has different
statistical properties for an incoherently and a coherently prepared "superradiant" atomic
initial state. The former case is characterized by large quantum fluctuations and strong
atom-atom and atom-field correlations. In the latter case quantum fluctuations are small and
the system behaves essentially classically. By also solving for a class of coherently prepared
intermediate initial states we show that large quantum fluctuations occur only if the initial
total occupancy of the excited state differs from the total number of atoms at most by a number
of order unity.

I. INTRODUCTION

In a previous paper, ' hereafter referred to as
I, we derived a simple equation of motion for the
density operator of an ensemble of many two-level
atoms describing the cooperative decay of initial
atomic excitation. This "superradiance master
equation" has been shown to be valid under the fol-
lowing conditions: (i) The "active" volume filled
by the atoms has a pencil shape, i.e. , is very thin
compared to its length. (ii) All atoms are identical.
(iii) Any incoherent decay process —caused, for
example, by nonradiative relaxation —is so slow
that the atoms do not get out of phase with each
other before the cooperative decay —caused by the
coherent interaction with the electromagnetic field-
is over. (iv) The length of the active volume is
smaller than a self-consistently determined critical
value, in order to guarantee that the envelope of
the emitted light pulse is essentially constant over
the length of the sample; intuitively speaking, this
means that the atoms radiate as a single macro-
scopic dipole rather than seeing and producing dif-
ferent values of the field at different points of the
sa.mple. (v) At t=0, the field is in the vacuum state
and the ensemble of atoms in some excited state
with energy E/5»&1. To our knowledge, condi-
tions (iii)-(v) are common to all of the numerous
recent treatments of superradiance. They char-
acterize a physical situation in which one can ex-
pect spontaneous cooperative emission leading to
the maximum possible peak value of the radiat d

intensity. We adopt condition (ii) for the sake of
simplicity only. Condition (i) is a restriction not

made by other authors. It dispenses us from wor-
rying about the angular distribution of the emitted
radiation. As is well known, practically all of the
energy initially stored in the atoms is radiated into
the very small diffraction solid angle around the
axial direction of the "pencil, " if condition (i) is
met. We have shown in I that then the electromag-
netic field in the active volume can be treated in
terms of a single mode (end-fire mode) with a wave
vector in the direction of the pencil and a frequency
equal to the transition frequency of the two-level
atoms. This enormous simplification of the prob-
lem is not possible for any other shape of the active
volume. We are generously rewarded for restrict-
ing ourselves to this simple case by the fact that
the resulting superradiance master equation is
simple enough to be exactly solvable. In particular,
its solution allows evaluation of the statistic prop-
erties of the emitted pulse, and thus control of the
accuracy of semiclassical approximations on which
most treatments of superradiance have been based
up to now.

In this paper we present and discuss the solution
of the superradiance master equation for various
atomic initial states. The most important results
are the following:

(a) For a "fully excited" atomic initial state (all
atoms in the upper state, as realized, for example,
by first preparing the atoms in the ground state
and then shining the system with a classical "m

pulse"; more generally, for an ensemble of atoms
in equilibrium with a completely incoherent pump
mechanism) the emitted intensity I(t) is at all times
appreciably smaller than what a semiclassical rate



solid angle of an isolated atom times the diffraction
solid angle of the end-fire mode; R'=g", ,R;e' ' "~

are the total atomic dipole operators composed of
raising (R',) and lowering (R,) operators for the in-
dividual atoms; 0 is the wave vector of the end-fire
mode; R3= g,".&R„equals the total atomic energy
operator apart from factor S~; the 8 obey angular
momentum commutation relations: [R&,R'] = +R';
[R', R ] = 2RS; I is the length of the active volume;
I,„,= 4v(y, /y)/X'p is the lower bound for I; x is the
wavelength of the end-fire mode; y is the natural
linewidth of an isolated atom; y~ equals y+ collision
or lattice broadening; p is the number density of
atoms in the sample; I, = (4wc/yX p) equals the
upper bound for I; g= (cosy/8vV) I equals the
atom-field coupling constant with V the volume of
sample; g, a are the annihilation and creation
operators for photons in the end-fire mode.

