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One needs a necessary condition(rather than a sufficient condition, such as that of Rayleigh-
Ritz) to even attempt to prove that a given bound state cannot exist. We use an adiabaticlike
method to show that a positron (e') and a hydrogen atom {H) cannot form a bound state. The
separation r (but not r) of the proton (p) snd e' is fixed; working in a subspace of zero total
angular momentum, we calculate the lowest energy E,&{r) of the electron in the field of e' and
p. An effective one-body p+e' potential is then defined by V (r) =E,q(r) +e /r+e /2ao. The
necessary condition for the existence of a bound state of the true H+e' system is the existence
of a bound state of an artificial p+e' system with an interaction V '(r). This one-body prob-
lem is readily solved, and we find that it (and therefore the true problem) has no bound state.
The proof is not rigorous since E,q{r) is not determined exactly, but the accuracy attained is
such as to make the existence of an H+e' bound state extremely unlikely. A by-product of the
calculation is the determination of an improved lower bound on the ground-state energy of H .

I. INTRODUCTION

An approach based on the use of adiabaticlike po-
tentials was used recently to obtain rigorous lower
bounds on the ground-state energy of a compound
system. ' When a bound state of the compound sys-
tem does in fact exist, the rigorous lower bound
may well be rather crude; the primary significance
of the method lies in the possibility of proving that
the lower bound is zero, that is, in proving that no
bound state exists. [The nonexistence of a bound
state cannot be proved by means of a Rayleigh-Ritz
(RR) approach no matter how accurately one per-
forms the calculation. ] The adiabaticlike approach
wes applied to a number of cases and, among other
results, it was shown that a positron cannot be

bound to a helium atom. A (crude) lower bound was
obtained on the binding energy of the electron-
atomic-hydrogen (H+ e ) singlet ground state. In
the case of the positron-atomic-hydrogen (H+e')
system, where extensive HR calculations make it
almost certain (on reasonability grounds only —the
result is in no sense rigorous) that no bound state
exists„ the adiabaticlike method failed to prove the
nonexistence of a bound state; a lower bound on the
energy of the bound state, if a bound state exists,
was obtained.

The lowest-energy state of a three-body system
with central two-body interactions is of course a
state of zero angular momentum, i.e. , L =0. For
the case of interest, for which one of the three par-
ticles is effectively infinitely massive, it was
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pointed out ' that this fact could be used to obtain
improved results for the H+e' and H+e systems.
Using this suggestion, we have in fact been able to
effectively prove the nonexistence of a bound state
for the H+e' system. Though of much less interest
conceptually, it is little extra work and we have
therefore also obtained an improved, though still
crude, lower bound on the binding energy for the
negative hydrogen ion.

II. METHOD

Following the approach noted earlier, ' we begin
by writing the Hamiltonian for a zero total angular
momentum state as

H(t „~„&„)= t(r, )+ f(ra)+ -,'(I/m, ~,'+ I/m ara) Z'+ V,

(I)
where x& and ra are the distances of the positron and

electron, respectively, from the (infinitely heavy)

proton, and ~&2 is the angle between r& and ra. Vis
given by

V = e'/t. , ea/t—; ea/t », —

of two approaches described previously. ' It is
superior to the first method in that it differs from
the first by the non-negative angular momentum
term Z /(2m''&) in H, and will therefore generate
an improved lower bound. The price one has to pay
in using the second (improved) method is that one
must evaluate E,a(x, ); the corresponding energy
function required for the use of the first method is
known for a number of simple cases. Only the first
method was used in Ref. 1.

If E,a(~,) cannot be obtained exactly, a lower
bound on E,a(t'~) will maintain a rigorous lower
bound on II. We will use the RR method to deter-
mine E,a(r, ). This gives an upper bound on E,a(r, ),
but the results obtained are reasonably accurate and
for the moment E,a(t, ) w'ill be thought of as known
exactly. (We will return to this point later. ) The
trial function used is of the form

4t(&a~ eta'&t)= + &t; &a'"tt & 'tt "»,(cos&»), (9)
Z a

where the c„(x,) are linear parameters, the a„.(t,)
are nonlinear parameters, and the n„are non-nega-
tive integers, to be chosen arbitrarily. The I'z are
the Legendre polynomials. %e solve

det( H, —E,J) = 0

2 IZ 8 . 8
sin~, a

sin~&& e~&z 88&2
'

(For the 8+8 case, the signs of the first and third
terms of V are reversed. ) Separating off the kinet-
ic energy term t(r, ), we write