Then conditions (iii) and (iv) above read

and the atomic density operator W„(t) obeys the
superradiance master equation

W~(t) = 1 ds gIgwe "'j[R, Wg(t —s)R']

+[R-W„(f-s),R'jj . (1.2)

Once Eq. (1.2) is solved, expectation values of
fieM operators can be evaluated as

-(5+m)es ffs
y
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For large times, t» x ', the theory constituted by
(1.2) and (1.3).can be replaced by its Markovian
version:

W„(t) = —,'I, 1[R-, W„(f)R']+ [R-W„(f),R']j

&~"~"(f)&= (-~a'/~)™(-1)'&R'R- (f)& . (1.3')

if Eq. (l. 2') is solved by suppressing fluctuations
of the total, atomic energy

(1.4)

then the results of the semiclassical rate equation
approach are recovered. Then the emitted intensity
I(t}= 2~(a a(t)& has the well-known hyperbolic se-
cant form
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equation'4 approach pr edicts. This discrepancy
between quantal and semiclassical values is largest
(-23%%uo) near the peak intensity. The "normally
ordered" intensity fluctuation, as measurable in a
delayed photon coincidence experiment, is at al1.
times much larger than it would be for a coherent
state of the field. The dispersion of the total
atomic energy (R,s(t)& —(R,(t)&s which is neglected
in the semiclassical rate equation approach as-
sumes values of up to order Na near the maximum
of the pulse. There are, at all times, large atom-
atom and atom-field correlations. All of these
results are found to be independent of or at least
very insensitive to the number of atoms N, once
N is large.

(b) For a "superradiant" atomic initial state
(either the Dicks I 2N, 0) state or, more generally
and realistically, for a state prepared from the
ground state by a classical —,

'
v pulse) excellent

agr cement with the semiclassical description is
found. In particular, we have I(f) =I,„,(t) to within
at least 0. 5/o. The fluctuations of the emitted in-
tensity and of the atomic energy are small. During
most of the high-intensity region of the pulse the
field may be considered to be in a coherent state,
to within an accuracy -I/¹ Of course, these re-
sults can be understood intuitively to be due to the
presence of a macroscopic initial value of a "trans-
verse atomic dipole moment. "

(c) If the atoms are prepared from the ground
state by a classical "2

I y I pulse" with —,
'

m —2 I y I
—m

{the angle 2 I yl may be looked upon as the classical
Bloch angle; in our context it parametrizes a class l+m

of atomic states; see Sec. Ill), the behavior of the (s s (f)&= —f (-1) {I+~)
system ranges continuously between the two limits
discussed above. However, the "classical" be-
havior prevails for all values of 2 ~ y( except those
very close to the "fully excited" limit 2lyl = m.

The "transition" value of lyl corresponds to a
total occupancy of the upper state differing from N
by a number of order unity.

(d) As we had already inferred from general argu-
ments and now read off the explicit solution of the
superradiance master equation, the emitted field
follows the decay of the atoms adiabatically for
times greater than the photon transient time,
t» & '. However for t ~ z ' we find a distinctly non-
adiabatic behavior of the system. Unfortunately,
the non-Markovian effects taking place during this
nonadiabatic regime are difficult to observe ex-
perimentally, as they have to be disentangled from
the preparation process whose duration is just at
least a photon transient time, too. (R,'(f)& -(R, (f)&' = 0,

For the sake of the reader's convenience let us
write down those results of I which will be needed
in the following. We use the same notations as in
I: ~ ' = 2l/c equals the photon transient time; I,
is the emission probability per unit time and unit
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I(t) =I, [-,'(N+ I)]'sech'[(t- t )/r~], (l. 5) p(r, m, t) = I, [g(r, m+ l)p(r, m+ 1, t)

with the pulse width

rq ——~Il (N+ 1)

and a time t of maximal intensity which depends
on the initial condition.

II. SOLUTION OF SUPERRADIANCE MASTER EQUATION

As we are finally interested in calculating nor-
mally ordered field expectation values (al'a" (t))
we have to solve the superradiance master equation
only to the extent needed for the evaluation of the
"corresponding" quantities (R"R™(t)).Therefore,
and in view of the obvious fact that Eqs. (l. 2) and
(1.2 ) conserve total angular momentum it is con-
venient to use the angular momentum representation
for the atomic density operator':

IV„(t) = Q Z Z Z W.„,.„, , (t)
5)O t'yt' =0 1' ~t' % 1

x
f

arm)(o. 'r'm'[, (2. 1)

with

R,
~

~rm) = m~ o.rm),
(2 2)

R'~ mm) = [(r+m)(r ~m+1)]"'~ arm ~1) .