H(x„r„&»)= t(t, )+H.(r„&„;t, ), (4)

which defines H, . Letting E,a(x,) be the lowest ei-
genvalue of Ba for +~ fixed, i,t i.s clear that

H(r ae,a; t",) o I(t a, 8„)E,a(r~), (5)

where 1(xa, &&a) is the unit operator in the function
space of the coordinates r2 and e~z. If Et„, is the

energy of the deepest continuum threshold of H, it
follows that

H(&t, &a ~ta) —Et.,~ &(t'a, eta)H"'(&t),

where the one-body Hamiltonian

for the lowest-energy eigenvalue, where

H„, = (g;t, H, g, .t)

~it (~it i 4jt)

For each value of l the best value of a„was
searched for, and then successive values of / were
added. An example is given in Table I for t', = 2ao

TABLE I. Convergence of E,&, the adiabaticlike en-
ergy excluding the Coulomb interaction energy of the
two fixed particles, as a function of the number of terms
g used in the tri.al function of Eq. (9) for the E; = 0 case,

go @el(xg, +~ and Eey(pg» are the results
for the H+e' and H+e" systems, respectively. E,&

is
in rydbergs (1 Hy=-13. 6 eV). Note that these numbers
have not been corrected by the method described in the
text.

E i(&~ —)

H"'(r )=-t(w )+ V"'(t )

contains the one-body potential

V"'(~i)-=E.o(&t) —Eta, .
Thus, if E,a(r~) is known or can be obtained, one

need only solve a one-dimensional Schrodinger
equation to find a lower bound on H(t", , t'a, e,a), and

if V"'(r,) is incapable of supporting a bound state,
the three-body bound-state system cannot exist.

The method just described represents the second

1
2

3

5
6
7
8
9

10
11
12

—1.945 05
—l. 95233
—1.955 84
—l. 956 11
—1.95623
—l. 95638
—1.95639
—l. 95640
—1.95641
—l.956 43
—1.95644
—1.95644

—0. 039 57
—0. 053 69
—0. 082 32
—0. 085 83
—0. 086 75
—0. 086 76
—0. 086 78
—0. 086 83
—0. 086 87
—0, 086 88
—0. 086 88
—0. 086 88
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an estimate, we deleted the angular momentum
term Z /2m, x, from H, and repeated the calculation
of E,o, using the same form of trial function as with
the angular momentum present. Our results should
then agree with those obtained by Wind for the hy-
drogen molecular ion. (Fixing two protons or fixing
a proton and a positron will of course give the same
energy. ) Wind used an expansion technique and his
results should be extremely reliable. Our results
for E,o(x,) are very close to those of. Wind for al-
most all c', but in some regions of x they do deviate

by about I%. (Being a RR calculation, our values
are not as deep as those of Wind. ) A 1% error in

L,o(x, ) can generate errors an order of magnitude
larger in V (x,) and must be corrected for. Since
the angular momentum term contributes only a few

percent to the value of Z, o(x,), we took the differ-
ence between our results with and without the angu-
lar momentum term as the contribution of the angu-

lar momentum term. This difference was then
added on to Wind's results to obtain acor. rected Zo(r,,)
The result should be reliabl; further, if anything,
it should make V ' (x,) slightly more attractive than

in fact it is. If then the V"'{r,) we use cannot sup-
port a bound state, the exact V"'(r, ) can a fortiori
not support a bound state.

A necessary condition for the existence of a bound

state for a potential V(x) is the Bargmann-Schwinger
result

(2m/a') J, ~[- V {~)]d~o- I, (ls)

where V (r) is defined as equal to V(r) where V(r)
is negative, and equal tozerowhere V(x) is non-neg-
ative. We find that the above integral, with V"'(x)
of Eq. (8) as the potential and with m the mass of

an electron, gives 1.07. Since this is larger than

1, it does not follow that there is no bound state of
H+ e'. It does follow, though, that the smallest
mass for which a bound state can possibly exist is
(1.OV) 'rn, which is 0. 93m. [The calculation in Ref.
I, using &,o(&&) from Ref. 3, gave l. Bm for the val-
ue of the integral in (13), corresponding to a small-
est mass at which a bound state couM possibly exist
of 0. 56m, a much poorer result. ]

An improved result for the smallest mass of a
particle with the charge equal to that of a positron
that can be bound to H is obtained by solving the
one-dimensional Schrodinger equation with the
Hamiltonian given by (7). We obtain a, mass of