The "diagonal" expectation values (R"R '(t)) and
(R3'(t))—the former of which are of special impor-
tance because they determine the outcome of photon
counting experiments —can be expressed in terms
of the diagonal matrix elements W, ,„„(t)as

—g(r, m) p(r, m, t)] . (2. 5')

These equations describe one-step downward
transitions between the collective energy levels m.
Upward transitions are forbidden in the superradi-
ance limit (l. I) (no reaction of the photons on the
atoms is allowed). There are several standard
methods available to solve the "recurrence rela-
tions" (2. 5). The technically simplest one turns
out to be a numerical procedure. We shall present
the results thus obtained in Secs. K-VI. However,
an analytical solution may be easily obtained, too,
and is best suited for a general discussion.

To construct the analytical solution of (2. 5) and
(2. 5') we first observe that the linearity of these
equations allows the introduction of a time evolution
matrix according to

p(r, m, t)= p V„„(r,t)p(r, n, o),
(2. 5)

The Laplace transform of V„(r, t),

V„(r,z)= f dte "V„(r,t-), (2. 7)

may be found from the I aplace-transformed recur-
rence relations (2. 5) by iteration to read

( )
K+8 g KIl g(ril) (2 8)

~I, g(r, m), „e(~+e)+ ~1, g(r, I)

or, from (2. 5'),

(R'R '(t)}= Q g-(r, m}g(r, m —1) ~ g(r m —1+1} ( )
1 ~ I, g(r, l}.

I, g(r, m), a+I, g(r, I)
' (2.8')

-=g g(r, m)g(r, m —1). g(r, m —1+1)

xP(r, m, t), (2. 3)

The absence of terms with n& I or, equivalently,
the vanishing of the time evolution matrix for n & rn

shows again that probability flows only down the
con.ective energy ladder. The behavior of the time-
dependent V„„(r,t) is characterized by the singu-
larities of V„(r,z). The latter are poles at

~ tel

(2.4) Z;=- -."{I[1-4I,g(., I)i.]'"j
and

p(r, m, t) = I, f '
de Ice "'[g(r, m+ 1)p(r, m+ 1, t —s)

-g(r, m) p(r, m, t -e)], (2.5)

and from Eq. (1.2')

wl'til g(r, m) = (r+ m) (r —m + 1)
Conservation of angular momentum by the master

equation (l. 2} now express itseU in the fact that the
resulting equations of motion for the diagonal ma-
trix elements P(r, m, t) fall in separate blocks for
each value of the "cooperation" quantum number. 6

We get from Eq. (l. 2)

Z, = —I, g(r, t) . (2. 9')

Note that because of g(r, m) ~Owe have ReZ', —0.
The poles therefore give rise to decaying exponen-
tials exp(Z', t) and exp(Z, t), respectively, in

V„(r, t). According to the symmetry property
g(r, I) =g(r, —I+ 1) some of the poles may coincide
in pairs whereupon the corresponding exponentials
acquire first-order polynomials in t as factors.
The termination of the collective energy ladder at
m = —r sllows up 111 g(r~ —r) =0 wlllcll e. ntalls Z ~

= Z „=O. This leads to an accumulation of prob-
ability in the ground level as time elapses. Indeed,
this pole is the only one to contribute to the station-
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ary solution

Together with probability conservation
+r

Q P (r, m, t) = 1
m ~7

(2. Io)

count for an eventual. ly positive inversion for the
N two-level atoms. As has already been pointed
out by Dicke, ' the inversion R, (or the atomic en-
ergy If &R3) has an extremely small relative disper-
sion in the state (3.1) for N»1:

(3.2)

and the definition (2. 7), this gives

P (r, m, t - ~) = &„, „ (2. 11)

Let us briefly discuss two excitation mechanisms
which can be used to prepare our system to different
initial states. These mechanisms have to be de-
signed to pump energy into the atoms without pro-
ducing photons in the end-fire mode and, very im-
portantly, without interfering with the cooperative
decay process. The latter requirement means tha, t
the characteristic times of the pump must be much
small. er than the duration of the cooperative
decay.