1.46m. This then proves that the positron cannot
be bound to the hydrogen atom. (The calculation in

Ref. 1, using the Schrodinger equation approach,
found that no bound state exists for a mass of
Q. 75m, and was unable to prove the nonexistence of
a bound state of H+e'. ) Our result, that a mass
less than 1.46m cannot be supported by a H atom,
is of course consistent with the result of Rotenberg
and Stein, obtained by a RR calculation, that a

mass greater than 2. 2m can be supported by a H
atom. The actual value of the mass that can just
be supported should be quite close to the 2. 2m re-
sult. The proof we give for the nonexistence of the
bound state is not completely rigorous, since E,o(r)
is not determined exactly, but the accuracy attained
is such as to make the existence of the H+ e' bound
state extremely unlikely.

It is important to distinguish between the various
roles played by the HR approach in the different
calculations. We have stressed that a direct appli-
cation of an RR approach to the original problem of
m + H represents a sufficient but not a necessary
condition for the existence of a bound state —a par-
ticle of mass greater than the lowest mass obtained
for which the particle will be bound to the H atom
will also be bound. The method of the present paper
presumably generates a necessary but not a suffi-
cient condition for the existence of a bound state;
yet in the course of its application a RR calculation
was used to estimate a potential. The difference is
one of practice rather than principle. In our case
the RR calculation is applied not to the original
three-body problem but to a very much simpler two-
body problem; furthermore, we are using the RR
approach simply to calculate a potential energy
curve, and the subtle problems that can arise when
one is directly studying conditions for which a bound
state just appears are not present.

To make the matter concrete, we note that a RR
calculation using no less than 84 parameters found
that a particle of mass m'= 2. 625m was bound by
0. 00054 eV. If one uses Fig. 1 of Ref. 5 to extrap-
olate to that mass, one finds a binding energy of
0. 026 eV. Thus, while the RR result provides an

upper bound on the energy, the upper bound is off

by about a factor of 50, despite the 84 variational
parameters. Thus, had an attempt been made by
the authors of Ref. 6 to estimate the necessary
mass for binding (no such attempt was in fact
made), a, very bad result would have been obtained.
The fact that an estimate of the mass obtained in
this way is itself variational helps, but not all that
much.

It is of course clear now why the energy obtained
is so far off. As the binding energy of the addition-
al particle approaches zero, the wave function of
the system extends to greater and greater distances
and cannot readily be approximated by a standard
Hylleraas-type trial function. The beauty of the
work of Rotenberg and Stein i.s that a term was
added to the usual form of trial function to account
for the asymptotic form of the wave function.

Some recent work an the ground-state energies
of three-particle systems using the Faddeev equa-
tions indicated that the positron was bound to the
hydrogen atom by about 0. 9 eV. The authors had

some doubts about the validity of that result; the
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TABLE III. Conditions on the mass of a particle if it
is to be possible for that particle to form a bound state
with a hydrogen atom. We consider a particle with a
charge equal to that of an electron and a mass ~, and
also a pax'ticle with a charge equal to that of a positxon
and a mass m'. (I) refers to the first method described
in Ref. 1 and to the method actually applied in Ref. 1.
(II) refex s to the second method described in Ref. 1 and
to the method applied in the present paper. "Integral"
refers to the use of the theorem quoted in connection
with Eq. (13), while "Schr" refers to the impxoved re-
sult obtained by explicit solution of the one-body Schr5-
dinger equation. RR refers to the Rayleigh-Ritz result.
The RR result is a sufficient condition. All of the other
results are necessary conditions. ng is the mass of an
electron.

Integral (I)

I1ltegx'al (II)

Schr (I)

Schr (II)

RR

H+m

~ 0. 56m
~ 0. 93m

~ 0.75~
~ 1.46m

2. 2m

H+ tn

—O. 4~
—0. 4m

—0. 66yyg

0. 72m

'See Ref. 5.

for b a positive constant. We also have for the en-
ergy E&h, of the hydrogenic m M' bound state

E,„,(bm-) = bE,„,(m ).

Choosing b=(1.46) '=0. 69, m'=1. 46m, and m =m,
it follows that

E(m', 0. 69m ) —E,„,(0. 69m )

=0.69[E(1.46m', m )-E,„,(m )]=0. (16)

present calculations make it clear that the result is
not valid.