First, consider an arbitrary but incoherent pump
leaving the atoms in an uncorrelated equilibrium
sta, te

(0) g exp [(AQJ/ TKef f)R3f ]
2cosh(tt~/2KT „f) (3. 1)

The effective temperature T,«characterizing this
equilibrium with the pump may be negative to ac-

independent of the initial probabil, ities.
Finally, we are now able to compare explicitly

the results of the non-Markovian and the Markovian
treatment. %e had already concluded from general
arguments that both theories give identical results
for times larger than the photon transient time v '.
To see that now, explicity observe that for t » K

'
only those exponentials in V„(r, t) or P(r, m, t)
survive whose damping constants are small as com-
pared to K. The latter are indeed —Z, = —Z,
= g(r, l)If«~. However, for times t —If

' the re-
spective predictions differ drastically. In this non-
adiabatic regime none of the exponentials exp(Z', t)
is negligible. In particular, for v & 4I, g(r, l) or
if & 2g[2g(r, I)]' ~3, the non-Markovian poles Z; develop
imaginary parts. This implies, as a feature quite
typical for non-Markovian effects, that some ob-
servables of the system need not decay monotonical-
ly in time but may rather display a damped oscilla-
tion behavior. Note that the above condition for
this to happen is compatible with the superradiance
limit (1.1) for r 3', l«r. Summarizing this
discussion we may conclude that the electromag-
netic field, starting from the initial vacuum state,
catches up with the motion of the atoms within a
time of order x ' and then follows the latter adiaba-
tically.

III. PREPARATION OF ATOMIC INITIAL STATE

N/2
w„(0)=z-' p p l

~rm&&~rml,
0, r= Iml

with energy @corn according to

(3.3)

m = &R,) = ——3'A'tanh &) 0 for T„f&) 0 .
off

(3.4)
Moreover, Dicke' has shown that for energies of
interest in the present context, m» —', N»1, Eq.
(3.3) may be replaced with

W„(0)= Ir m&&r ml r= lml m ~ above
(3.5)

because the state with the smallest possible co-
operation quantum number x= I m I has an over-
whelming statistical weight in (3.3}. Hence an in-
coherently prepared atomic initial state may be
specified in terms of the probabilities P(r, m} in-
troduced in Sec. II as

P(r', m') = &„,~, & ~ (3.6)

with m as in (3.4). In particular, for small nega-
tive temperatures, Ift&/KT, «l -0, the atoms can
be considered to be in the fully excited state
x= m= —,'¹

As a completely different situation let us now
encounter a coherent pump. We imagine all atoms
to be in the ground state before a pulse of resonant
coherent light runs along the pencil-shaped cavity.
The pulse is assumed so strong that it can be
treated as a constant classical source acting on the
atoms for a time T (which, again, has to be short
compared to the characteristic times of the super-
radiance process). The Hamiltonian for such a
simple process reads

II= ifg(oR'+ ffR-) . (3. 7)

The complex quantity n defines the fixed amplitude
and phase of the pump fieM. The atomic state
generated by a classical field according to the
Hamiltonian (3.7) is the formal analog of the co-
herent state of the electromagnetic field generated
from the vacuum by a prescribed classical current.
The evaluation of this "quasiclassical" state of the
system is a straightforward algebraic affair':

l

e(7')&=~ '"""ll (3.S)
k=1

eff

Therefore, up to corrections of order I/vN we can
replace the canonical ensemble (3. 1) by a micro-
canonical ensemble
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(3.9)

The meaning of the angles lyl and p is elucidated
from the expectation values &x& = &/(T) IxI g(T)&:

an excitation by what is usually called a m pulse
which, in our notation, corresponds to lyl = &r
leaves the atoms in the fully excited state P(r, m, 0)

On the other hand, a "-, m pulse"
(i. e. , I yl = —,

'
v) produces a binomial probability

distribution

(R') = ,'N si—n
I yl e"",

&R &
= - -'N c»2I rl .

(3.1o) f (+y ~y 0) r, EI2
N

—,N- m

x (slnl yl e")""
I

—,
'

N, m& . (3. 11}

Taking the state I P(T)& as initial state of the atoms
we have

Hence 2[ yl is the angle between the classical vector
(R& and its third component, whereas y fixes the
phase of the transverse component. Note that

I g(T)&, unlike an I), m& state, is an uncorrelated
state in the sense that it factors into single-atom
wave functions.

Observe now that the (luasiclassical state I $(T)&
is completely symmetric in all atoms. We there-
fore suspect and indeed easily verify that it may
be represented as a linear combination of the en-
ergy eigenstates lx, m& with x= ,'N which —have the
same symmetry:

+N/2 N 1/2

I
g(T)&= ~ N (cosl ~l} "

with mean value &m& =(RB) = 0. For large N the
binomial distribution is sharply peaked around the
mean value so that it may eventually be replaced
with P(r, m) = 6„„&zf) 0 which corresponds to Dicke's
superradiant state. In this sense the Dicke state

I r, m=0& can be said to be realizable. However,
as the binomial distribution is not more difficult
to cope with than the "Dicke" one, we base our
numerical work on the former.

Let us point out that the nonadiabatic regime of
the cooperative decay process will be unobservable
if the initial state is prepared by a classical light
pulse. The minimal duration of the excitation is
given by the travel time of the pulse across the
length of the sample which is just the characteristic
time of the nonadiabatic process (see Sec. II).

IV. RESULTS FOR FULLY EXCITED INITIAL STATE

Restricting ourselves to the adiabatic regime we

~.(0) =
I
«T)&&((T)

I

+N /2

p(-,'N, m, o)
I 2» ~&&-,'N, m

m=-N /2

+ Q W))(ga, „,„ga ~. (0)l ,'N, m&( —,'N, m I—

mum'

(3. 12)
with the probabilities

((,yim, o)=(, -)(c,os (y() i (sin y)

(3. 13}
and the nondiagonal elements

(mmmm

)

5 x10

2.5 x10

2x10

1.5 x10

1+- pTm

x(cosl yl)" (sinl yl)"' ' e'"" ' . (3. 14)

Let us note that if the pump pulse has a fixed am-
plitude ~

I yl but a random phase p, the nondiagonal
elements (3. 14) will vanish. The probabilities
P( ,'N, m), however-, are phase independent. There-
fore, an excitation by an "unphased" and a "phased"
pulse with equal amplitude and duration will pro-
duce the same behavior of the system as far as
"diagonal" quantities are concerned.

It is well known and easy to see from (3.13}that

10

9.5x10

I
' ' ' '

I

50 100
I

150
I ~ ~

200

FIG. 1. Probability distribution p(n, v) at various
times 7 =t/7&(7&. pulse width; 7'm=tm/v&. time of pulse
maximum) for values of n =x —m ranging from 0 to 200,
starting from initial condition p(n, 0) =~„,0.
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FIG. 5. Same as Fig. 1 for N =200 coherently excited
atoms (2 ( yl =-,'7).

fore is practically identical to Dicke's superradiant
state P(x, m, 0) = &„„&~5„0.

In Fig. 5, we show the time-dependent P(n, t) as
obtained by solving Eq. (2. 5') numerically for the
initial condition (5. 1) and N= 200 atoms. It is in-
teresting to note that for t ~ 0, P(n, t) does not re-
main a binomial distribution. This is a consequence
of the obvious fact that the master equation (2. 3)
does not preserve the "quasiclassical" state l $(T)).
The dispersion of n calculated with the solution
P(n, t) is always larger than the dispersion of a
binomial distribution with equal mean value (n).

The intensity I(t) for the present p(n, t) is plotted
in Fig. 6. In contrast to what we observed for the
fully excited initial state in Sec. IV the agreement
with the semiclassical hyperbolic secant behavior
is excellent. By inspection of the expression (4. 1)
for I(t) -I„„.(t) and the numerical values for
a~(RS) given in Table III it may be seen that I(t) at
no time differs from I„„,(t) by more than 0. 5%%uo.

"
Also, the value -', I(0) is reached after t/r~ = 0.877,
in agreement with the classical prediction t/r~
= ln(1+ v2 ) obtained from Eqs. (1.5) and (1.5) with
N= 200, t = —r~/N=0. The results for the nor-
mally ordered intensity fluctuation a „(I), shown in
Fig. 7 and Table III, also lead to the conclusion
that the emitted field behaves classically. Except
for large times (t & 2v'~), where (ata(t))~ tends to zero
faster than (a a aa(t)) —(ata(t)), I o„(I)I is found to
be very small compared to unity. For t~ 0. 5r~,
i.e. , during most of the high-mtensity region of the

pulse, we even have l o~(I) I

~ of the order 1/N,
i.e. , values certainly allowing to characterize the
field as a "classical" one: To within an accuracy
1/N the field may be considered to be in a coherent
state in that region. "