A further result is readily obtained from scaling
considerations. ' We consider three charged parti-
cles mith charges equal in magnitude to the charge
on an electron and mith masses M'=~, m', and m,
the superscripts denoting the sign of the charge.
We knom that if there exists a state mith energy
E(m', m ) in which both m' and m are bound, then

E(bm', bm-) = bE(m', m-)

Thus„ if me increase the mass of the particle of
negative charge rather than decrease the mass of
the particle of positive charge, we find that a pro-
ton, a positron, and a negatively charged particle
of mass 0. 69m cannot form a bound state.

B. 8+e

Since the negative hydrogen ion is known to exist
in a singlet state, we can only obtain an improved
lower bound on the energy of the bound state. In
this case also we checked the accuracy of oux' re-
sults for E,o by deleting the angular momentum term
and comparing the resulting numbers with those of
%allis et a/. The results checked to within 0.01%.
We then find that

(2 m/b') j, r[ V"-'(r)]dr=2. 49, (I&)

so that a particle with the charge of that of an elec-
tron and of mass smaller than 0.4m cannot attach
itself to the hydrogen atom. Upon solving the one-
body Schrodinger equation, we find that the electron
is bound by at most 1.64 eV. From this result it
folloms' that the energies of both the first excited
singlet state and the triplet ground state lie above
—,'(- 1.64 eV) or —0. 62 eV. Our results in this case
are not appreciably better than those of Ref. 1 (see
Table III). The solution of the one-body Schrodinger
equation gives the improved result that a particle
with the charge of that of an electron must have a
mass of at least 0. 72m to be bound to a hydrogen
atom.

The reason for the much more considerable im-
provement in our calculation for the H+ e' case than
for the H+e case is a consequence of the fact that
the electronic energy E,&

is larger in the important
region of x in the H+e' ease than in the H+ 8 case.
Thus the increase in the potential due to the angular
momentum term, mhile being proportionally about
the same in both cases, makes a much greater dif-
ference in the absolute potential, and thus leads to
a significant improvement.
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The radiative magnetic dipole transition rate between 2p3 ~2 and 2p~ ~2 single-particle electron
states has been calculated with relativistic screened hydrogenic wave functions for seven ele-
ments with 70 ~Z &93 and is found to contribute only -10 5 of the total L2 level width. The re-
sult has been corroborated by an experimental study of the Pb I x-ray spectrum in coincidence
with Ke~ and K&2 x rays, establishing a limit w23 & (1.4 + 3. 0) && 10 for the radiative part of the
L2-L3X Coster-Kronig transition probability in Pb.

I. THEORY

Existing measurements' of the L~ -L,X Coster-
Kronig transition probability fz3 for Z ~ 70 exceed
theoretical results derived from screened hydro-
genic wave functions7 and from a self -consistent-
field (SCF) approache (Fig. 1). The question arises
whether radiative spin-flip transitions could con-
tribute measurably to f3~. The L, L~ radiative-
Coster-Kronig transition has recently been ob-
served, as has the K-Ly spin-flip transition. '

%e calculate the radiative magnetic dipole tran-
sition rate between 2ps&2 and 2p, &2 single-particle
electron states following the formalism of Scofield, "
but with relativistic screened hydrogenic wave
functions. The use of analytic wave functions is
justified since only an order-of -magnitude result is
desired. The initial and final states are charac-
terized by the quantum numbers vI = —2, v& = 1 [tc
=w (j+—,') for j= la —,']. The transition rate is

r~I = 2m''(2j;+1) f,(m)

=2II.Id(2jI + 1)B(—vI, v&, 1)R&(m),

where n is the fine-structure constant and + is the
transition energy, - in units such that I= m = e = 1.
The quantity B, which vanishes unless J = L + l, + l&

is even and L, j„and jf form a triangle, is de-
fined as

B(—v„x~,L) = [(2lI+ 1)(21~+1)/L(L+1)]

xC'(l„ lI, L;0, 0)W (jI1Ij&lf gL), (2)
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FIG. 1. Theoretical L2-L3X Coster-Kronig transition
probability f23 calculated by Chen, Crasemann, and Kos-
troun (Ref. 7) from hydrogenic wave functions and by
McGuire (Ref. 8) through an SCF approach, compared
with experimental points (Ref s. 1-6).

where l= —z if ~&0 and l=g —1 if g &0. In the pres-
ent case, B(2, 1, 1)=-,', whence

r~,. = 2n(o R', (m) .
The radial matrix element is

R, (m) = (zI + z&) J dr j,(kr) (F& G; + Gf FI )