VI. RESULTS FOR INTERMEDIATE INITIAL STATES

In Secs. IV and V we have studied the behavior
of the atom-field system for two initial states which

may be looked upon as limiting cases of the more
general state (3. 11) and (3. 13) with —', v —2lyl ~ v.
As the dynamical and statistical. properties of the
system are quite different for 2Iy( = —,'m and m, the
question naturally arises how large the quantum
fluctuations are for initial states with intermediate
values of 2(yl. Therefore we have calculated the
maximum value of a~(R,) and the minimum value
of o„(I) for various initial states with 21yl between
—,
' z and m. Clearly, these quantities give a rough
measure of how close to classical behavior the
system gets during the pulse. The numerical re-
sults obtained with X=2m=10' are listed in Fig. 8
and Table IV. We see that both o~(I) l „and
o ~(R~) l,„are very small compared to unity and,
moreover, quite close to the corresponding values
obtained for 2(y( = —,'m over most of the range of
2(yI. Large quantum fluctuations occur only for
2lyl very close to v. Using (Rs(0))= ——', Ncos2lyl
we see that the transition takes place if the initial
occupancy of the upper state N, (0) = ,' [N+ 2(R, (0))—]

10

2x10

I

5
Tp

FIG. 6. Same as Fig. 2 for N =200 coherently excited
atoms (2 ( p( =27t).



&62 BONIFACIO, SCHWENDIMANN, AND HAAKE

O
II

S

K

Cd

Cd4
S

M

Cd
Q

~~
N
R
Cd

Q
~~
K
Cd

Cd

R
4W

8
M

Cd
~W

.9
0

Q

bD

8

Q

Q
~o
V
w0

N0

Cd0
~W

O

O

O

CO
00

O

o
cn

O

O
O

IO

X ~

lQ
OO
rI

O
O CQ

lQ LQ

O

IO

o
o

I

NO + CD

O

I
CD

o
O cg tn cc,t

o

I

X

o

IO

X
Cg

O

I

X

O

IO

X
CO

O

IO
X

O

Io
X

QO

O

I
CD

X
00

O

differs from N by a number of order unity. For
smaller values of 2~yl or N, (0) the system displays
only small quantum fluctuations and, as an important
consequence, can be described correctly by the
semiclassical approach [(R~ (t)) =(R~(t)) j. More-
over, the completely classical approach using the
Block equations is appropriate in this range, too.
In order to see this we only have to recall that we
have seen in I, Appendix 8, that classical and semi-
classical approaches lead to identical results for
N»1, and N, (0) &N- l.

VII. ATOM-ATOM AND ATOM-FIELD CORRELATIONS

We have seen in Sec. IV that the cooperative de-
cay of N initially fully excited atoms is accompanied
by large quantum fluctuations. In particular, the
relative dispersion of the energy o (R,) =I.„„(t)
—I(t), reaches a peak value of -0.23, which is
rather insensitive to the number of atoms. It is
easy to see that this is due to large atom-atom
energy correlations. Indeed, recalling Rs =P=, R„.
we have, with 4=a (R,)r2=(R3) —(R,),

N

a'=g o„+g o'„
i=1 f0j

with o;, =(R„RI,) —(R„)(R„.).
Now, because of the symmetry of both the super-

radiant master equations (2. 2) and (2. 3) and our
initial conditions with respect to the exchange of
two atoms, we have

0'gg=ogg =&12 for g 4g y

and therefore' =Mr+N(N —1)oi2. (7. 2)

-1
10

This shows that the total energy dispersion has con-
tributions from single-spin fluctuations and spin-
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FIG. 7. Same as Fig. 4 for N=2QQ coherently excited
atoms (2 I yl =2~).



QUANTUM STATISTICAL THEORY OF SUPERRADIANCE. II 863

TABLE IV. Numerical results for intermediate initial
states prepared by 2 I yI pulse with 2m~2 I yI ~7r.

0.5—

2 I yl

—7r
5
8

15
I6

~sr
32

-(R3)

0.43 x 10-2

0.58X 10-2

0.94x ]0-~

0.22x10 &

0.6 x10-'

0. 15

0.25

~,~a+
0.25x 10

0.26x 10 3

0.20x 10 3

0. 92x 10-3

0. 73x10 2

0.44 x 10-'

0. 1

0.25-

0.2—

O.l—

spin energy correlations. Note that o « —,', o,z
~ —,

'
for the two-level atoms. Our observation that 4
is of order N therefore simply means that the
correlation term o,a is of order unity or, more
precisely, near its maximum possible value —,'. In
other words, spin-spin energy correlations com-
pletely dominate single-spin fluctuations in (7. 2).
We have already noted that the superradiance
master equations (2. 2) and (2.2) do not allow for an
uncorrelated solution, i.e. , for a W„(f) factorizing
with respect to the individual atoms. We here see
that, moreover, any attempt to solve the master
equations approximately usirig a factorizing ansatz
for W„(t) is bound to fall short of a proper descrip-
tion of the superradiant decay of initially fully ex-
cited atoms. Such an ansatz completely supresses
the correlation o».

The importance of atom-atom correlations for
the superradiant pulse also elucidates from a mi-
croscopic analysis of the radiated intensity

= (R'R ) =+ (Ri R, )+Q (R;Ri) .
Il i i'd

Observing that (Ri R, ) = N« is the population of the
upper level of the ith atom and that, for symmetry

571
8

2lrl

FIG. 8. Maximum value om~{R3) of dispersion of
total atomic energy and minimum value a „m&„g of nor-
mally ordered intensity fluctuation for coherent excita-
tion by 2 I p I pulses with varying value of 2 I p I .

~easons, (R;R, ) =~»=~»=~,*„ this may be written
as

I(t)/I, = N, (t)+ N(N+ 1)x,a(t) .
We see that I(t) is made up by the ordinary spon-
taneous emission'3 proportional to the total popula-
tion N, (t) of the upper level and a term proportional
to N and the dipole-dipole correlation x». Evi-
dently, as N, (t) N, the superrad—iant enhancement
of the emitted intensity is due solely to the correla-
tion term x». Let us note that r» is space inde-
pendent because it refers to the phase dipole op-
erators R', (k) = R', e" "i. The correlation between
the true dipole operators is space dependent. Con-
sider the real quantity

iq(k) = a (('Ri Ri)+

(REER))),

TABLE V. Coherence and correlation properties for different initial states. Field phase coherence atomic dipole
incorrelation i(R;Ri) = (Ri) (R&)); field amplitude coherence atomic energy incorrelation ((RtiRq&) = (R&i) (Rmi)&.

Ini

Fully excited

(R'& ~ (at& (Rg)R3g& —(Rai&(R))&

0 0.2 (at&=& )

(R'R-& —(R'& (R-&
N

&R+R )/X2

(aR) —(a) (R)
Q/~) &R'R-& 0. 1 (at t=g )

Coherent excita-
tion by a 2m pulse
with fixed phase
and amplitude

Coherent excita-
tion by a 2m pulse
with fixed ampli-
tude and random
phase.

RR&i 2 Very small

Very small

Very small

&R'R-&/X'

Very small

y/~) &R'R-&

Very small

Very small
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and

c= (g/s) sin'I rl

c„=-c/(a')(R-& = 1/N cos'i yi .
(f 6)

This shows that the initial atom-field correlations
are not significant for )yl = —,m which indeed, as we
have seen, gives rise to the "most classical" be-

where now 8& are the "true" nonphased operators.
Expressing them in terms of their phased analogs
and using (6.3) and (6.4), we get

r, ~(k) = ((R'R &/Ns) cosk(r, —r, ) —O(1/N) . (7. 6)

This shows the explicit dependence of the dipole
correlation on the atomic positions when, by super-
radiant enhancement, (R'R ) becomes of order N .

It is also enlightening to look into the atom-field
correlations accompanying the superradiant pulse.
These can be discussed in terms of quantities as
(A+& —(A)(&&, where A, I" are atomic and field op-
erators, respectively. Consider, e. g. ,

'4

c -=i &a'R-) —&a'&&R-&
i

= (g/~) ((R'R-) -(R')(R-)) .
It is easy to see that for the coherently prepared
quasiclassical initial state (3. 11)

havior of the system. On the other hand, for any
incoherently prepared initial state we have (R'(f)&
——0, whereupon c= (g/It)&R'R ) = (1/2g)I(t). In this
case, evidently, the radiated intensity provides a
direct measure of the (extremely strong!) atom-
field correlations.

The differences in the statistical behavior of our
system caused by different initial conditions are
summarized in Table V. This table may also be
read as a confirmation of the general rule" that
phase and amplitude coherence exclude correlations
between phased and unphased quantities, respec-
tively and independently. We see, for instance,
that phase incoherence ((R') = 0) implies correlation
only between quantities involving phase as the
dipole-dipole correlation but does not imply any
correlation between the energies of different atoms.
On the other hand the energy correlation for dif-
ferent atoms vanishes as long as the field has am-
plitude coherence [o s(I) =0].
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